Supporting information

Binding Enabled Catalytic Activation of SO₂ by Copper Koneramine Complexes at Ambient Conditions

Manoj Chahal,[†] Sakthi Raje^{*,†} Gopichand Kotana[†] and Raja Angamuthu^{*,†}

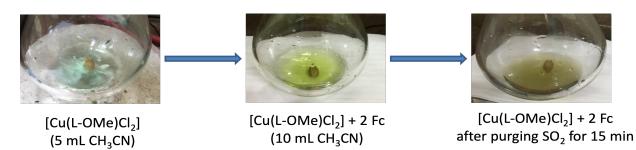

*Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.

Table of content

Figure S 1. ESI-MS of [Cu(L-OMe)Cl ₂]	11
Figure S 2. Simulated ESI-MS of [Cu(L-OMe)Cl] ⁺ cation	12
Figure S 3. ORTEP of syn-[Cu(L-OMe)Cl ₂] drawn at 50% probability level	13
Figure S 4. ESI-MS of the solution containing [Cu(L-OMe)Cl ₂] and 2 equivalent ferroce	ene after
purging SO ₂ (Positive ion mode) in CH ₃ CN	14
Figure S 5. ESI-MS of the solution containing [Cu(L-OMe)Cl ₂] and 2 equivalent ferroce	ene after
purging SO ₂ (Negative ion mode) in CH ₃ CN	15
Figure S 6. Simulated ESI-MS for HSO ₄ ⁻ anion	16
Figure S 7. ESI-MS of the solution containing anhydrous CuCl ₂ and 2 equivalent ferroce	ene after
purging SO ₂ (Negative ion mode) showing no formation of SO ₂ activated products	17
Figure S 8. ESI-MS of the ferrocene solution after purging SO ₂ (Negative ion mode) show	wing no
formation of SO ₂ activated products	18
Figure S 9. ESI-MS of the solution containing [Cu(L-OMe)Cl ₂] and 2 equivalent ferroce	ene after
purging SO ₂ (Positive ion mode) in CH ₃ CN after 3 days showing no peaks for [Cu(L-O	Me)Cl] ⁺
	19
Figure S 10. ESI-MS of the solution containing $[Cu(L-OMe)Cl_2]$ and 2 equivalent ferroce	ene after
purging SO ₂ (Negative ion mode) in CH ₃ CN after 3 days	20
Figure S 11. ESI-MS of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf)	21
Figure S 12. Simulated ESI-MS of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) for [Cu(Tim)Cl] ⁺	
	22
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level	
	23
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level	23 24
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level Figure S 14. One-dimensional hydrogen-bonded chain of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf)	23 24 I)-1,3,5-
Figure S 13. ORTEP of $[Cu(Tim-H)(H_2O)Cl_2](OTf)$ drawn at 50% probability level Figure S 14. One-dimensional hydrogen-bonded chain of $[Cu(Tim-H)(H_2O)Cl_2](OTf)$ Figure S 15. ¹ H NMR of N^2, N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl	23 24 I)-1,3,5- 25
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level Figure S 14. One-dimensional hydrogen-bonded chain of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) Figure S 15. ¹ H NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃	23 24 l)-1,3,5- 25 l)-1,3,5-
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level Figure S 14. One-dimensional hydrogen-bonded chain of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) Figure S 15. ¹ H NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃ Figure S 16. ¹³ C NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl	23 24 I)-1,3,5- 25 I)-1,3,5- 26
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level Figure S 14. One-dimensional hydrogen-bonded chain of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) Figure S 15. ¹ H NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃ Figure S 16. ¹³ C NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃	23 24 I)-1,3,5- 25 I)-1,3,5- 26 27
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level Figure S 14. One-dimensional hydrogen-bonded chain of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) Figure S 15. ¹ H NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃ Figure S 16. ¹³ C NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃ Figure S 17. ¹ H NMR of [L-H] in CDCl ₃	23 24 I)-1,3,5- 25 I)-1,3,5- 26 27 28
Figure S 13. ORTEP of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) drawn at 50% probability level Figure S 14. One-dimensional hydrogen-bonded chain of [Cu(Tim-H)(H ₂ O)Cl ₂](OTf) Figure S 15. ¹ H NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃ Figure S 16. ¹³ C NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl triazine-2,4,6-triamine in CDCl ₃ Figure S 17. ¹ H NMR of [L-H] in CDCl ₃ Figure S 18. ¹³ C NMR of [L-H] in CDCl ₃	23 24 l)-1,3,5- 25 l)-1,3,5- 26 27 28 29

Figure S 22. ESI-MS of [Cu(L-H)Cl ₂]
Figure S 23. Simulated ESI-MS of [Cu(L-H)Cl ₂] for [Cu(L-H)Cl] ⁺ 33
Figure S 24. ORTEP of [Cu(L-H)Cl ₂] drawn at 50% probability level34
Figure S 25. ESI-MS of [Cu(L-H)(H ⁺)(OTf)(Cl)](OTf)35
Figure S 26. Simulated ESI-MS of [Cu(L-H)(H ⁺)(OTf)(Cl)](OTf) for [Cu(L-H)Cl+CF ₃ SO ₃ H] ⁺ 36
Figure S 27. Simulated ESI-MS of [Cu((L-H)(H ⁺)(OTf)Cl](OTf) for [Cu(L-
$H)(CF_{3}SO_{3})+CF_{3}SO_{3}H]^{+}$
Figure S 28. ORTEP of [Cu(L-H)(H ⁺)(OTf)Cl](OTf) drawn at 50% probability level
Figure S 29. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 2 equivalent ferrocene after
purging SO ₂ (Positive ion mode) in CH ₃ CN
Figure S 30. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 2 equivalent ferrocene after
purging SO ₂ (Negative ion mode) in CH ₃ CN40
purging SO ₂ (Negative ion mode) in CH ₃ CN40 Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after
Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after
Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after purging SO ₂ (Positive ion mode) in CH ₃ CN
Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after purging SO ₂ (Positive ion mode) in CH ₃ CN
Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after purging SO ₂ (Positive ion mode) in CH ₃ CN
Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after purging SO ₂ (Positive ion mode) in CH ₃ CN
Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after purging SO ₂ (Positive ion mode) in CH ₃ CN
Figure S 31. ESI-MS of the solution containing [Cu(L-H)Cl ₂] and 51 equivalent ferrocene after purging SO ₂ (Positive ion mode) in CH ₃ CN

Table S 1. Crystal data for [Cu(L-OMe)Cl2]	49
Table S 2. Crystal data for [Cu(Tim-H)(H ₂ O)Cl ₂](OTf)	50
Table S 3. Crystal data for [L-H]	51
Table S 4. Crystal data for [Cu(L-H)Cl2]	52
Table S 5. Crystal data for [Cu(L-H)(H ⁺)(OTf)Cl](OTf)	53

The reaction of [Cu(L-OMe)Cl₂] and 2 equivalent ferrocene with SO₂ in CH₃CN

[Cu(L-OMe)Cl₂] (50 mg, 0.083 mmol) was dried under vacuum for 30 minutes in Schlenk flask and dissolved with 5 mL CH₃CN under N₂ atmosphere resulted in a light blue-green solution. It was stirred for 5 minutes and the yellow solution of ferrocene (31 mg, 0.166 mmol) in 5 mL CH₃CN was added at room temperature. The light blue-green solution changed to lime green upon addition of ferrocene solution. The lime green solution was stirred for 5 minutes then SO₂ was purged for 15 minutes at room temperature along with the stirring. The clear lime green solution turned to olive green within 10 minutes of SO₂ purging with little turbidity then the solution was left in open air and sample was analysed by high-resolution ESI-MS.

High resolution ESI-MS (cation mode):

m/z for C₁₀H₁₀Fe = 186.0159 (calcd. 186.0132) = Fc⁺

m/z for C₁₁H₂₄N₇ = 254.2113 (calcd. 254.2093) = [N^2 -(2-aminoethyl)- N^4 , N^6 -diisopropyl-1,3,5-triazine-2,4,6-triamine + H]

m/z for C₁₇H₂₇N₈ = 343.2369 (calcd. 343.2359) = Tim-H

m/z for C₁₇H₂₆N₈CuCl = 440.1289 (calcd. 440.1265) = [Cu(Tim)Cl]⁺

m/z for C₂₄H₃₃N₉OCuCl = 561.1796 (calcd. 561.1793) = [Cu(L-OMe)Cl]⁺

High resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9595 (calcd. 96.9596) = bisulfate anion

Control reactions:

anhydrous $CuCl_2 + 2Fc + SO_2 + O_2 \longrightarrow$ No activation

anhydrous CuCl₂ (14 mg, 0.104 mmol) was dried under vacuum for 30 minutes in Schlenk flask and added to the stirred 10 mL CH₃CN yellow solution of ferrocene (31 mg, 0.166 mmol) at room temperature. The yellow-brown solution changed to green-brown upon addition of metal salt. The green-brown solution was stirred for 5 minutes then SO₂ was purged for 15 minutes at room temperature along with the stirring. The color of the solution changed to red from greenbrown on SO₂ purging. The solution was left in open air and sample was analysed by highresolution ESI-MS. No bisulfate peak was observed in negative ion mode.

$Fc + SO_2 + O_2 \longrightarrow$ No activation

Ferrocene (15 mg, 0.08 mmol) was dried under vacuum for 30 minutes in Schlenk flask and then dissolved in 10 mL CH₃CN. SO₂ was purged in yellow solution of ferrocene at room temperature along with the stirring. No change in yellow color of the solution upon SO₂ purging. The solution was left in open air and sample was analysed by high-resolution ESI-MS. No bisulfate peak was observed in negative ion mode.

