A manuscript submitted to Green Chemistry

Supplementary Materials

Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: Direct high-density ethanol production with competitive life cycle impacts

Xiaochen Huang^a, Shunwen Bai^a, Zhuo Liu^b, Tomohisa Hasunuma^c, Akihiko Kondo^b, Shih-Hsin Ho^a,*

^a State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
^b Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
^c Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan

Number of Pages: 13

Number of Figures: 1

Number of Tables: 9

*Corresponding authors

E-mail address: stephen6949@hit.edu.cn (Dr. Shih-Hsin Ho).

Methods and materials

Determination of biomass concentration, nitrate concentration, and CO₂ fixation rate

Briefly, microalgal cells were harvested by centrifugation at 6688 rpm for 1 min at room temperature, washed twice with de-ionized water and then lyophilized to obtain the dry cell weight (DCW). The biomass concentration was calculated according to the formula defined in Equation (S1). Nitrate concentration was determined according to a previously reported method [1]. Briefly, the culture samples were filtered through a 0.22 μ m filter and diluted with de-ionized water. The absorbance was measured at 220 nm via UV/Vis spectrophotometry. The CO₂ fixation rate ($^{F_{CO_2}}$) was calculated according to the formulas defined in Equations (S2).

$$1.0 \text{ OD}_{685} = 0.7-0.8 \text{ g DCW/L}$$

$$F_{CO_2} (mg/L/d) = \frac{1.88 \times \text{Biomass concentration } (g/L)}{\text{Cultivation day } (d)} \times 1000$$
(S2)

Life cycle assessment (LCA)

The assumptions of four alternatives used for LCA are as follows: (1) the evaluation of LCA was ranged from "microalgae biomass" to "ethanol production or other value-added products". The process of microalgal cultivation was negligible; (2) the optimal parameters and processes involved in production of 1 g ethanol were selected for further analysis of environmental impacts and economic output of four alternatives. For alternative-1, 0.005% α -amylase (90°C) and 0.2% glucoamylase (55°C) were the optimum conditions used for liquefaction and saccharification in separate hydrolysis and fermentation (SHF) process, respectively. However, the optimum conditions of acid pretreatment for ethanol production in alternative-2 was: 1% H₂SO₄, initial algal biomass concentration of 50 g/L, and 12-h fermentation with SHF process. The alternative-3 achieved the largest ethanol yield with the addition of 1 g/L lysozyme, using a recombinant strain MT8-18GS to operate fermentation process for 48 h. In this study, 300 g JSC4 residue fermented

72 h reached the optimum ethanol production in the presence of 50 g/L amylase- and cellulasedisplayed recombinant yeasts.

• Figures:

(a) 10 L photobioreactor used for strain JSC4 culture

Fig. S1 Time-course profiles of (b) biomass concentration, nitrogen concentration, and CO₂ fixation during the growth of *Chlamydomonas* sp. JSC4 in 10 L PBR (a). Error bars indicate the standard deviation of three replicates. (Other conditions: light source, TL5 lamp; light intensity = 400 μ mol/m²/s; CO₂ aeration = 2%; CO₂ flow rate = 0.05 vvm)

Tables

Та	ble	S1	Yeast	strains	used f	for a	disp	laving	cellulases	or am	vlases ii	ı this	study
		~	I CHOI	Sei ceins	abea				containeses	01 4111	, 1665 C 5 1		Staay

Strains	Description	Source	
DV4741	MATe his 2 A1 lay 2 40 mot 15 40 ung 2 40	Life	
D14/41		Technologies	
	EG-D-CBHI-D (pDI9-CBHII _D), display of BGL, EG,	This study	
ЕӨ-Д-СБПІ-Д-СБПІІ-Д	CBHI, and CBHII	This study	
	BY-AASS/GASS/pIU5GA-SS, display of α -amylase		
B I -AA39/0A39/0A33	and glucoamylase	This study	

BGL, β-glucosidase; EG, endoglucanase; CBHI, cellobiohydrolase II; CBHII, cellobiohydrolase II.

Table S2 Characteristics of integrative plasmids used in this study.

