Niobium-Catalyzed Coupling Reaction of α -Keto Acids with ortho-Phenylenediamines: Synthesis of 3-Arylquinoxalin-2(1*H*)-ones

Camila Ebersol,^a Nicole Rocha,^a Filipe Penteado,^a Márcio S. Silva,^a Daniela Hartwig,^a Eder J. Lenardão,^{a,*} and Raquel G. Jacob^{a,*}

^a LASOL - CCQFA, Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.

Corresponding author e-mail: lenardao@ufpel.edu.br (EJL) and raquelgjacob@yahoo.com.br (RGJ)

General information: The reactions were monitored by TLC carried out on pre-coated TLC sheets ALUGRAM[®] Xtra SIL G/UV₂₅₄ by using UV light as visualization agent and the mixture of 5% vanillin in 10% H₂SO₄ under heating conditions as developing agent. Merck silica gel (particle size 63-200 used μm) was to flash chromatography. Hydrogen nuclear magnetic resonance spectra (¹H NMR) were obtained at 400 MHz on a Bruker Avance III HD NMR 400 spectrometer. The spectra were recorded in DMSO-d₆. Coupling constants (J) are reported in Hertz. Carbon nuclear magnetic resonance spectra (¹³C NMR) were obtained at 100 MHz on a Bruker Avance III HD NMR 400 spectrometer. The chemical shifts are reported in ppm, referenced to the solvent peak of DMSO-d₆. Mass spectra (MS) were measured on a Shimadzu GCMS-QP2010 mass spectrometer. High-resolution mass spectra were obtained on a Bruker Daltonics micrOTOF-Q II instrument equipped with an ESI and APCI source operating in both positive and negative modes. The samples were dissolved in HPLC-grade acetonitrile and injected into the APCI source by means of a syringe pump at a flow rate of 5.0 µL/min. The Compass 1.3 for micrOTOF-Q II software (Bruker daltonics, USA) was used for data acquisition, processing, and isotopic simulations. The ultrasound-promoted reactions were performed using a Cole Parmer-ultrasonic processor Model CPX 130, with a maxim power of 130 W, operating at amplitude of 20%-60% and a frequency of 20 kHz. Melting point (mp) values were measured in a Marte PFD III instrument with a 0.1 °C precision.

General procedure to prepare 3-aryl quinoxalin-2(1*H*)-ones 3a-r: In a test tube were added the α -keto acid 1 (0.3 mmol) followed by *o*-phenylenediamine 2 (0.3 mmol), ANO (5 mol%) and PEG-400 (0.5 mL). The resulting solution was sonicated for 10 minutes (20 KHz, 20% of ultrasonic amplitude). Thereafter, the reaction mixture was extracted with saturated sodium bicarbonate solution (20 mL) and ethyl acetate (3 x 10 mL). The organic phase was dried with anhydrous MgSO₄, filtered and concentrated under reduce

pressure. The crude material was then purified by silica gel column chromatography using hexane/ethyl acetate (85:15) mixture as eluent.

Ph	ОН	+ CI	NH ₂ Condition			+ CI _ H N Pr	
	1a	a 2d		3n		4n	
-	Entry	ANO (mol%)	Energy Source	3n Yield (%) ^a	4n Yield (%) ^a	(3n + 4n) Overall yield (%)	
	1	5	US (20 %) ^b	40	35	75	
	2	5	US (60 %) ^c	27	40	67	
	3	5	oil bath ^d	25	21	46	
	4	none	US (20 %) ^b	28	30	58	

Table S1. Evaluation of the selectivity to quinoxalin-2(1*H*)-one 3k.

^a Isolated yields. ^b A mixture of **1a** (0.3 mmol) and **2d** (0.3 mmol) in PEG-400 (0.5 mL) was sonicated in an open flask for 10 min. ^c The US probe was adjusted to 60% of amplitude. ^d The reaction was performed under conventional heating (oil bath) at 70 °C in an open flask. ^e The US probe was adjusted to 20% of amplitude.

3-phenylquinoxalin-2(1*H*)-one (3a)

Yield: 64 mg (96%); white solid; mp 226 °C (dec.) (Lit.¹ 245-247 °C). ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 12.57 (s, 1H); 8.34–8.27 (m, 2H); 7.84 (d, J = 7.9 Hz, 1H); 7.59–7.45 (m, 4H); 7.37–7.29 (m, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 154.6, 154.2, 135.6, 132.1, 132.0, 130.3, 130.2, 129.2, 128.8, 127.9, 123.4, 115.1. MS (relative intensity) *m/z*: 222 (74), 194 (100), 90 (22), 77 (21), 63 (28).