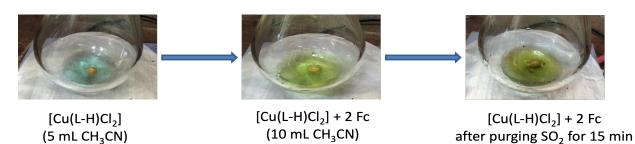
The reaction of [Cu(L-OMe)Cl₂] and 2 equivalent ferrocene with SO₂ in CH₃CN for 3 days

[Cu(L-OMe)Cl₂] (10 mg, 0.016 mmol) was dried under vacuum for 30 minutes in Schlenk flask and dissolved with 5 mL CH₃CN under N₂ atmosphere resulted in a light blue-green solution. It was stirred for 5 minutes and the yellow solution of ferrocene (6 mg, 0.032 mmol) in 5 mL CH₃CN was added at room temperature. The light blue-green solution changed to lime green upon addition of ferrocene solution. The lime green solution was stirred for 5 minutes then SO₂ was purged for 15 minutes at room temperature along with the stirring. The clear lime green solution turned to olive green within 10 minutes of SO₂ purging with little turbidity, and then the Schlenk flask was left at -20 °C for 72 h. The turbid reaction mixture was filtered through the cannula and the filtrate was analysed by high-resolution ESI-MS.

High resolution ESI-MS (cation mode):

m/z for C₁₀H₁₀Fe = 186.0125 (calcd. 186.0131) = Fc⁺

m/z for C₁₁H₂₄N₇ = 254.2100 (calcd. 254.2093) = [N^2 -(2-aminoethyl)- N^4 , N^6 -diisopropyl-1,3,5-triazine-2,4,6-triamine + H]


m/z for C₁₇H₂₇N₈ = 343.2379 (calcd. 343.2359) = Tim-H

High resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9589 (calcd. 96.9596) = bisulfate anion

m/z for 2HSO₄ + H = 194.9268 (calcd. 194.9269) = [H(HSO₄)₂]⁻

No peak was observed for [Cu(L-OMe)Cl]⁺

The reaction of [Cu(L-H)Cl₂] and 2 equivalent ferrocene with SO₂ in CH₃CN

 $[Cu(L-H)Cl_2]$ (9 mg, 0.016 mmol) was dried under vacuum for 30 minutes in Schlenk flask and dissolved with 5 mL CH₃CN under N₂ atmosphere resulted in a light blue-green solution. It was stirred for 5 minutes and the yellow solution of ferrocene (6 mg, 0.032 mmol) in 5 mL CH₃CN was added at room temperature. The light blue-green solution changed to lime green upon the addition of ferrocene solution. The lime green solution was stirred for 5 minutes, and SO₂ was purged for 15 minutes at room temperature along with the stirring. The lime green solution turned olive green upon SO₂ purging then, the Schlenk flask was left at -20 °C for 70 h. The solution was analysed by high-resolution ESI-MS and evaporated under reduced pressure resulted in green solid. Weight of green solid = 18 mg.

High resolution ESI-MS (cation mode):

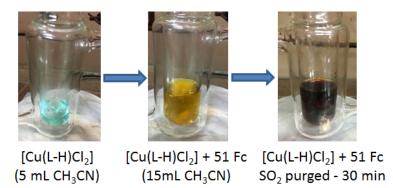
m/z for C₁₀H₁₀Fe = 186.0134 (calcd. 186.0131) = Fc⁺

m/z for (C₂₃H₃₁N₉Cu)/2 = 248.0979 (calcd. 248.0999) = [Cu(L-H)]²⁺

m/z for (C₂₃H₃₂N₉CuCl)/2 = 266.0861 (calcd. 266.0882) = [Cu(L-H)+HCl]²⁺

m/z for C₂₃H₃₁N₉CuCl = 531.1683 (calcd. 531.1687) = [Cu(L-H)Cl]⁺

m/z for C₂₄H₃₂N₉O₂Cu = 541.1991 (calcd. 541.1975) = [Cu(L-H)HCOO]⁺


m/z for C₂₃H₃₂N₉O₄SCu = 593.1595 (calcd. 593.1594) = [Cu(L-H)HSO₄]⁺

High resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9606 (calcd. 96.9596) = bisulfate anion

m/z for 2HSO₄ + H = 194.9272 (calcd. 194.9269) = [H(HSO₄)₂]⁻

The reaction of [Cu(L-H)Cl₂] and 51 equivalent ferrocene with SO₂ in CH₃CN

 $[Cu(L-H)Cl_2]$ (9 mg, 0.016 mmol) was dried under vacuum for 30 minutes in Schlenk tube and dissolved with 5 mL CH₃CN under N₂ atmosphere resulted in a blue-green solution. It was stirred for 5 minutes and the yellow solution of ferrocene (153 mg, 0.82 mmol) in 10 mL CH₃CN was added at room temperature. The blue-green solution changed to yellow upon the addition of ferrocene. The yellow solution was stirred for 5 minutes, and SO₂ was purged for 30 minutes at room temperature along with the stirring. The yellow solution changed to wine red upon purging SO₂ within 2 minutes. The solution was transferred to 50 mL round bottom flask and evaporated to dryness under reduced pressure resulted in yellow-green solid.

The weight of the yellow-green solid = 180 mg.

High resolution ESI-MS (cation mode):

m/z for C₁₀H₁₀Fe = 186.0169 (calcd. 186.0131) = Fc⁺

m/z for (C₂₃H₃₁N₉Cu)/2 = 248.0989 (calcd. 248.0999) = [Cu(L-H)]²⁺

m/z for (C₂₃H₃₂N₉CuCl)/2 = 266.0851 (calcd. 266.0882) = [Cu(L-H)+HCl]²⁺

m/z for C₂₃H₃₂N₉ = 434.2739 (calcd. 434.2781) = [(L-H)+H]

m/z for C₂₃H₃₁N₉CuCl = 531.1682 (calcd. 531.1687) = [Cu(L-H)Cl]⁺

m/z for C₂₄H₃₂N₉O₂Cu = 541.2021 (calcd. 541.1975) = [Cu(L-H)HCOO]⁺

High resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9580 (calcd 96.9596) = bisulfate anion

m/z for 2HSO₄ + H = 194.9250 (calcd 194.9269) = [H(HSO₄)₂]⁻

Calculation for the conversion of SO₂ to sulfate (SO₄²⁻):

 $[Cu(LH)Cl_2] + 51 \text{ Fc} \xrightarrow{SO_2 \text{ (purged for 30 mins)}} [Cu(LH)Cl_2] + 51 \text{ (Fc, Fc}^+) + x SO_4^{2-}$

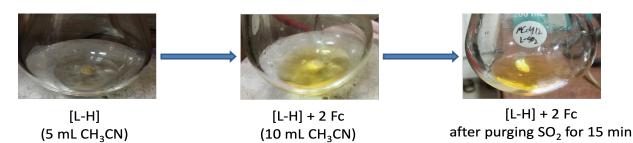
1 equiv. of $[Cu(L-H)Cl_2] = 0.016 \text{ mmol} (9 \text{ mg})$

51 equiv. of ferrocene = 0.82 mmol (153 mg)

The experimental weight of the reaction mixture after purging $SO_2 = 180 \text{ mg}$

The weight of sulfate $(SO_4^{2-}) =$ (the exp. weight of the reaction mixture after purging SO₂) - (the weight of copper complex and ferrocene) = (180 - 162) mg = 18 mg

The moles of sulfate (SO₄²⁻) formed from the reaction mixture = the weight of sulfate / the molecular weight of sulfate = 18 mg / 96.0626 g/mol = 0.19 mmol


$$SO_2 + O_2 \xrightarrow{2 e^-} SO_4^{2^-}$$

Based on the above reaction, 0.19 mmol of SO_2 was converted to sulfate (SO_4^{2-})

The number of equiv. of SO₂ converted to sulfate (SO_4^{2-}) = the moles of SO₂ reacted / the moles of $[Cu(L-H)Cl_2] = 0.19 \text{ mmol} / 0.016 \text{ mmol} = 11.8 \text{ equivalents}$

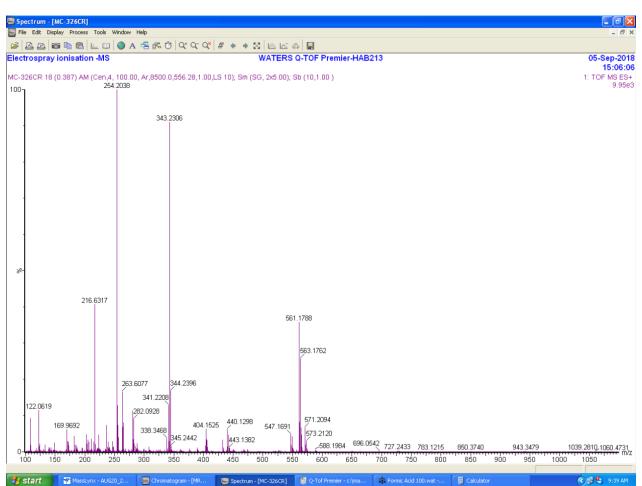
Therefore, 11.8 equivalents of SO₂ was converted to sulfate (SO₄²⁻) for a equivalent of [Cu(L-H)Cl₂] and 51 equivalent of ferrocene.