Plasmids	Description	Source
pRDH227	Hyg, expression of Chrysosporium lucknowense CBHII gene	This study
pDI9-CBH1 _D	MET15, display of T. emersonii CBHI	This study
pDI9-CBH2 _D	MET15, display of C. lucknowense CBHII	This study
pRS403	HIS3 ^a	Agilent Technologies
pRS406	URA3 ^a	Agilent Technologies
pIUPGSBAAG	URA3, display of Streptococcus bovis α-amylase	[2]
pδU-PGGlucRAG	<i>URA3</i> , display of <i>Rhizopus oryze</i> glucoamylase (δ-Integrative vector)	[3]
pIAA-SS ^b	HIS3, display of S. bovis α -amylase	This study
pIGA-SS ^b	HIS3, display of R.oryza glucoamylase	This study
pIU5GA-SS ^b	URA3, display of R.oryza glucoamylase	This study

^{*a*} Integrative vector without display cassette

^b The vector fragment containing *SED1* promoter, *SAG1* terminator, and sequence for *SED1*-anchoring region were amplified pIEG-SS [4].

Primers	Sequence
I9a-M-F	ATTAATGAATCGGCCAACGCTGGATATGACTGTGTTGTTGCTGATA
I9a-O-R	GGGGGGGGGGGGCTATGGAAAAACGCCAGCAACGCGG
O-I9a-F	AAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCC
O-I9b-R	GCACTTTTCGGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTC
I9b-O-F	AAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACC
I9b-C1-R	TTTTCACCGTCATCACCGAAGGGCCCATGGCTAGGTGT
C1-M-F	ACCTACTTTCTCTCACAAGTCGGATCTATGCGGTGTGAAATAC
C1-I9b-R	CAACAACACAGTCATATCCAGCGTTGGCCGATTCATTA
C2-F	AATACGTTCGCTCTATTAAGATGGCCAAGAAGTTGTTCATTACC
C2-R	GTTGATAATTTACTCGAGCCGAATGGTGGATTTGCGTTCGTT
D-C2-F	CGAACGCAAATCCACCATTCGGCTCGAGTAAATTATCAACTGTCC
P-C2-R	ATGAACAACTTCTTGGCCATCTTAATAGAGCGAACGTATTTT
I9-F	AAGAAGAAATCCGTGCTTACACATT
I9-R	GCTATCCCATGCAAAGATTGTCAACG

Table S3 PCR primers used for display cellulases in this study

Primers	Sequence
AA-F	AATACGTTCGCTCTATTAAGATGAGATTTCCTTCAATTTTTACTGC
AA-R	AATAGGACAGTTGATAATTTCTTGTCATCGTCATCCTTGTAGTC
SSvector-F	ACAAGGATGACGATGACAAGAAATTATCAACTGTCCTATTATCTGCC
SSvector-R	AAAATTGAAGGAAATCTCATCTTAATAGAGCGAACGTATTTTATTTTG
GA-F	AATACGTTCGCTCTATTAAGATGCAACTGTTCAATTTGCC
GA-R	GTTGATAATTTACTCGAGCCAGCGGCAGGTGCACCAGCCTTAG
SSvector-F2	AGGCTGGTGCACCTGCCGCTGGCTCGAGTAAATTATCAACTGTCC
SSvector-R2	GGCAAATTGAACAGTTGCATCTTAATAGAGCGAACGTATTTT
I5-F	TGTACTGAGAGTGCACCATATTGTTGTGTAAATGTTCTATCTGACACT
I5-R	ATTGAATTGAAAAGCTGTGGCAGGTTGTGCTCACTGTATATAGTCTC
URA3-F	TATACAGTGAGCACAACCTGCCACAGCTTTTCAATTCAA
URA3-R	TTTCACACCGCATAGATCCGGGGTAATAACTGATATAATTAAATTGA
	AG
GASSvector-F2	AATTATATCAGTTATTACCCCGGATCTATGCGGTGTGAAATAC
GASSvector-R2	ATAGAACATTTACACAACAATATGGTGCACTCTCAGTACAATCTG

