Clean Preparation of Multisubstituted Pyrroles under Metal and Solvent-free Conditions

Qing-Wen Gui^a, Xiaoli He^a, Wenjing Wang^a, Huilin Zhou^a, Yumei Dong^a, Nengqing Wang^a, Jia-Xi Tang^c, Zhong Cao^b and Wei-Min He^{*b}

^aCollege of Science, Hunan Agricultural University, Changsha 410128, People's Republic of China

^bHunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China

^cSchool of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

E-mail: weiminhe2016@yeah.net

Total number of pages: 49

Total number of figures: 64 (pages S18 – S49)

Table of Content

1. General Information	
2. Experimental Section	
3. Calculation of green chemistry metrics	S4
4. Characterization data of products	S6
5. References	
6. ¹ H and ¹³ C NMR spectra of products	

1. General Information

All reactions were carried out in anhydrous solvent and commercially available reagents were used as received unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on precoated aluminum-backed silica gel 60 F254 plates (EMD Millipore, 200 µm thickness). TLC plates were visualized with ultraviolet light and treatment with KMnO4 or vanillin stains followed by heating. Flash column chromatography was performed using Tsingdao silica gel (200-300). Melting points (uncorrected) were obtained from a Büchi M-560 melting point instrument. ¹H and ¹³CNMR spectra were recorded on a Bruker Avance DRX-500 or 400 spectrometers; chemical shifts (δ) are given in ppm and calibrated using the signal of residual undeuterated solvent as internal reference (CHCl₃: δ H = 7.26 ppm and δ C = 77.16 ppm). Data for 1H NMR and 13C NMR are reported as follows: chemical shift (δ , ppm), multiplicity, integration, and coupling constant (Hz). IR spectra were recorded on an Agilent Cary 630 FTIR spectrometer; wavenumbers (v) are given in cm⁻¹.

2. Experimental Section

2.1 General procedures for 0.3 mmol scale synthesis of **4aa-4ae**.

$$R_1 \longrightarrow R_2 + TMSCN + DMF \xrightarrow{I_2} NC \xrightarrow{I_1} R_1$$

I

Iodine (0.06 mmol), alkyne (0.3 mmol), TMSCN (0.3 mmol) and DMF (0.3 mmol) were added to a 10 mL Schlenk tube. The mixture was stirred at 80 °C, and the progress of the reaction was monitored by TLC. Upon the completion of the reaction, the mixture was purified by column chromatography directly, and afforded the desired products.

2.2 General procedures for 7 mmol and 30 mmol scale synthesis of 4aa-4ha.

Iodine (6 mmol), alkyne (30 mmol), TMSCN (30 mmol) and DMF (30 mmol) were added to a 150 mL flask. The mixture was stirred at 80 °C, and the progress of the reaction was monitored by TLC. Upon the completion of the reaction, the mixture was quenched by addition of 30 mL of water. The aqueous layer was extracted three times with EtOAc (30 mL \times 3), and the combined organic layers were dried over sodium sulfate, evaporated to dryness, and to afford desired products.

Fiure S1 NMR spectra of the extraction product 4aa

Fiure S2 photo of the extraction product 4aa

3. Calculation of green chemistry metrics

Entry	TMSCN	DMF	Catalyst	Oxidant	Extraction	Chromatography	4aa
							182
Ref. 1	14 mmol	105	0.14	14 mmol	60 mL	SiO ₂ 100 g	76%
	1.38 g	mmol	mmol	3.178 g	54 g	Eluent 4L, 3200 g	0.96 g
		7.673 g	0.05 g				
This	7 mmol	7 mmol	0.14	-	45 mL	-	84%
work	0.694 g	0.511 g	mmol		40.5 g		1.07 g
			0.035 g				

$$= \frac{5.32}{(7+14+105)+0.14+14} \times 100\% = 3.7\%$$
$$= \frac{5.88}{(7+7+7)+0.14} \times 100\% = 27.8\%$$