The reaction of [L-H] and 2 equivalent ferrocene with SO₂ in CH₃CN

[L-H] (7 mg, 0.016 mmol) was dried under vacuum for 30 minutes in Schlenk flask and dissolved with 5 mL CH₃CN under N_2 atmosphere. The colourless solution was stirred for 5 minutes and the yellow solution of ferrocene (6 mg, 0.032 mmol) in 5 mL CH₃CN was added at room temperature. The colourless solution changed to light yellow upon the addition of ferrocene solution. The solution was stirred for 5 minutes then SO₂ was purged for 15 minutes at room temperature along with the stirring. The light yellow solution turned deep yellow upon SO₂ purging, and then, the Schlenk flask was left at -20 °C for 70 h. The yellow solution was analysed by high-resolution ESI-MS. It was evaporated under reduced pressure resulted in yellow solid.

High resolution ESI-MS (cation mode):

m/z for (C₁₇H₃₀N₈)/2 = 173.1266 (calcd. 173.1296) = [N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl)-1,3,5-triazine-2,4,6-triamine + 2H]


m/z for C₁₀H₁₀Fe = 186.0118 (calcd. 186.0131) = Fc⁺

m/z for C₁₇H₂₉N₈ = 345.2511 (calcd. 345.2515) = [N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl)-1,3,5-triazine-2,4,6-triamine + H]

High resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9598 (calcd. 96.9596) = bisulfate anion

m/z for 2HSO₄ + H = 194.9277 (calcd. 194.9269) = [H(HSO₄)₂]⁻

Figure S	1.	ESI-MS	of [Cu(L-ON	$fe)Cl_2].$
		201 1110)2].

Observed envelope	Observed for	Calculated <i>m/z</i>
254.2038		254.2093
343.2306	Imd-H	343.2359
561.1788	[Cu(L-OMe)Cl] ⁺	561.1793
571.2094	[Cu(L-OMe)HCOO] ⁺	571.2081

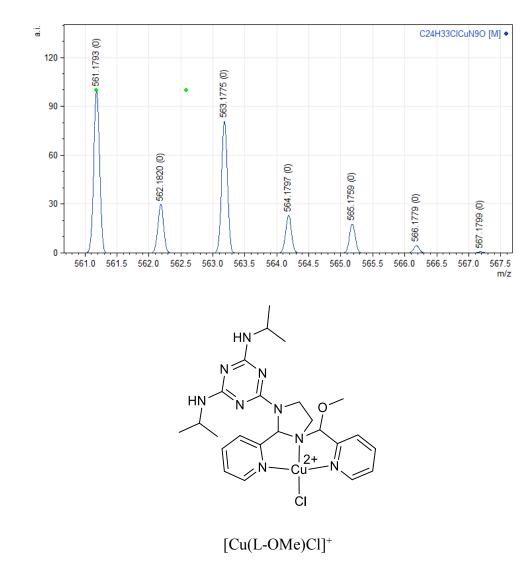


Figure S 2. Simulated ESI-MS of [Cu(L-OMe)Cl]⁺ cation.

Figure S 3. ORTEP of *syn*-[Cu(L-OMe)Cl₂] drawn at 50% probability level.

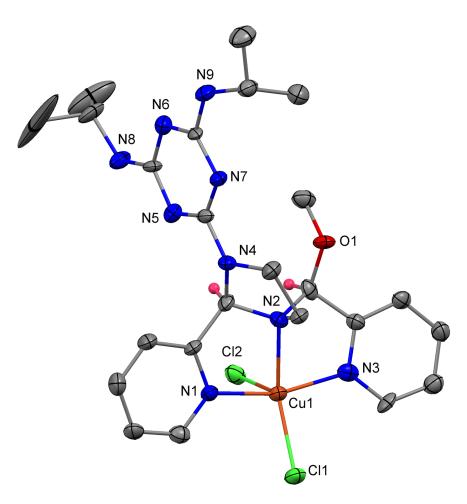
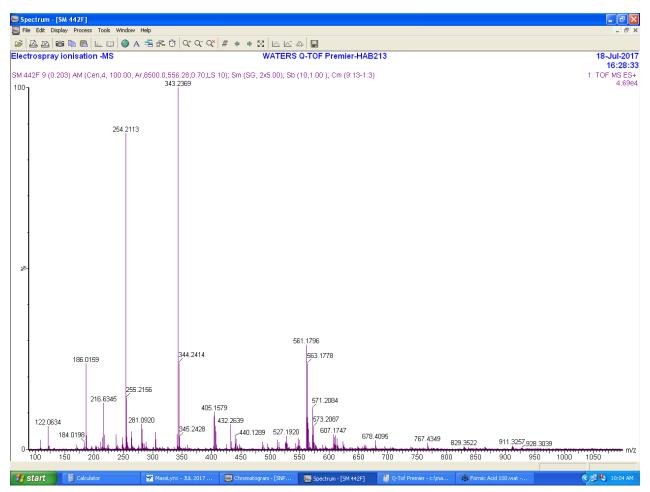
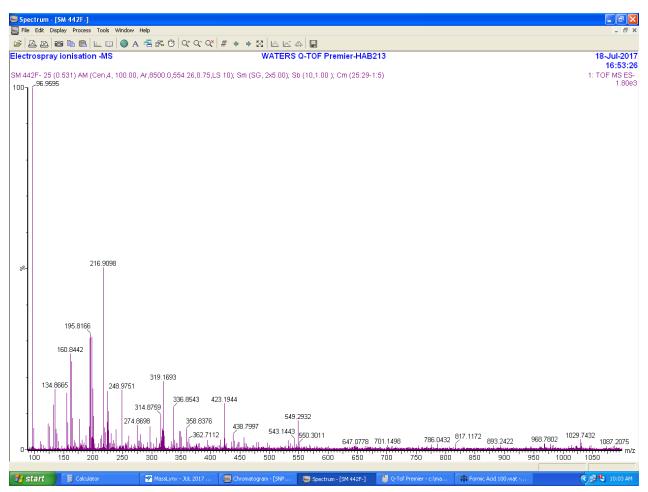




Figure S 4. ESI-MS of the solution containing $[Cu(L-OMe)Cl_2]$ and 2 equivalent ferrocene after purging SO₂ (Positive ion mode) in CH₃CN

Observed envelope	Observed for	Calculated m/z
186.0159	Ferrocenium ion	186.0132
254.2113	HN N HN HN	254.2093
343.2369	Imd-H	343.2359
440.1289	[Cu(Imd)Cl] ⁺	440.1265
561.1796	[Cu(L-OMe)Cl] ⁺	561.1793

Figure S 5. ESI-MS of the solution containing $[Cu(L-OMe)Cl_2]$ and 2 equivalent ferrocene after purging SO₂ (Negative ion mode) in CH₃CN

Observed envelope	Observed for	Calculated <i>m/z</i>
96.9595	HSO ₄ ⁻	96.9596

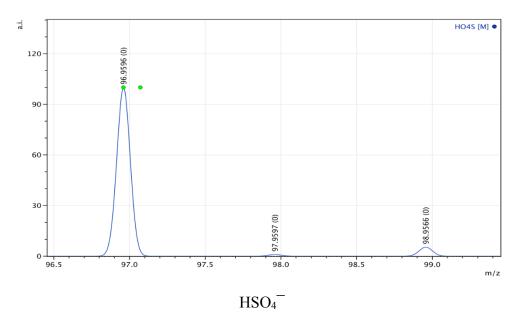


Figure S 6. Simulated ESI-MS for HSO₄⁻ anion

Figure S 7. ESI-MS of the solution containing anhydrous CuCl₂ and 2 equivalent ferrocene after purging SO₂ (Negative ion mode) showing no formation of SO₂ activated products.

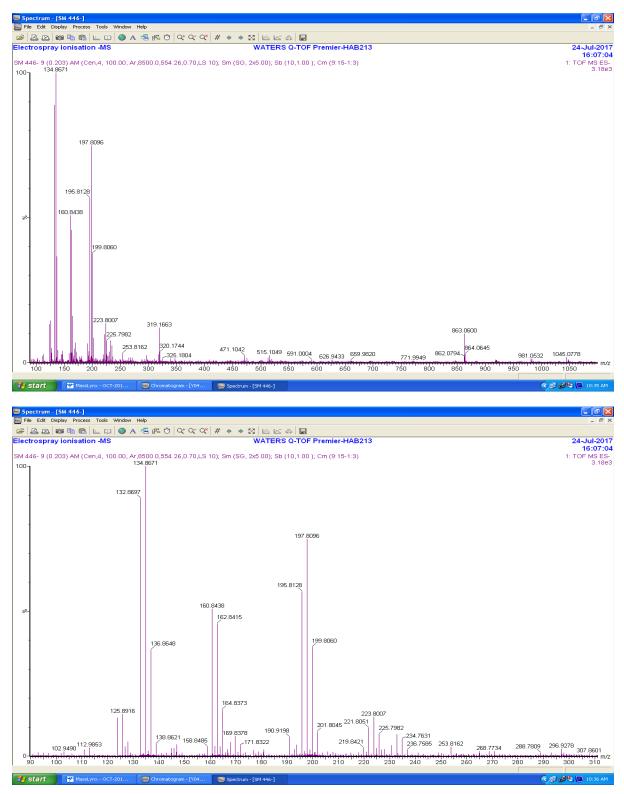


Figure S 8. ESI-MS of the ferrocene solution after purging SO₂ (Negative ion mode) showing no formation of SO₂ activated products.