3-(p-tolyl)quinoxalin2-(1H)-one (3b)

53 mg (75%); white solid; mp 251 °C (dec.) (Lit.² > 250°C). ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 12.53 (s, 1H); 8.26 (d, *J* = 8,2 Hz, 2H); 7.82 (d, *J* = 7,8 Hz, 1H); 7.52 (t, *J* = 7,7 Hz, 1H); 7.31 (dd,

J = 11,4; 8,3 Hz, 4H); 3.33 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 154.6, 153.8, 140.1, 132.9, 132.0, 131.9, 130.1, 129.2, 128.6, 128.5, 123.4, 115.0, 21.1. MS (relative intensity) m/z: 236 (64), 208 (100), 149 (27), 117 (25), 103 (24), 97 (16), 91 (39), 83 (23).

3-(4-methoxyphenyl)quinoxalin-2(1*H*)-one (3c)

Yield: 25 mg (34%); white solid; mp 270 °C (dec.) (Lit.²>250 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.50 (s, 1H); 8.40 (d, *J* = 8,9 Hz; 2H); 7.80 (d, *J* = 7,9 Hz; 1H); 7.54–7.45 (m, 1H); 7.37–

7.25 (m, 2H); 7.04 (d, J = 8,9 Hz; 2H); 3.84 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 161.0, 154.7, 153.1, 132.1, 131.8, 131.0, 129.7, 128.5, 125.1, 123.3, 115.0, 113.3, 55.3. MS (relative intensity) m/z: 252 (50), 224 (32), 207 (100), 181 (27), 133 (17), 73 (52), 44 (99).

3-(4-fluorophenyl)quinoxalin-2(1*H*)-one (3d)

Yield: 60 mg (84%); yellow solid; mp 275 °C (dec.) (Lit.² 247-248 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.60 (s, 1H); 8.47– 8.35 (m, 2H); 7.83 (d, *J* = 8,0 Hz; 1H); 7.59–7.49 (m, 1H); 7.38–

7.26 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 163.4 (d, ¹*J*_{C-F} = 248,4 Hz), 154.6, 152.9, 132.1, 132.1, 132.1, 132.9, 131.7 (*J* = 8.6 Hz), 130.4, 128.7, 123.5, 115.1, 114.8 (*J* = 21.5 Hz). MS (relative intensity) *m/z*: 240 (70), 212 (100), 107 (10), 90 (18), 75 (10), 64 (31), 52 (10).

3-(4-bromophenyl)quinoxalin2-(1*H*)-one (3e)

Yield: 63 mg (70%); yellow solid; mp 275 °C (dec.) (Lit.² >250 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.63 (s, 1H); 8.30 (d, *J* = 8.6 Hz; 2H); 7.84 (d, *J* = 8.0 Hz; 1H); 7.70 (d, *J* = 8.6 Hz; 2H); 7.59–

7.51 (m, 1H); 7.39–7.28 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 154.5, 152.8, 134.7, 132.1, 131.9, 131.2, 130.9, 130.6, 128.8, 124.0, 123.5, 115.2. MS (relative intensity) *m/z*: 300 (82), 272 (78), 193 (100), 111 (45), 90 (42), 63 (41), 44 (51).

3-(2-bromophenyl)quinoxalin-2(1*H*)-one (3f)

Yield: 72 mg (82%); yellow solid; mp 248 °C (dec.). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.64 (s, 1H); 7.81 (dd, *J* = 8.0, 1.0 Hz, 1H); 7.72 (d, *J* = 8.0 Hz, 1H); 7.63–7.56 (m, 1H); 7.55–7.47 (m, 2H); 7.45–7.30

(m, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 158.4, 153.7, 137.6, 132.5, 132.2, 131.6, 130.9, 130.8, 130.7, 128.9, 127.4, 123.5, 121.7, 115.5. MS (relative intensity) *m/z*: 300 (1), 221 (100), 193 (21), 110 (10), 90 (16), 63 (11). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀BrN₂O, 300.9898; found, 300.9895.