PMI = _____total mass (kg) used in the process mass of product (kg)

$$= \frac{0.714 + 1.38g + 7.673g + 0.05g + 3.178g + 54g + 3200g}{0.96g} = 3403$$

$$=\frac{0.714+0.694+0.511+0.035+40.5}{1.07g}=39.7$$

$$AE = \frac{\text{molecular mass of desired product}}{\text{molecular mass of all reactants}} \times 100\%$$
$$= \frac{182}{102+99X2+73X15+361.7X0.2+227X2} \times 100\% = 9.3\%$$
$$= \frac{182}{102+99+73+50.7} \times 100\% = 56.2\%$$

Previous' work					
Parameter	Detail of parameters	Penalty points			
1. Yield	76%	12			
2. Cost of reactants to obtain	10 mmol of product				
	Phenylacetylene	0			
	TMSCN	3			
	DMF	0			
	DDQ	3			
	Cu(OTf) ₂	0			
3. Safety	TMSCN	5 (T)			
,	DDQ	15 (N,T, F)			
	Cu(OTf) ₂	5 (N)			
4. Technical setup	Instruments for controlled addition of chemicals	1			
	Gas atmosphere	1			
5. Temperature/time	Heating > 1 h (14h)	3			
6. Workup and purification	Liquid-liquid extraction	3			
	Filtration	1			
	Classical chromatography	10			
Eco-scale score		38			

This' work

Parameter	Detail of parameters	Penalty p	oints
1. Yield	84%	8	
2. Cost of reactants to obtain	10 mmol of product		
	Phenylacetylene	0	
	TMSCN	0	
	DMF	0	
	l ₂	0	
3. Safety	TMSCN	5 (T)	
4. Technical setup	Common setup	0	
5. Temperature/time	Heating > 1 h (2h)	3	
6. Workup and purification	Liquid-liquid extraction	3	
Eco-scale score		81	

4. Characterization data of products

4aa

1-methyl-3-phenyl-1H-pyrrole-2-carbonitrile (4aa)¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.69 – 7.65 (m, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 2.6 Hz, 1H), 6.41 (d, *J* = 2.7 Hz, 1H), 3.81 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 135.44, 132.97, 128.79, 127.96, 127.77, 126.66, 114.66, 108.34, 101.43, 35.65.

1-methyl-3-(p-tolyl)-1H-pyrrole-2-carbonitrile (4ba)¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 6.82 (d, *J* = 2.4 Hz, 1H), 6.39 (d, *J* = 2.5 Hz, 1H), 3.80 (s, 3H), 2.37 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 137.65, 135.56, 130.13, 129.69, 127.89, 126.56, 114.78, 108.18, 101.25, 35.61, 21.35.

4-(4-ethylphenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ca)

Tawny oil;

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.8 Hz, 2H), 7.59 (d, *J* = 7.7 Hz, 2H), 6.81 (d, *J* = 2.4 Hz, 1H), 6.39 (d, *J* = 2.4 Hz, 1H), 3.79 (s, 3H), 2.72-2.66 (m, 2H), 1.26 (t, *J* = 8.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.00, 135.59, 130.37, 128.68, 128.50, 128.20, 127.89, 126.64,

114.80, 108.21, 101.24, 35.61, 28.74, 15.66.

IR (neat, cm⁻¹) v 2964, 2210, 1681, 1507, 1418, 1353, 1258, 835, 757, 489; HRMS (ESI) calcd for C₁₄H₁₅N₂[M+H] ⁺: 211.1230, found 211.1234.

1-methyl-3-(4-propylphenyl)-1H-pyrrole-2-carbonitrile (4da)

Rueest solid; MP: 59-61 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.9 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 6.81 (d, *J* = 2.4 Hz, 1H), 6.39 (d, *J* = 2.3 Hz, 1H), 3.80 (s, 3H), 2.64-2.57 (m, 2H), 1.69- 1.61 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.46, 135.61, 130.37, 129.10, 127.90, 126.53, 114.83, 108.20, 101.23, 37.91, 35.62, 24.63, 13.99.