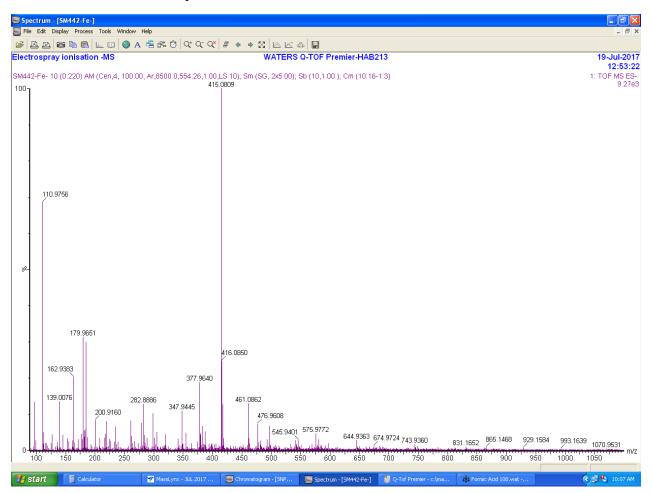
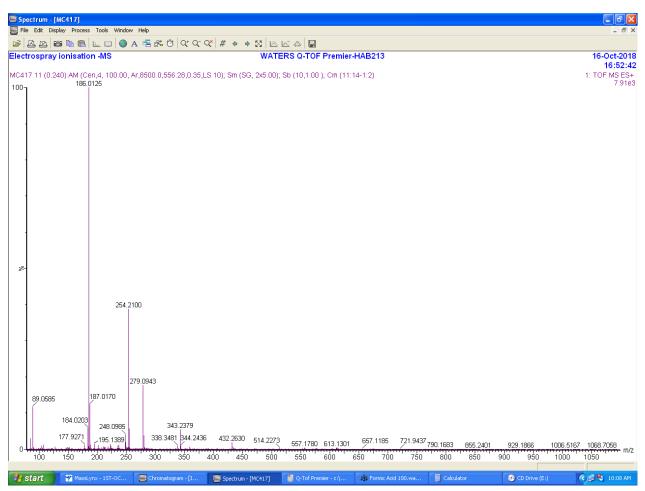
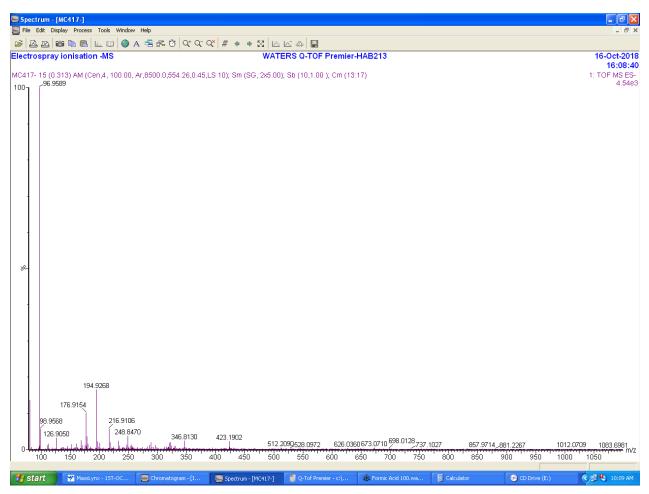
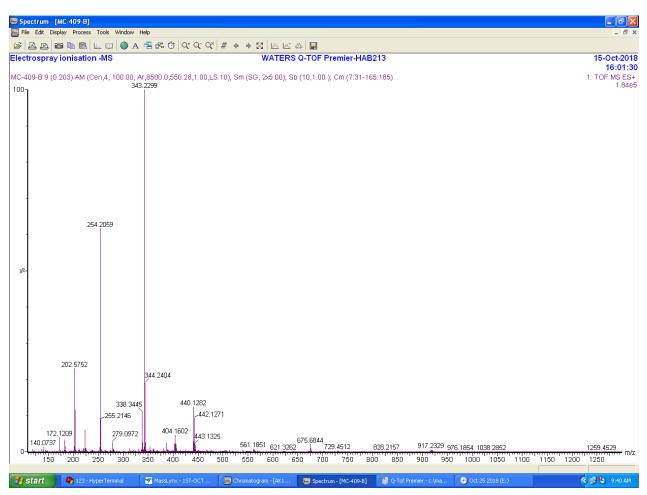




Figure S 9. ESI-MS of the solution containing $[Cu(L-OMe)Cl_2]$ and 2 equivalent ferrocene after purging SO₂ (Positive ion mode) in CH₃CN after 3 days showing no peaks for $[Cu(L-OMe)Cl]^+$



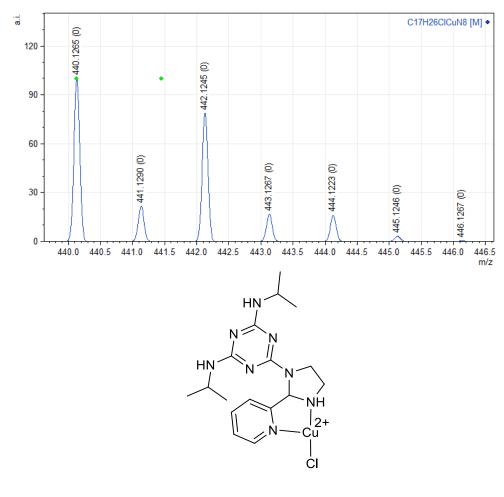
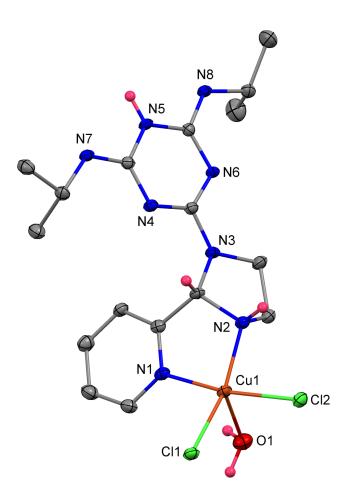
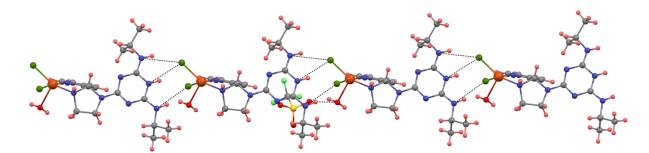
Observed envelope	Observed for	Calculated <i>m/z</i>
186.0125	Ferrocenium ion	186.0131
254.2100	HN N NH NH ₅ HN	254.2093
343.2379	Imd-H	343.2359
432.2630		432.2624

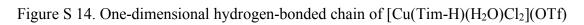
Figure S 10. ESI-MS of the solution containing $[Cu(L-OMe)Cl_2]$ and 2 equivalent ferrocene after purging SO₂ (Negative ion mode) in CH₃CN after 3 days

Observed envelope	Observed for	Calculated <i>m/z</i>
96.9589	HSO4	96.9596
194.9268	[H(HSO ₄) ₂]	194.9269

Figure	Q 11	ECI MC	of [Cu/Tim		1/OTA
riguie	5 11.	EQ1-IMP		$-H)(H_2O)Cl_2$	J(OII)

Observed envelope	Observed for	Calculated <i>m/z</i>
254.2059		254.2093
343.2299	Tim-H	343.2359
440.1282	[Cu(Tim)Cl] ⁺	440.1265


Figure S 12. Simulated ESI-MS of [Cu(Tim-H)(H₂O)Cl₂](OTf) for [Cu(Tim)Cl]⁺

[Cu(Tim)Cl]⁺

Figure S 13. ORTEP of [Cu(Tim-H)(H₂O)Cl₂](OTf) drawn at 50% probability level

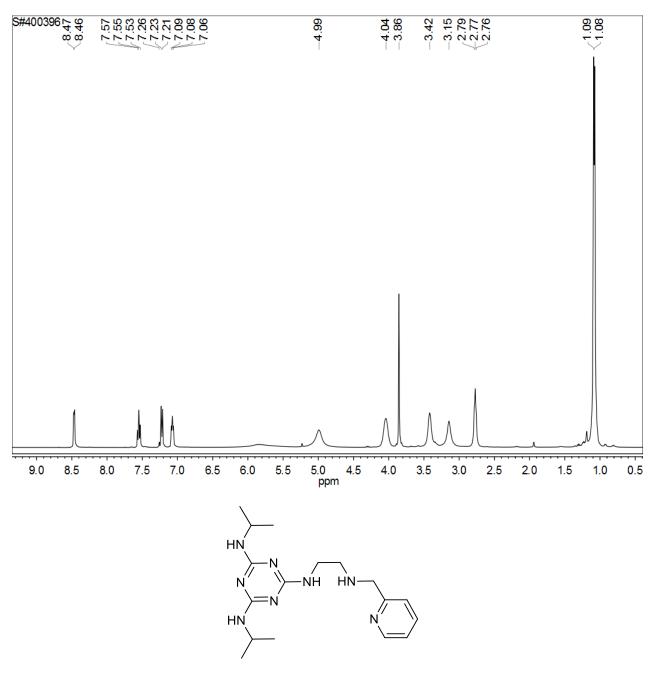


Figure S 15. ¹H NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl)-1,3,5-triazine-2,4,6-triamine in CDCl₃.