 Table S4 PCR primers used for display amylases in this study

		Alternative-1	Alternative-2	Alternative-3	Alternative-4
Raw materials	Algal biomass	4.25532	4.29185	2.85714	0.41152
(g)	Sulfuric acid	0.42128	1.57946		
	Yeast	0.08511	0.08584 (bacterium)	7.6856	0.68737/1.029
	Yeast extract	4.25532	0.8584	1.54283	0.54743
	Peptone	8.51064		5.7142	1.09486
	Glucose	4.25532	1.7168	5.7142	1.09486
	Others	α-amylase: 0.00426	KH ₂ PO ₄ : 0.17168	Lysozyme: 0.02058	Acetone: 3.229
		Glucoamylase: 0.17021	(NH ₄) ₂ SO ₄ : 0.08584	Na ₂ EDTA: 0.51428	Additional products:
			MgSO ₄ : 0.04292		Lutein (2 mg)
			CaCO ₃ : 0.8069		
Utilities	Centrifuge	0.29787	0.8584	0.17143	0.008232
(kW·h)	Shaker (twice)	5.10638/12.2553	1.54512/3.09024	8.22845/4.11422	1.18541/0.88906
()	Others	Water bath: 6.38298	Autoclave: 0.51504		Sonication: 0.08232
	Total electricity	24.043	6.009	12.514	2.239

Table S5 Detailed inventory data of all the alternatives during the process of producing 1 g ethanol

Table S6 Comparison of biomass production, carbohydrate content, and carbohydrate productivity of *Chlamydomonas* sp. JSC4 with other microalgae reported in previous literatures.

Strains	Cultivation time (d)	Cultivation scale and apparatus	Biomass concentration (g/L) ^a	Carbohydrate content (%)	Carbohydrate productivity (mg/L/d)	References
Chlamydomonas sp. JSC4	7	10 L/Photobioreactor (PBR)	3.5	65 ^b	438 ^c	This study
Scenedesmus obliquus CNW-N	12	1 L/PBR	2.63	30-40	n.d.	[5]
Scenedesmus obliquus AS-F-7-1	12	1 L/PBR	1.13	n.d.	n.d.	[5]
Chlamydomonas vulgaris	6	250 mL/Erlenmeyer flasks	1.70	44	112	[6]
Chlamydomonas reinhradtii	3	4 L/Flat-vertical PBR	1.45	53.1	257	[7]
Chlorella vulgaris (CCAP 211/11B)	14	2 L/Tank bioreactor	0.52	55.0	21	[8]

n.d.: not determined.

^{*a*} maximum of biomass concentration during the cultivation.

^b maximum of carbohydrate content during the cultivation.

^c maximum of carbohydrate productivity during the cultivation.

Content (%)	Cultivation day (d)								
	2	3	4	5	7				
Lipid	9.20±0.89	11.91±0.67	15.26±0.07	18.17±0.84	21.78±1.24				
Carbohydrate	33.16±0.92	51.07±2.85	58.63±3.51	64.30±1.26	64.65±0.74				
Protein	49.98±0.86	29.67±0.28	18.64±0.48	10.19±0.33	6.28±0.10				
Others	7.66±0.94	7.35±3.63	7.47±3.13	7.34±2.43	7.29±1.80				

Table S7 Time-course profiles of biochemical composition during the growth ofChlamydomonas sp. JSC4.

(a)	Ecosystem quality									
	Agricultural land occupation	Climate change	Freshwater ecotoxicity	Freshwater eutrophication	Marine ecotoxicity	Natural land transformation	Terrestrial acidification	Terrestrial ecotoxicity	Urban land occupation	Total
Alternative-1	5.20×10 ⁻⁵	1.10	4.88×10 ⁻⁴	1.68×10 ⁻³	1.63×10 ⁻¹	4.94×10 ⁻¹	2.54×10 ⁻³	8.78×10 ⁻⁴	1.24×10 ⁻²	1.77
Alternative-2	1.30×10 ⁻⁵	0.275	1.22×10^{-4}	4.20×10 ⁻⁴	4.08×10^{-2}	1.23×10^{-1}	6.33×10 ⁻⁴	2.20×10^{-4}	3.11×10 ⁻³	0.443
Alternative-3	2.72×10^{-5}	0.573	2.54×10^{-4}	8.75×10-4	8.50×10^{-2}	2.57×10^{-1}	1.32×10^{-3}	4.62×10^{-4}	6.48×10 ⁻³	0.924
Alternative-4	4.98×10^{-6}	0.103	4.56×10 ⁻⁵	1.57×10^{-4}	1.52×10^{-2}	4.60×10 ⁻²	2.37×10 ⁻⁴	8.39×10 ⁻⁵	1.16×10 ⁻³	0.166