IR (neat, cm⁻¹) v 2929, 2210, 1709, 1507, 1418, 1354, 1258, 1221, 1090, 804, 757, 529, 490;

HRMS (ESI) calcd for C₁₅H₁₇N₂ [M+H] ⁺: 225.1386, found 225.1390.

3-(4-(tert-butyl)phenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ea)

Pale yellow solid; MP: 123-125 °C;

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 6.81 (d, *J* = 2.7 Hz, 1H), 6.39 (d, *J* = 2.7 Hz, 1H), 3.80 (s, 3H), 1.34 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 137.35, 133.89, 130.29, 129.05, 128.21, 126.34, 114.25, 108.62, 101.96, 52.24, 35.73.

IR (neat, cm⁻¹) v 2960, 2209, 1506, 1417, 1353, 1256, 1019, 936, 761, 738, 554, 493.

HRMS (ESI) calcd for C₁₆H₁₉N₂ [M+H] ⁺: 239.1543, found 239.1545.

3-(4-methoxyphenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4fa)¹

Pale yellow solid, MP: 116-118 °C

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 2.6 Hz, 1H), 6.35 (d, *J* = 2.7 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.30, 135.39, 127.91, 127.88, 125.63, 114.93, 114.39, 107.95, 100.90, 55.46, 35.61.

3-([1,1'-biphenyl]-4-yl)-1-methyl-1H-pyrrole-2-carbonitrile (4ga)

Yellow-white solid; MP: 158-160 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.72 (m, 2H), 7.67-7.61 (m, 4H), 7.47-7.43 (m, 2H), 7.40-7.31 (m, 1H), 6.84 (d, J = 2.7 Hz, 1H), 6.45 (d, J = 2.7 Hz, 1H), 3.82 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.71, 140.53, 135.00, 131.95, 128.95, 128.05, 127.68, 127.53, 127.12, 127.01, 114.71, 108.33, 101.48, 35.68.

IR (neat, cm⁻¹) v 2202, 1496, 1256, 754, 479;

HRMS (ESI) calcd for C₁₈H₁₅N₂ [M+H] ⁺: 259.1230, found 259.1234.

3-(4-fluorophenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ha)¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.0, 4.0 Hz, 2H), 7.03 (t, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 2.7 Hz, 1H), 6.29 (d, *J* = 2.7 Hz, 1H), 3.74 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.43 (d, *J* = 196 Hz), 134.30, 129.20 (d, *J* = 3Hz), 128.42 (d, *J* = 7 Hz), 128.02, 116.04 (d, *J* = 15 Hz), 114.53, 108.31, 101.41, 35.68.

3-(4-chlorophenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ia)¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 2.4 Hz, 1H), 6.43 (d, *J* = 2.4 Hz, 1H), 3.85 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 134.15, 133.54, 131.47, 129.16, 128.08, 127.88, 114.39, 108.31, 101.53, 35.71.

IR (neat, cm⁻¹) v 3130, 2924, 2208, 1502, 1422, 1258, 1090, 836, 755, 630, 607.

3-(4-bromophenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ja)¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.53 (m, 4H), 6.83 (d, J = 2.4 Hz, 1H), 6.39 (d, J = 2.4 Hz, 1H),

3.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 134.17, 132.13, 131.93, 128.20, 128.11, 121.70, 114.37, 108.29, 101.55, 35.73.

IR (neat, cm⁻¹) v 3119, 2923, 2203, 1501, 1420, 1353, 1257, 1072, 825, 761.