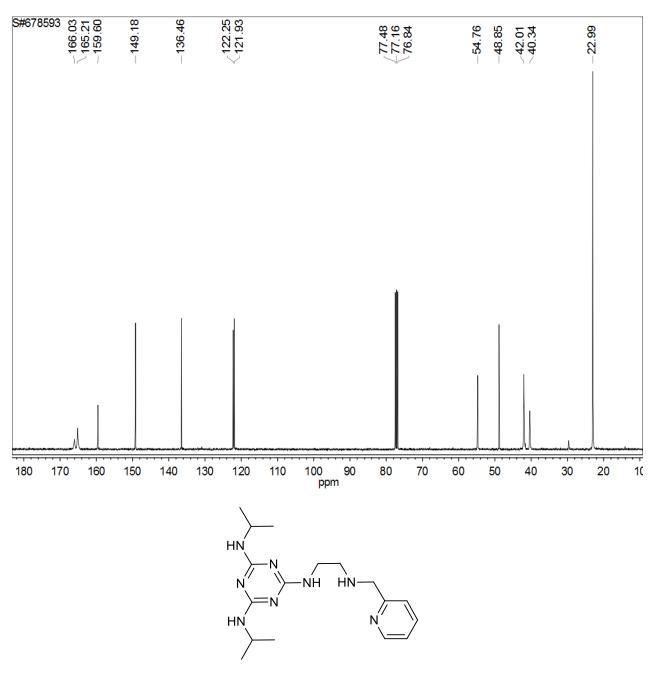


Figure S 16. ¹³C NMR of N^2 , N^4 -diisopropyl- N^6 -(2-((pyridin-2-ylmethyl)amino)ethyl)-1,3,5-triazine-2,4,6-triamine in CDCl₃.

Figure S 17. ¹H NMR of [L-H] in CDCl₃

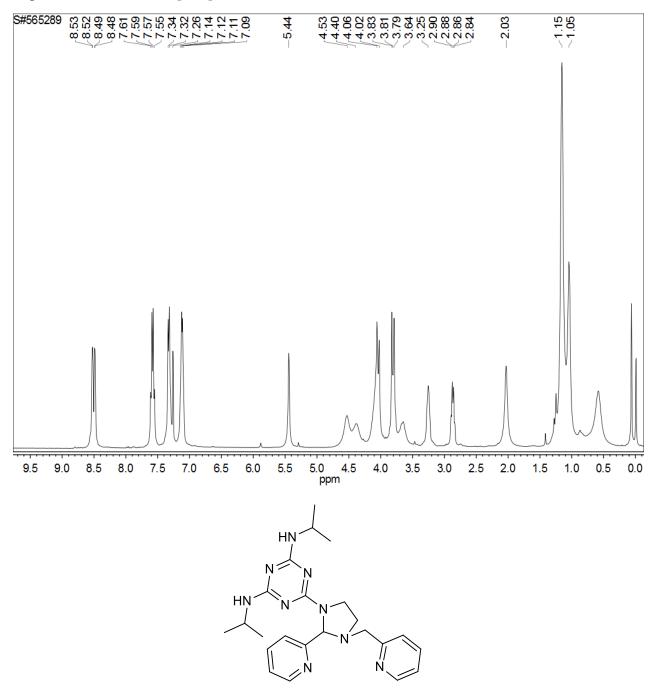


Figure S 18. ¹³C NMR of [L-H] in CDCl₃

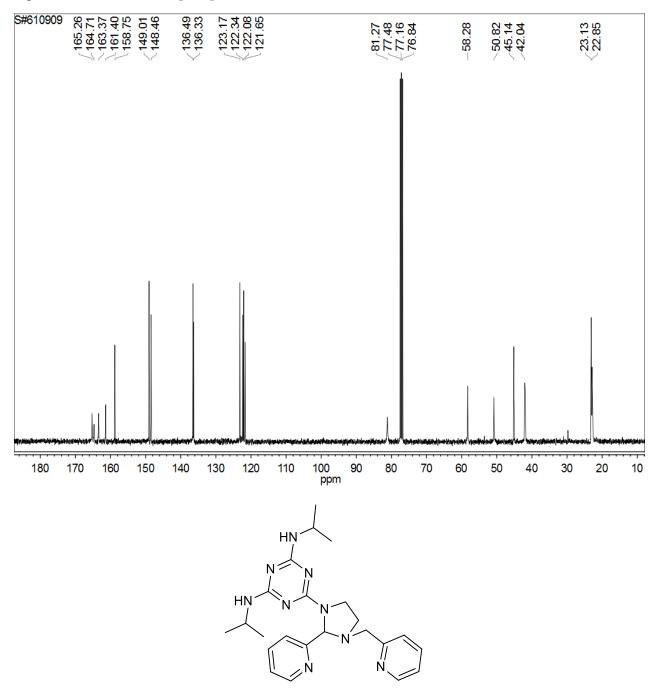
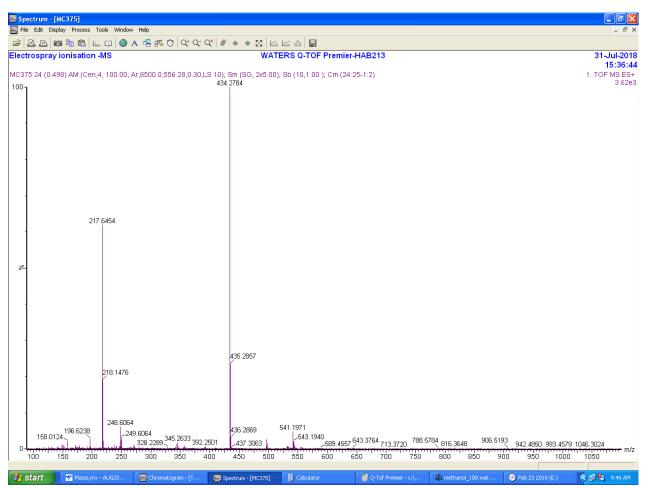



Figure S 19. ESI-MS of [L-H]

Observed envelope	Observed for	Calculated <i>m/z</i>
217.6454	[L-H]+ 2H	217.6429
434.2784	[L-H]+ H	434.2781

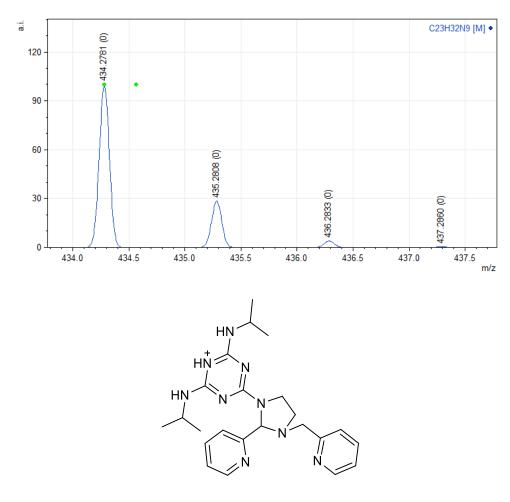


Figure S 20. Simulated ESI-MS of [L-H] for [(L-H)+H]

[(L-H)+H]

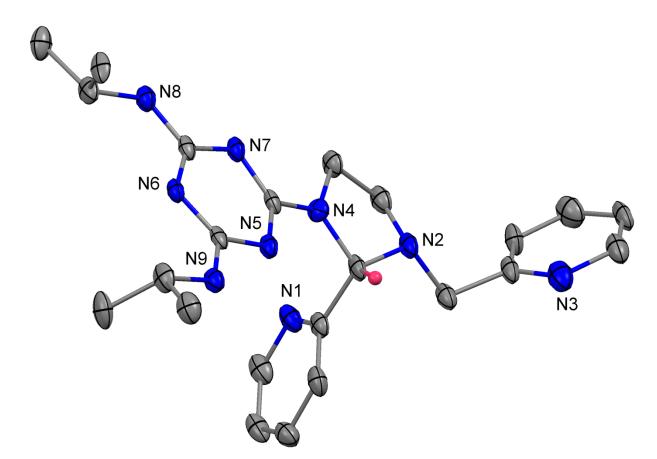


Figure S 21. ORTEP of [L-H] drawn at 50% probability level

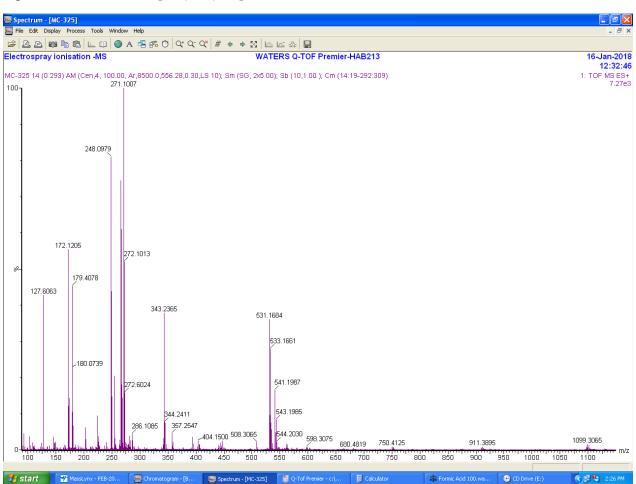


Figure S 22. ESI-MS of [Cu(L-H)Cl₂]

Observed envelope	Observed for	Calculated <i>m/z</i>
248.0979	[Cu(L-H)] ²⁺	248.0999
266.0863	[Cu(L-H)+HCl] ²⁺	266.0882
271.1007	[Cu(L-H)+HCOOH] ²⁺	271.1026
531.1684	[Cu(L-H)Cl] ⁺	531.1687
541.1987	[Cu(L-H)(HCOO)] ⁺	541.1975