6,7-dimethyl-3-phenylquinoxalin-2(1H)-one (3g)

Yield: 63 mg (85%); yellow solid; mp 261 °C (dec.) (Lit.³>250 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.43 (s, 1H); 8.32–8.24 (m, 2H); 7.59 (s, 1H); 7.50–7.44 (m, 3H); 7.08 (s, 1H); 2.34–2.27

(m, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 154.7, 152.8, 140.1, 135.9, 132.1, 130.6, 130.1, 129.9, 129.1, 128.6, 127.9, 115.1, 19.9, 18.9. MS (relative intensity) *m/z*: 250 (22), 221 (14), 207 (100), 191 (14), 133 (14), 73 (47), 44 (98).

6,7-dimethyl-3-(p-tolyl)quinoxalin-2(1H)-one (3h)

Yield: 63 mg (80%); yellow solid; mp 223 °C (dec.). ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 12.38 (s, 1H); 8.25 (d, J = 8.2 Hz, 1H); 7.56 (s, 1H); 7.27 (d, J = 8.2 Hz, 2H); 7.06 (s, 1H);

2.36 (s, 3H); 2.32–2.25 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 154.7, 152.4, 139.6, 133.1, 132.0, 130.6, 129.9, 130.0, 129.0, 128.4, 126.1, 115.0, 21.0, 19.8, 19.0. MS (relative intensity) *m/z*: 264 (100), 236 (74), 118 (13), 91 (24), 65 (10). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇H₁₇N₂O, 265.1335; found, 265.1336.

3-(4-fluorophenyl)-6,7-dimethylquinoxalin-2(1*H*)-one (3i)

Yield: 73 mg (91%); yellow solid; mp 291 °C (dec.). ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 12.47 (s, 1H); 8.44–8.36 (m, 2H); 7.59 (s, 1H); 7.34–7.26 (m, 2H); 7.08 (s, 1H); 2.31 (s, 3H);

2.29 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 163.2 (d, ¹*J*_{C-F} = 248.0 Hz), 154.6, 151.4, 140.1, 132.3 (d, ⁴*J*_{C-F} = 3.0 Hz), 132.2, 131.5 (d, ³*J*_{C-F} = 8.4 Hz), 130.5, 130.1, 128.5, 115.1, 114.8 (d, ²*J*_{C-F} = 21.4 Hz), 19.8, 19.0. ¹⁹F NMR (376 MHz, DMSO-d₆) δ (ppm) 110.90 (dt, ⁴*J*_{C-F} = 5.6 Hz, ³*J*_{C-F} = 8.6 Hz). MS (relative intensity) *m/z*: 268 (100), 240 (73), 225 (73), 118 (10), 91 (31), 65 (15). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₄FN₂O, 269.1090; found, 269.1086.

3-(2-bromophenyl)-6,7-dimethylquinoxalin-2(1H)-one (3j)

Yield: 49 mg (50%); white solid; mp 269 °C (dec.). ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 12.45 (s, 1H); 7.69 (d, J = 7.9 Hz; 1H); 7.55 (s, 1H); 7.49–7.45 (m, 2H); 7.43–7.35 (m, 1H); 7.12 (s, 1H);

2.31 (s, 3H); 2.27 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 157.2, 153.9, 140.9, 138.0, 132.5, 132.4, 131.0, 130.8, 130.6, 130.4, 128.8, 127.6, 122.1, 115.6, 20.0, 19.1. MS (relative intensity) *m/z*: 328 (2), 249 (100), 207 (24), 117 (10), 91 (9), 73 (11), 44 (19). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₄BrN₂O, 329.0284; found, 329.0287.

7-methyl-3-phenylquinoxalin-2(1H)-one and 6-methyl-3phenylquinoxalin-2(1H)-one (3k:3k*)

After the column chromatography, it was obtained a yellow solid as an inseparable mixture of isomers **3k** and **3k*** (1.3:1) in 83%

yield.⁴ ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.51 (s, 1H); 8.33–8.26 (m, 2H); 7.72 (d, *J* = 8.2 Hz, 0.6H); 7.65 (s, 0.5H); 7.57–7.43 (m, 5H); 7.24 (d, *J* = 8.2 Hz, 0.5H); 7.19–7.07 (m, 1.2H); 2.44–2.85 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 154.7, 154.5, 153.9, 152.9, 140.6, 135.7, 132.7, 132.0, 131.5, 130.3, 130.1, 130.0, 129.2, 129.1, 128.9, 128.5, 128.3, 127.8, 126.3, 124.8, 114.8, 114.7, 21.3, 20.4.