3-(4-iodophenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ka)

Yellow solid; MP: 76-78 °C;

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 2.4 Hz, 1H), 6.39 (d, *J* = 2.4 Hz, 1H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.11, 134.24, 132.51, 128.40, 128.11, 114.35, 108.26, 100.13, 35.75.
IR (neat, cm⁻¹) v 2924, 2209, 1679, 1499, 1413, 1355, 1253, 1221, 1061, 1005, 823, 758, 530, 481.
HRMS (ESI) calcd for C₁₂H₁₀IN₂ [M+H] ⁺: 308.9883, found 308.9886.

1-methyl-3-(4-(trifluoromethyl)phenyl)-1H-pyrrole-2-carbonitrile (4la)¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 2.7 Hz, 1H), 6.48 (d, *J* = 2.7 Hz, 1H), 3.86 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 136.50, 133.70, 129.46 (d, *J* = 26 Hz), 128.23, 126.83, 126.01, 125.98 (d, *J* = 216 Hz), 114.16, 108.67, 102.08, 35.80.

4-(4-cyanophenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ma)

Yellow-white solid; MP: 172-174 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 2.7 Hz,

1H), 6.47 (d, *J* = 2.7 Hz, 1H), 3.85 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 137.46, 133.02, 132.86, 128.42, 127.02, 118.96, 113.95, 111.05, 108.72, 102.31, 35.88.

IR (neat, cm⁻¹) v 2210, 1709, 1357, 1220, 1092, 765, 529.

HRMS (ESI) calcd for C₁₃H₁₀N₃ [M+H]⁺: 208.0869. found 208.0870.

methyl 4-(2-cyano-1-methyl-1H-pyrrol-3-yl)benzoate (4na)

Yellow-white solid; MP: 118-120 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.9 Hz, 2H), 7.74 (d, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 2.0 Hz, 1H), 6.47 (d, *J* = 2.0 Hz, 1H), 3.93 (s, 3H), 3.83 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.88, 137.35, 133.89, 130.29, 129.06, 128.21, 126.34, 114.24, 108.62, 101.97, 52.24, 35.73.

IR (neat, cm⁻¹) v 2205, 1711, 1610, 1435, 1353, 1278, 1257, 1187, 1105, 1017, 947, 853, 755, 704, 479.

HRMS (ESI) calcd for $C_{14}H_{13}N_2O_2$ [M+H]⁺: 241.0972, found 241.0973.

1-methyl-3-(4-nitrophenyl)-1H-pyrrole-2-carbonitrile (4oa)

Pale yellow solid; MP: 146-148 °C;

1H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.9 Hz, 2H), 7.81 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 2.8 Hz,

1H), 6.50 (d, *J* = 2.8 Hz, 1H), 3.86 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.79, 139.38, 132.36, 128.55, 126.94, 124.30, 113.84, 108.85, 102.44, 35.84.

IR (neat, cm⁻¹) *v* 2923, 2210, 1709, 1599, 1514, 1341, 1258, 1220, 1082, 850, 768, 749, 529, 472. **HRMS** (ESI) calcd for C₁₂H₁₀N₃O₂ [M+H]⁺: 228.0768, found 228.0770.

1-methyl-3-(m-tolyl)-1H-pyrrole-2-carbonitrile (4pa)¹

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 5.6 Hz, 2H), 7.30 (t, J = 7.9 Hz, 1H), 7.13 (d, J = 7.5 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.40 (d, J = 2.2 Hz, 1H), 3.81 (s, 3H), 2.40 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 138.51, 135.44, 132.85, 128.82, 128.48, 127.88, 127.28, 123.71, 114.62, 108.27, 101.28, 35.51, 21.54.

3-(3-fluorophenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4qa)¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.8 Hz, 1H), 7.43-7.30 (m, 2H), 7.00 (td, *J* = 8.4, 2.0 Hz, 1H), 6.84 (d, *J* = 2.5 Hz, 1H), 6.40 (d, *J* = 2.5 Hz, 1H), 3.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.17 (d, *J* = 195 Hz), 135.14 (d, *J* = 7 Hz), 134.01, 130.56(d, *J* = 6 Hz), 128.07, 122.28 (d, *J* = 2 Hz), 114.64, 114.47 (d, *J* = 20 Hz), 113.61 (d, *J* = 18 Hz), 108.47, 101.70, 35.70.