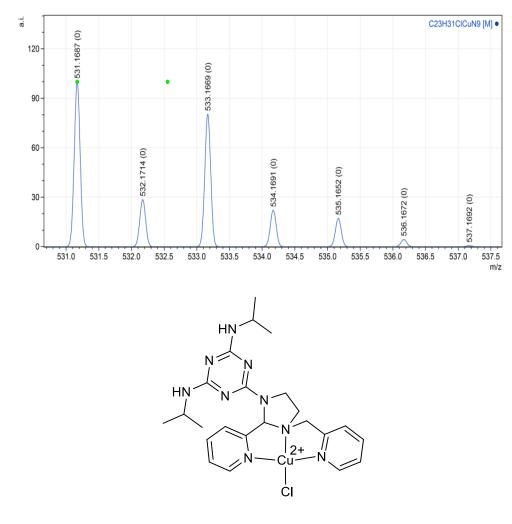
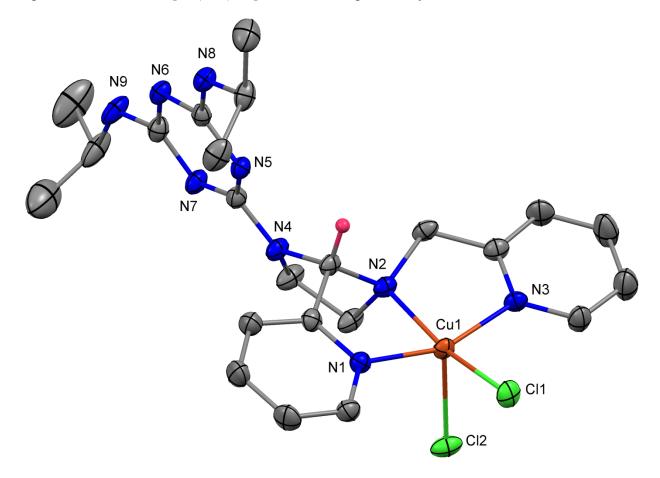



Figure S 23. Simulated ESI-MS of $[Cu(L-H)Cl_2]$ for $[Cu(L-H)Cl]^+$

[Cu(L-H)Cl]⁺

Figure S 24. ORTEP of [Cu(L-H)Cl₂] drawn at 50% probability level

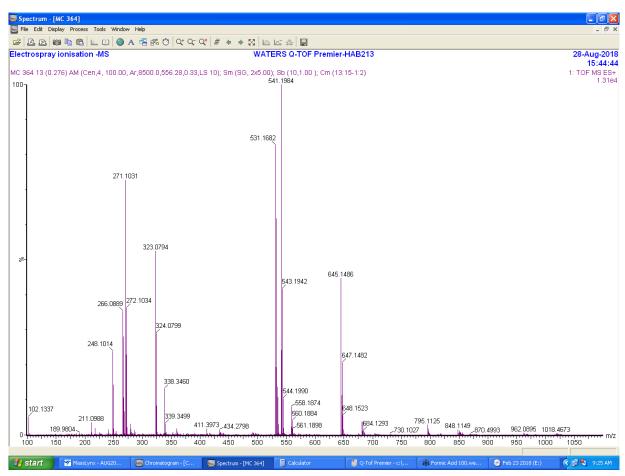


Figure S 25. ESI-MS of [Cu(L-H)(H⁺)(OTf)(Cl)](OTf)

Observed envelope	Observed for	Calculated m/z
248.1014	[Cu(L-H)] ²⁺	248.0999
266.0889	$[Cu(L-H)+HCl]^{2+}$	266.0882
271.1031	[Cu((L-H)+HCOOH] ²⁺	271.1026
323.0794	$[Cu(L-H)+CF_3SO_3H]^{2+}$	323.0798
531.1682	[Cu(L-H)Cl] ⁺	531.1687
541.1984	[Cu(L-H)(HCOO)] ⁺	541.1975
645.1486	$[Cu(L-H)(CF_3SO_3)]^+$	645.1519
681.1262	[Cu(L-H)Cl+CF ₃ SO ₃ H] ⁺	681.1285
795.1125	$[Cu(L-H)(CF_3SO_3)+CF_3SO_3H]^+$	795.1117

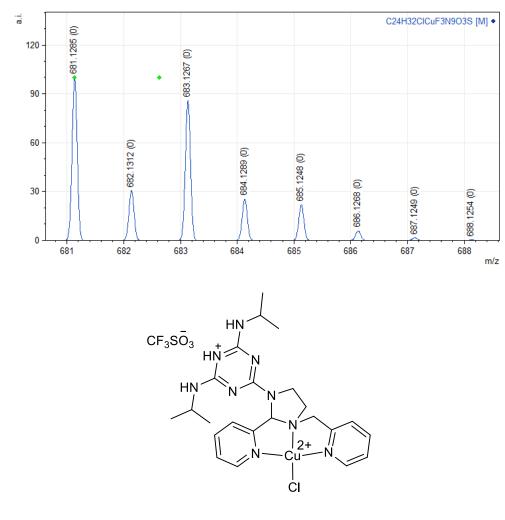


Figure S 26. Simulated ESI-MS of [Cu(L-H)(H⁺)(OTf)(Cl)](OTf) for [Cu(L-H)Cl+CF₃SO₃H]⁺

 $[Cu(L-H)Cl+CF_3SO_3H]^+$

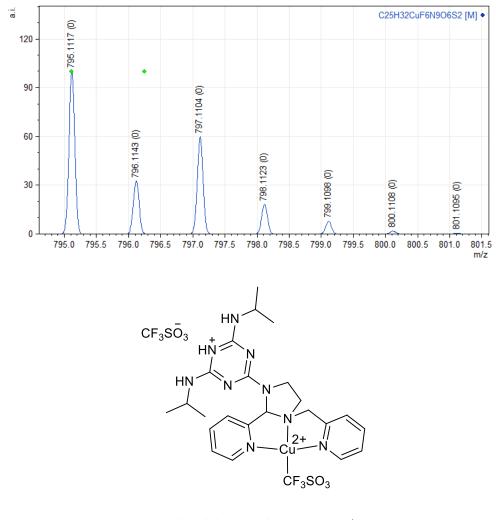


Figure S 27. Simulated ESI-MS of $[Cu((L-H)(H^+)(OTf)Cl](OTf) \text{ for } [Cu(L-H)(CF_3SO_3)+CF_3SO_3H]^+$

 $[Cu(L-H)(CF_3SO_3)+CF_3SO_3H]^+$

Figure S 28. ORTEP of [Cu(L-H)(H⁺)(OTf)Cl](OTf) drawn at 50% probability level

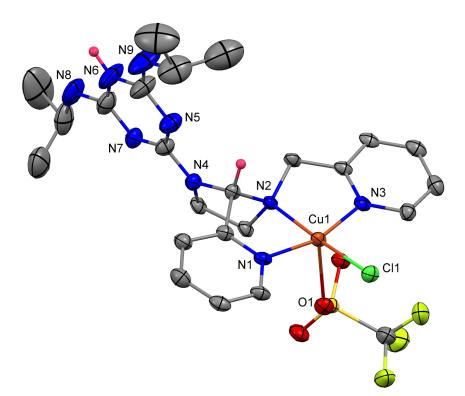
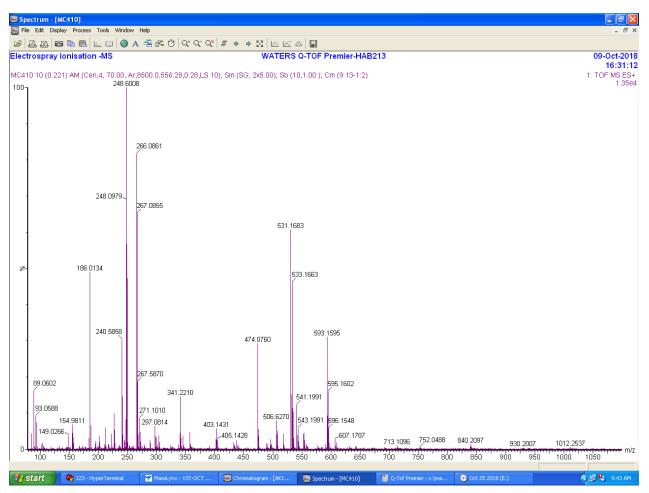
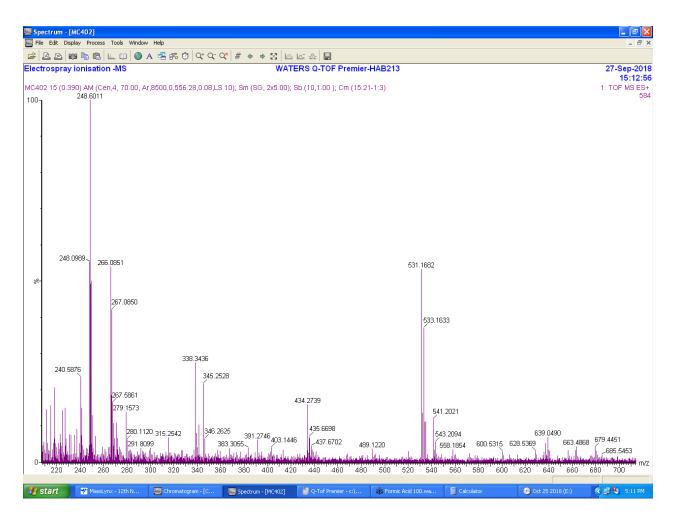