Table S8 Detailed inventory data of (a) ecosystem quality, (b) human health, and (c) resources depletion for all alternatives

(b)	Human health							
	Climate change	Human toxicity	Ionising radiation	Ozone depletion	Particulate matter formation	Photochemical oxidant formation	Total	
Alternative-1	1.38	5.24	4.38×10 ⁻⁵	5.75×10-6	9.00×10 ⁻²	5.69×10 ⁻⁴	6.71	
Alternative-2	0.345	1.31	1.10×10 ⁻⁵	1.44×10^{-6}	2.25×10 ⁻²	1.42×10^{-4}	1.68	
Alternative-3	0.720	2.73	2.29×10 ⁻⁵	3.01×10 ⁻⁶	4.69×10 ⁻²	2.97×10-4	3.49	
Alternative-4	0.129	0.498	4.19×10 ⁻⁶	5.47×10 ⁻⁷	8.42×10 ⁻³	5.76×10 ⁻⁵	0.626	

(c)	F	Total scores		
-	Resources - fossil depletion	Resources - metal depletion	Total	(Ecosystem quality +Human health +Resources depletion)
Alternative-1	1.49	1.41×10 ⁻²	1.50	9.99
Alternative-2	0.372	3.58×10 ⁻³	0.375	2.50
Alternative-3	7.75	7.37×10 ⁻³	0.783	5.20
Alternative-4	1.49	1.34×10 ⁻³	0.141	0.933

Flomente	Catagory	Impact scores (point)					
Elements	Category	Alternative 1	Alternative 2	Alternative 3	Alternative 4		
Selenium (Se)	Emission to water / ground water, long-term	2.298	0.574	1.196	0.214		
Manganese (Mg)	Emission to water / ground water, long-term	1.572	0.392	0.818	0.146		
Barium (Ba)	Emission to water / ground water, long-term	0.401	0.100	0.209	0.037		
Arsenic (As, ion)	Emission to water / ground water, long-term	0.258	0.064	0.134	0.024		
Selenium (Se)	Emission to air / low population density	0.218	0.054	0.114	0.020		
Molybdenum (Mo)	Emission to water / ground water, long-term	0.193	0.048	0.100	0.018		
Selenium (Se)	Emission to water / surface water	0.082	0.020	0.043	0.008		
Arsenic (As, ion)	Emission to water / surface water	0.072	0.018	0.038	0.007		
Total impacts		5.238	1.310	2.726	0.489		

Table S9 The impact scores of elements on human toxicity and categories of emission to environment

References:

- [1] Ho S-H, Chen C-Y, Chang J-S. Bioresour. Technol. 2012, 113, 244-252.
- [2] Yamada R, Nakatani Y, Ogino C, Kondo A. AMB Express. 2013, 3, 34.
- [3] Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. Appl. Microbiol. Biotechnol. 2010, 85(5),1491-1498.
- [4] Inokuma K, Hasunuma T, Kondo A. Biotechnol. Biofuels. 2014, 7(1), 8.
- [5] Ho S-H, Chen C-Y, Yeh K-L, Chen W-M, Lin C-Y, Chang J-S. *Biochem. Eng. J.* 2010, 53 (1), 57-62.
- [6] Liang Y, Sarkany N, Cui Y. Biotechnol. Lett. 2009, 31(7), 1043-1049.
- [7] Kim MS, Baek JS, Yun YS, Sim SJ, Park S, Kim SC. Int. J. Hydrogen Energ. 2006, 31(6), 812-816.
- [8] Illman A M, Scragg A H, Shales S W. Enzyme Microb. Tech. 2000, 27(8), 631-635.