4-(2-chlorophenyl)-1-methyl-1H-pyrrole-2-carbonitrile (4ra)

Pale yellow solid; MP: 107-108 °C;

¹**H NMR** (500 MHz, CDCl₃) δ 7.52-7.43 (m, 2H), 7.31 (dd, J = 16.0, 8.3 Hz, 2H), 6.86 (d, J = 2.5 Hz,

1H), 6.45 (d, *J* = 2.5 Hz, 1H), 3.84 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 133.01, 132.87, 132.08, 131.39, 130.35, 129.23, 127.12, 127.03, 113.74, 111.46, 103.86, 35.77.

IR (neat, cm⁻¹) *v* 3130, 2927, 2211, 1501, 1354, 1264, 1250, 1090, 1028, 832, 739.

HRMS (ESI) calcd for $C_{12}H_{10}ClN_2 [M+H]^+$: 217.0527, found 217.0528.

1-methyl-4-(naphthalen-2-yl)-1H-pyrrole-2-carbonitrile (4sa)¹

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.81 (dd, J = 15.5, 8.1 Hz, 2H), 7.48 (t, J = 8.1 Hz, 2H), 6.85 (s, 1H), 6.52 (s, 1H), 3.81 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 135.32, 133.68, 132.86, 130.37, 128.66, 128.28, 128.08, 127.78,

126.50, 126.20, 125.29, 124.90, 114.74, 108.59, 101.70, 35.67.

1-methyl-3-(pyridin-3-yl)-1H-pyrrole-2-carbonitrile (4ta)

White solid; MP: 84-89 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.49 (s, 1H), 7.97-7.91 (m, 1H), 7.28 (dd, J = 7.8, 4.9 Hz,

1H), 6.82 (d, *J* = 2.7 Hz, 1H), 6.39 (d, *J* = 2.7 Hz, 1H), 3.77 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.71, 147.87, 133.74, 131.71, 128.34, 123.86, 114.01, 111.91, 108.37, 102.02, 35.81.

IR (neat, cm⁻¹) v 3127, 2920, 1625, 1520, 1414, 787.

HRMS (ESI) calcd for C₁₁H₁₀N₃ [M+H]⁺: 184.0869, found 184.0872.

1-methyl-3-(thiophen-3-yl)-1H-pyrrole-2-carbonitrile (4ua)¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (dd, J = 2.8, 1.3 Hz, 1H), 7.36 (dd, J = 5.0, 1.2 Hz, 1H), 7.29 (dd, J = 5.0, 2.9 Hz, 1H), 6.71 (d, J = 2.6 Hz, 1H), 6.29 (d, J = 2.7 Hz, 1H), 3.71 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 133.78, 130.61, 127.87, 126.21, 126.18, 120.85, 114.72, 108.11, 101.14, 35.58.

1-methyl-3-propyl-1H-pyrrole-2-carbonitrile (4va)

Yellowish green oil;

¹H NMR (500 MHz, CDCl₃) δ 6.68 (d, J = 2.5 Hz, 1H), 5.99 (d, J = 2.5 Hz, 1H), 3.71 (s, 3H), 2.56 (t, J = 7.7 Hz, 2H), 1.59-1.50 (m, 4H), 1.31-1.30 (m, 2H), 1.30-1.29 (m, 2H), 0.89 (t, J = 6.7 Hz, 3H).
¹³C NMR (126 MHz, CDCl₃) δ 137.61, 127.19, 114.09, 109.26, 103.05, 35.37, 31.73, 30.65, 29.01, 26.85, 22.74, 14.23.
IR (neat, cm⁻¹) v 2970, 2260, 1555, 1320, 1041, 886, 761, 738.

HRMS (ESI) calcd for C₉H₁₉N₂[M+H] ⁺: 191.1543, found 191.1546.