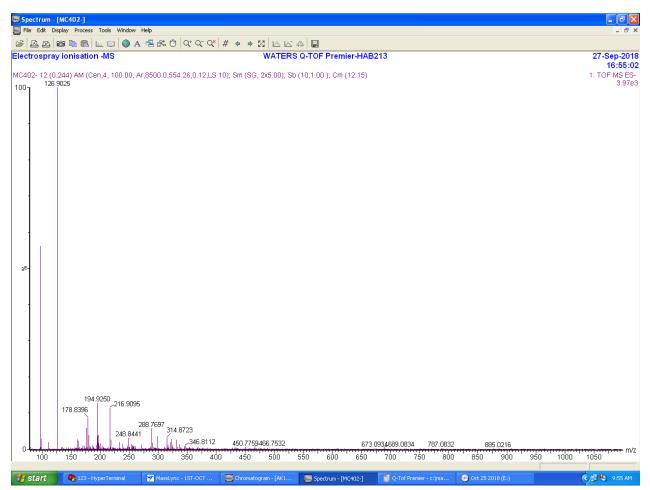
Figure S 29. ESI-MS of the solution containing $[Cu(L-H)Cl_2]$ and 2 equivalent ferrocene after purging SO₂ (Positive ion mode) in CH₃CN

Observed envelope	Observed for	Calculated m/z
186.0134	Ferrocenium ion	186.0131
248.0979	[Cu(L-H)] ²⁺	248.0999
266.0861	$[Cu(L-H)+HCl]^{2+}$	266.0882
271.1010	[Cu(L-H)+HCOOH] ²⁺	271.1026
531.1683	[Cu(L-H)Cl] ⁺	531.1687
541.1991	[Cu(L-H)(HCOO)] ⁺	541.1975
593.1595	$[Cu(L-H)(HSO_4)]^+$	593.1595


Figure S 30. ESI-MS of the solution containing $[Cu(L-H)Cl_2]$ and 2 equivalent ferrocene after purging SO₂ (Negative ion mode) in CH₃CN

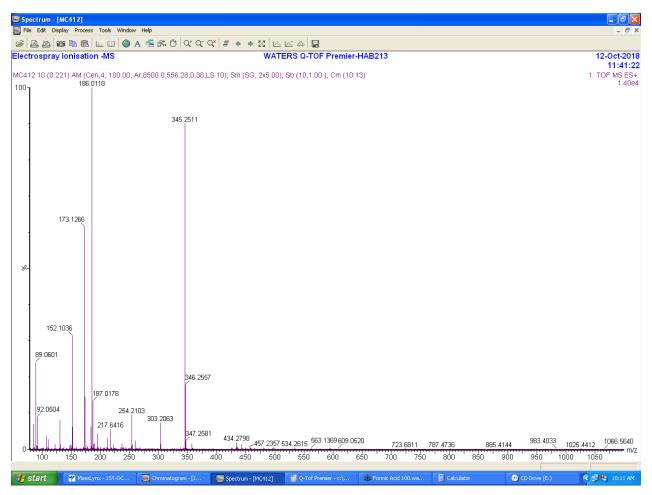
🚍 Spectrum - [MC410-]	
Ne Edit Display Process Tools Window Help	- 8 ×
Electrospray ionisation -MS WATERS Q-TOF Premier-HAB213	09-Oct-2018
MC410- 13 (0.277) AM (Cen,4, 70.00, Ar,8500.0,554.26,20.00,LS 10); Sm (SG, 2x5.00); Sb (10,1.00); Cm (10:13-57:63)	16:24:53 1: TOF MS ES- 1.68e3
8- -	
. 134.8684	
194.9272 195.8540 255.8424 335.8004	18.9228
100 1150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 -	1050
🔧 start 🕘 123 - HyperTerminal 🍸 MassLynx - 15T-OC 📃 Chromatogram - [A 👳 Spectrum - [MC410-] 🍟 Q-Tof Premier - ci\ 📀 Oct 25 2018 (E:) 🦉 untitled - Paint	🗘 🕵 🧐 9:46 AM

Observed envelope	Observed for	Calculated <i>m/z</i>
96.9606	HSO4	96.9596
194.9272	[H(HSO ₄) ₂]	194.9269


Figure S 31. ESI-MS of the solution containing $[Cu(L-H)Cl_2]$ and 51 equivalent ferrocene after purging SO₂ (Positive ion mode) in CH₃CN

Spectrum - [MC402]	
File Edit Display Process Tools Window Help 彦 広 ⊵ 総 喩 喩 LL ① ● A 雪 能 ② (へ べ # ◆ ◆ ※ △ 広 ☆	_ 8 ×
Electrospray ionisation -MS WATERS Q-TOF Premier-HAB213	27-Sep-2018
MC402 15 (0.390) AM (Cen,4, 70.00, Ar,8500.0,556.28,0.08,LS 10); Sm (SG, 2x5.00); Sb (10,1.00); Cm (15:21-1:3)	15:12:56 1: TOF MS ES+
100-1 186.0169 100-1 186.0169	6.75e3
187.0193	
149.0252 248.6011	
248.0989 266.0851 531.1682	
240.5876 338.3436 434.2739 489.1220 541.2021 639.0490.663.4868 750.5250.766.5988.843.2160 873.6863 954.4740 98	.2506 1060.7927
	00 1050 m/z
Start 🛛 🚱 123 - HyperTerminal 🍞 Masskynx - 15T-OCT 📮 Chromatogram - [AK1 📮 Spectrum - [MC402] 🔡 Q-Tof Premier - ct/ma 😨 Oct 25 2018 (6:)	< 🔊 😼 9:53 AM

Observed envelope	Observed for	Calculated <i>m/z</i>
186.0169	Ferrocenium ion	186.0131
248.0989	[Cu(L-H)] ²⁺	248.0999
266.0851	[Cu(L-H)+HCl] ²⁺	266.0882
434.2739	[(L-H)+H ⁺]	434.27881
531.1682	[Cu(L-H)Cl] ⁺	531.1687
541.2021	[Cu(L-H)(HCOO)] ⁺	541.1975


Figure S 32. ESI-MS of the solution containing $[Cu(L-H)Cl_2]$ and 51 equivalent ferrocene after purging SO₂ (Negative ion mode) in CH₃CN

📟 Spectrum - [MC402-]		
🔤 File Edit Display Process Tools Window Help		_ & ×
▲ 図 総 電 電 止 印 ● A 号 部 ③ Q* Q* Q* # ◆		
Electrospray ionisation -MS	WATERS Q-TOF Premier-HAB213	27-Sep-2018 16:55:02
MC402- 12 (0.244) AM (Cen,4, 100.00, Ar,8500.0,554.26,0.12,LS 10); Sm		1: TOF MS ES-
100	025	3.97e3
96.9580		
%-		
		194.9250
	470,0000	194.9230
	178.8396 176.8396	
98.9552 80.9678 96.7801 110.9762	160.8425162.8370 170.8332	197.0073
0 85.3378 103.0067 121.0166		.8529 .199.8069 _{205.8574}
80 85 90 95 100 105 110 115 120 125	130 135 140 145 150 155 160 165 170 175 180 185	190 195 200 205 210
🛃 start 🛛 🧶 123 - HyperTerminal 🏾 🍸 MassLynx - 15T-OCT 🔛 Chri	omatogram - [AK1 📃 Spectrum - [MC402-] 📲 Q-Tof Premier - c:\ma 📀 Oct 25 2018 (E:)	🔇 🛃 🖏 9:56 AM

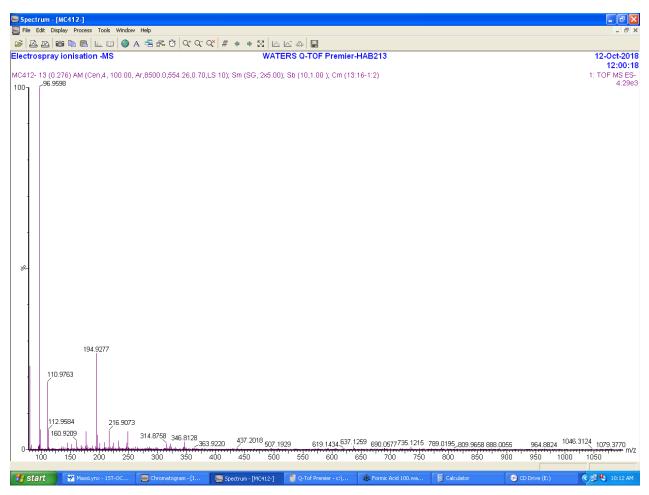

Observed envelope	Observed for	Calculated <i>m/z</i>
96.9580	HSO4	96.9596
194.9250	[H(HSO ₄) ₂] ⁻	194.9269

Figure S 33. ESI-MS of the solution containing [L-H] and 2 equivalent ferrocene after purging SO_2 (Positive ion mode) in CH₃CN

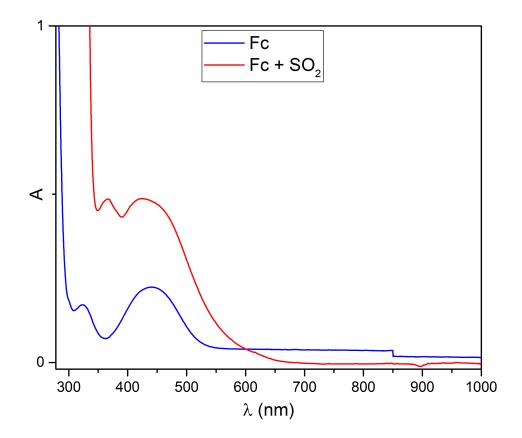
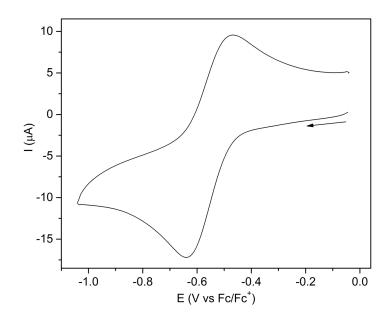

Observed envelope	Observed for	Calculated <i>m/z</i>
173.1266		173.1296
186.0118	Ferrocenium ion	186.0132
345.2511		345.2515

Figure S 34. ESI-MS of the solution containing [L-H] and 2 equivalent ferrocene after purging SO_2 (Negative ion mode) in CH_3CN

Observed envelope	Observed for	Calculated <i>m/z</i>
96.9598	HSO4	96.9596
194.9277	[H(HSO ₄) ₂]	194.9269


Figure S 35. UV-Vis of ferrocene in acetonitrile and in SO₂-purged acetonitrile.