3-benzyl-1-methyl-1H-pyrrole-2-carbonitrile (4wa)¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.5 Hz, 2H), 7.25-7.19 (m, 3H), 6.69 (d, *J* = 2.4 Hz, 1H), 5.96 (d, *J* = 2.4 Hz, 1H), 3.91 (s, 2H), 3.73 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.23, 135.72, 128.67, 128.64, 127.49, 126.41, 113.81, 109.81, 103.30, 35.46, 33.16.

(*E*)-1-methyl-3-styryl-1H-pyrrole-2-carbonitrile (4xa)

Orange solid; MP: 55-57 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (d, *J* = 12.0 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 3H), 7.04 (d, *J* = 4.0 Hz, 2H), 6.77 (d, *J* = 2.5 Hz, 1H), 6.41 (d, *J* = 2.6 Hz, 1H), 3.76 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.08, 133.68, 129.68, 128.83, 128.21, 127.90, 126.56, 118.97,

113.69, 106.47, 100.12, 35.54.

IR (neat, cm⁻¹) *v* 2924, 2359, 2208, 1725, 1492, 1451, 1359, 1250, 1179, 966, 755, 696. **HRMS** (ESI) calcd for C₁₄H₁₃N₂ [M+H] ⁺: 209.1073, found 209.1076.

1-methyl-3,4-diphenyl-1H-pyrrole-2-carbonitrile (4ya)¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 7.26-7.23 (m, 3H), 7.17-7.13 (m, 2H), 6.93 (s, 1H), 3.85 (s, 3H).

 $^{13}\mathbf{C}$ NMR (126 MHz, CDCl₃) δ 133.67, 133.37, 132.37, 129.32, 128.66, 128.55, 128.53, 127.73,

126.76, 126.40, 124.47, 114.14, 104.19, 35.72.

dimethyl 2-cyano-1-methyl-1H-pyrrole-3,4-dicarboxylate (4za)

Dark yellow solid; MP: 56-58 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 3.83 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.27, 161.67, 131.78, 124.74, 116.67, 111.02, 109.17, 52.49, 52.04,

36.28.

IR (neat, cm⁻¹) v 2962, 1707, 1360, 1260, 1221, 1019, 798, 529.

HRMS (ESI) calcd for C₁₀H₁₁N₂O₄ [M+H] ⁺: 223.0713, found 223.0716.

1-ethyl-5-methyl-3-phenyl-1H-pyrrole-2-carbonitrile (4ab)¹

¹H NMR (400 MHz, CDCl₃) δ 7.68-7.63 (m, 2H), 7.39 (dd, *J* = 15.9, 8.1 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 6.18 (s, 1H), 4.06 (q, *J* = 7.3 Hz, 2H), 2.30 (s, 3H), 1.41 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 135.07, 134.63, 133.17, 128.94, 128.62, 128.56, 127.59, 126.64, 115.37, 107.81, 99.15, 40.97, 16.31, 12.39.

4ac

butyl-3-phenyl-5-propyl-1H-pyrrole-2-carbonitrile (4ac)

Yellow oil;

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (dd, *J* = 8.1, 0.9 Hz, 2H), 7.39 (dd, *J* = 10.5, 4.8 Hz, 2H), 7.33-7.24 (m, 1H), 6.19 (s, 1H), 3.99 (t, 7.6 Hz, 2H), 2.54 (t, *J* = 7.6 Hz, 2H), 1.80-1.66 (m, 4H), 1.45-1.36 (m, 2H), 1.03 (t, *J* = 7.3 Hz, 3H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 134.49, 133.25, 128.92, 128.55, 127.54, 126.64, 115.60, 106.52, 99.55, 45.83, 33.37, 28.56, 21.88, 20.09, 14.12, 13.87.

IR (neat, cm⁻¹) v 2960, 2204, 1508, 1471, 1360, 1261, 1020, 798, 763, 695, 598.