Blue line: Ferrocene solution in acetonitrile (323nm and 445 nm)

Red line: After purging SO₂; change in absorbance is due to solvent evaporation

Figure S 36. CV of [Cu(L-H)Cl₂] in acetonitrile.

Cyclic voltammogram of 1mM acetonitrile solution of $[Cu(L-H)Cl_2]$ containing 0.1 M Bu₄NPF₆ recorded on a static glassy carbon disc working electrode with a Pt wire auxiliary electrode and Ag/AgCl reference electrode (with internal ferrocene) at 25 °C with a scan rate of 200 mV s⁻¹; $E_{pc} = -0.64$ V; $E_{pa} = -0.45$ V vs Fc^{0/+}

Identification code	CCDC-1454816	
Empirical formula	C26 H36 Cl2 Cu N10 O	
Formula weight	639.09	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	a = 27.313(8) Å	$\alpha = 90^{\circ}.$
	b = 9.409(3) Å	$\beta = 107.956(4)^{\circ}.$
	c = 24.649(7) Å	$\gamma = 90^{\circ}$.
Volume	6026(3) Å ³	
Ζ	8	
Density (calculated)	1.409 Mg/m ³	
Absorption coefficient	0.941 mm ⁻¹	
F(000)	2664	
Crystal size	0.25 x 0.17 x 0.11 mm ³	
Theta range for data collection	1.567 to 28.431°.	
Index ranges	-36<=h<=27, -12<=k<=11, -29<=l<	=32
Reflections collected	18469	
Independent reflections	7153 [R(int) = 0.0605]	
Completeness to theta = 25.500°	99.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.856 and 0.768	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7153 / 51 / 393	
Goodness-of-fit on F ²	1.060	
Final R indices [I>2sigma(I)]	R1 = 0.0595, wR2 = 0.1358	
R indices (all data)	R1 = 0.1146, wR2 = 0.1876	
Largest diff. peak and hole	0.917 and -0.853 e.Å ⁻³	

Table S 1. Crystal data for [Cu(L-OMe)Cl₂]

Identification code	CCDC-1895745	
Empirical formula	$C_{18}H_{31}Cl_2CuF_3N_8O_5S$	
Formula weight	663.01	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 14.9180(10) Å	$\alpha = 90^{\circ}$
	b = 11.9455(8) Å	$\beta = 110.940(2)^{\circ}$
	c = 16.2476(11) Å	$\gamma = 90^{\circ}$
Volume	2704.1(3) Å ³	
Ζ	4	
Density (calculated)	1.629 g/cm ³	
Absorption coefficient	1.149 mm ⁻¹	
F(000)	1364.0	
Crystal size	$0.22\times0.2\times0.18\ mm^3$	
Theta range for data collection	4.34 to 56.586	
Index ranges	$\text{-19} \le h \le 19, \text{-15} \le k \le 15, \text{-21} \le l \le 21$	
Reflections collected	41974	
Independent reflections	$6713 [R_{int} = 0.0654, R_{sigma} = 0.0435]$	
Completeness to theta = 28.293°	100 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.746 and 0.701	
Data / restraints / parameters	6713/0/358	
Goodness-of-fit on F ²	1.123	
Final R indices [I>2sigma(I)]	$R_1 = 0.0471, wR_2 = 0.1280$	
R indices (all data)	$R_1 = 0.0742, wR_2 = 0.1610$	
Largest diff. peak and hole	1.06 and -1.02 e.Å ⁻³	

Table S 2. Crystal data for [Cu(Tim-H)(H₂O)Cl₂](OTf)

Table S 3. Crystal data for [L-H]

Identification code	CCDC-1895746	
Empirical formula	C ₂₃ H ₃₁ N ₉	
Formula weight	433.57	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Iba2	
Unit cell dimensions	a = 21.678(2) Å	$\alpha = 90^{\circ}$
	b = 11.7948(13) Å	$\beta = 90^{\circ}$
	c = 17.695(3) Å	$\gamma = 90^{\circ}$
Volume	4524.4(10) Å ³	
Ζ	8	
Density (calculated)	1.273 g/cm ³	
Absorption coefficient	0.081 mm ⁻¹	
F(000)	1856.0	
Crystal size	$0.08\times0.06\times0.05\ mm^3$	
Theta range for data collection	5.944 to 50.246	
Index ranges	$-25 \le h \le 25, -14 \le k \le 14, -21 \le l \le 21$	
Reflections collected	25154	
Independent reflections	4016 [R _{int} = 0.0762, R _{sigma} = 0.0495]	
Completeness to theta = 25.123°	100 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.746 and 0.569	
Data / restraints / parameters	4016/7/314	
Goodness-of-fit on F ²	1.098	
Final R indices [I>2sigma(I)]	$R_1 = 0.0469, wR_2 = 0.1038$	
R indices (all data)	$R_1 = 0.0604, wR_2 = 0.1129$	
Largest diff. peak and hole	0.22 and -0.22 e. Å ⁻³	

Identification code	CCDC-1895747	
Empirical formula	C ₂₅ H ₃₉ Cl ₂ CuN ₉ O ₂	
Formula weight	632.09	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 8.1817(3) Å	$\alpha = 90^{\circ}$
	b = 15.7088(7) Å	$\beta = 95.9210(10)^{\circ}$
	c = 24.5591(11) Å	$\gamma = 90^{\circ}$
Volume	3139.6(2)Å ³	
Ζ	4	
Density (calculated)	1.337 g/cm ³	
Absorption coefficient	0.903 mm ⁻¹	
F(000)	1324.0	
Crystal size	$0.2\times0.18\times0.16\ mm^3$	
Theta range for data collection	4.224 to 56.542	
Index ranges	$-10 \le h \le 10, -20 \le k \le 20, -32 \le l \le 32$	
Reflections collected	48948	
Independent reflections	7778 [$R_{int} = 0.0631$, $R_{sigma} = 0.0430$]	
Completeness to theta = 28.271°	99.9 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.746 and 0.690	
Data / restraints / parameters	7778/0/360	
Goodness-of-fit on F ²	1.055	
Final R indices [I>2sigma(I)]	$R_1 = 0.0486, wR_2 = 0.1375$	
R indices (all data)	$R_1 = 0.0667, wR_2 = 0.1548$	
Largest diff. peak and hole	0.59 and -0.82e.Å ⁻³	

Table S 4. Crystal data for [Cu(L-H)Cl₂]

Identification code	CCDC-1895748	
Empirical formula	$C_{25}H_{32}ClCuF_6N_9O_6S_2$	
Formula weight	831.70	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.4954(8)Å	$\alpha = 100.763(2)^{\circ}$
	b = 11.7314(11)Å	$\beta = 99.350(2)^{\circ}$
	c = 19.2810(18)Å	$\gamma = 108.877(2)^{\circ}$
Volume	1734.2(3)Å ³	
Ζ	2	
Density (calculated)	1.593g/cm ³	
Absorption coefficient	0.912 mm ⁻¹	
F(000)	850.0	
Crystal size	$0.24\times0.22\times0.2\ mm^3$	
Theta range for data collection	4.43 to 56.676	
Index ranges	$-11 \le h \le 11, -15 \le k \le 15, -25 \le l \le 25$	
Reflections collected	21482	
Independent reflections	8622 [$R_{int} = 0.0452$, $R_{sigma} = 0.0680$]	
Completeness to theta = 28.338°	99.6 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.746 and 0.679	
Data / restraints / parameters	8622/43/455	
Goodness-of-fit on F ²	1.053	
Final R indices [I>2sigma(I)]	$R_1 = 0.0819, wR_2 = 0.2246$	
R indices (all data)	$R_1 = 0.1196, wR_2 = 0.2612$	
Largest diff. peak and hole	1.59 and -1.19 e.Å ⁻³	

Table S 5. Crystal data for [Cu(L-H)(H⁺)(OTf)Cl](OTf)

Reference

(1) Mehrotra, S.; Raje, S.; Jain, A. K.; Jain, A.; Kandasamy, P.; Butcher, R. J.; Angamuthu, R. *ChemistrySelect***2018**, *3*, 4844.