HRMS (ESI) calcd for C₁₈H₂₃N₂ [M+H]⁺: 267.1856, found 267.1860.

1,3-diphenyl-1H-pyrrole-2-carbonitrile (4ad)

Yellow oil;

¹**H NMR** (400 MHz, CDCl₃) δ 7.68(d, *J* = 8.0 Hz, 2H), 7.47-7.44 (m, 5H), 7.38 (t, *J* = 8.0 Hz, 2H),

7.28 (t, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 2.5 Hz, 1H); 6.54 (d, *J* = 2.5 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 137.43, 132.89, 130.02, 129.84, 129.07, 128.59, 128.13, 127.50, 124.48, 123.00, 114.73, 109.94, 100.95.

IR (neat, cm⁻¹) v 2920, 2150, 1600, 1496, 1320, 1311, 1120, 858, 788, 655.

HRMS (ESI) calcd for C₁₇H₁₃N₂ [M+H]⁺: 245.1073, found 245.1076.

2-phenyl-5,6,7,8-tetrahydroindolizine (4ae)

Yellowish-brown oil;

¹H NMR (500 MHz, CDCl₃) δ 7.72-7.61 (m, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H),
6.13 (s, 1H), 4.04 (t, J = 6.1 Hz, 2H), 2.79 (t, J = 6.4 Hz, 2H), 2.10 – 1.96 (m, 2H), 1.95 – 1.76 (m, 2H).
¹³C NMR (126 MHz, CDCl₃) δ 136.38, 134.88, 133.22, 128.91, 127.58, 126.63, 115.22, 105.47, 98.59,
44.63, 23.56, 22.98, 20.41.

IR (neat, cm⁻¹) v 2948, 2201, 1709, 1509, 1425, 1358, 1220, 760, 694, 529, 481;

HRMS (ESI) calcd for C₁₅H₁₅N₂ [M+H]⁺: 223.1230, found 223.1234.

1-methyl-3-phenyl-1H-pyrrole-2-carboxamide (5aa)

White solid; MP: 148-149 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (t, J = 6.3 Hz, 4H), 7.39-7.33 (m, 1H), 6.75 (d, J = 2.4 Hz, 1H),

6.11 (d, *J* = 2.4 Hz, 1H), 5.34 (s, 2H), 3.96 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.83, 136.35, 129.84, 129.70, 128.87, 127.59, 127.32, 121.38, 109.69, 37.63.

IR (neat, cm⁻¹) v 3390, 3192, 1634, 1610, 1503, 1441, 1342, 1091, 833.

MS (ESI) calcd for C₁₂H₁₃N₂O [M+H]⁺: 201.1022, found 201.1025.

$$H_2N \xrightarrow{N}_{Ph}$$

(1-methyl-3-phenyl-1H-pyrrol-2-yl)methanamine (**5ab**) Colorless oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.34-7.26 (m, 4H), 7.18-7.14 (m, 1H), 6.55 (d, J = 2.7 Hz, 1H), 6.15 (d, J = 2.7 Hz, 1H), 3.87 (s, 2H), 3.65 (s, 3H), 2.53 (s, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 136.96, 128.64, 128.51, 128.22, 125.86, 124.16, 122.35, 107.68, 35.40, 34.16.

IR (neat, cm⁻¹) *v* 3374, 3052, 2927, 2854, 1736, 1504, 1266, 1246, 1092, 1046, 738. **MS** (ESI) calcd for C₁₂H₁₅N₂ [M+H]⁺: 187.1230, found 187.1334.

4. Reference

1. X.-Q. Mou, Z.-L. Xu, L. Xu, S.-H. Wang, B.-H. Zhang, D. Zhang, J. Wang, W.-T. Liu, W. Bao, Org. Lett. 2016, 18, 4032.

5. ¹H and ¹³C NMR spectra of products

S20

S31

S39

S41

io 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (fl (ppm)