3-(4-fluorophenyl)-7-methylquinoxalin-2(1H)-one and 3-(4-fluorophenyl)-6-methylquinoxalin-2(1H)-one (3I:3I*)

After the column chromatography, it was obtained a white solid as an inseparable mixture of isomers **3I** and **3I*** (1.5:1) in 89%

yield.⁴ ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.51 (s, 1 H); 8.44–8.34 (m, 2 H); 7.68 (d, 8.0 Hz, 0.6H); 7.61 (s, 0.45H); 7.37–7.25 (m, 3H); 7.22 (d, *J* = 8.2 Hz, 0.45H); 7.16–7.06 (m, 1H) 2.42–2.34 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 165.5, 164.4, 154.7, 154.5, 152.5, 151.5, 140.6, 132.7, 132.2, 132.2, 132.1, 132.0, 131.9, 131.9, 131.6, 131.5, 131.5, 130.2, 129.8, 128.4, 128.2, 124.8, 115.7, 115.5, 114.9, 114.7, 21.3, 20.4.

3-(2-bromophenyl)-7-methylquinoxalin-2(1H)-one and 3-(2bromophenyl)-6-methylquinoxalin-2(1H)-one (3m:3m*)

After the column chromatography, it was obtained a white solid as an inseparable mixture of isomers **3m** and **3m*** (1.5:1) in 73%

yield.⁴ ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.57 (s, 1H); 7.77–7.65 (m, 2H); 7.61 (s, 0.4H); 7.56–7.34 (m, 4H); 7.27 (d, *J* = 8.2 Hz, 0.4 H); 7.19–7.10 (m, 1H); 2.42 (s, 1.8 H); 2.38 (s, 1.2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 158.3, 157.2, 153.8, 153.6, 141.3, 137.8, 132.8, 132.4, 132.2, 132.0, 131.6, 130.9, 130.8, 130.6, 130.6, 130.2, 129.9, 128.6, 128.5, 127.4, 124.8, 121.9, 121.8, 115.2, 115.0, 21.3, 20.4.

7-chloro-3-phenylquinoxalin-2(1*H*)-one (3n)

Yield: 32 mg (40%); white solid; mp 225 °C (dec.) (Lit.⁵ 274- 275 °C). ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 12.70 (1H, br s, NH); 8.31–8.28 (2H, m, 12-H, 13-H); 7.89 (1H, d, J = 2.3 Hz, 8-H);

7.59 (1H, dd, J = 8.7, 2.4 Hz, 6-H); 7.52–7.46 (3H, m, 14-H,15-H,16-H); 7.35 (1H, d, J = 8.7 Hz, 5-H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 155.3 (C=N), 154.3 (C=O), 135.2 (C-16), 132.5 (C-Cl), 131.0 (C-10), 130.5 (C-16), 130.1 (C-6), 129.3 (C-12, C-13), 127.9 (C-14, C-15), 127.6 (C-8), 126.9 (C-9), 116.7 (C-5). ¹⁵N NMR (40 MHz, DMSO-*d*₆) δ (ppm) 226.7 (5-H). MS (relative intensity) *m/z*: 256 (74), 228 (100), 192 (12), 166 (10), 90 (15), 77(18), 63 (28), 51 (10).

6-chloro-2-phenyl-1*H*-benzo[*d*]imidazole (4n)

Yield: 26 mg (35%); yellow solid; mp 215 °C (dec.) (Lit.⁶ 285 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.60 (1H, br s,

NH); 8.29–8.27 (2H, m, 11-H, 12-H); 7.82–7.80 (1H, m, 5-H); 7.53–7.46 (3H, m, 13-H, 14-H, 15-H); 7.33–7.30 (2H, m, 5-H, 7-H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 154.3 (C=N), 135.3 (C-10), 134.3 (C-Cl), 133.1 (C-8), 130.8 (C-9), 130.4 (C-15), 130.4 (C-4), 129.2 (C-11, C-12), 127.9 (C-13, C-14), 123.5 (C-5), 114.3 (C-7). ¹⁵N NMR (40 MHz, DMSO- d_6) δ (ppm) 326,5 (4-H), 153,4 (7-H). MS (relative intensity) *m/z*: 228 (100), 256 (73), 192 (11), 166 (10), 124 (9), 114 (9), 104 (11), 90 (19).

7-chloro-3-(p-tolyl)quinoxalin-2(1H)-one (30)

Yield: 38 mg (47%); white solid; mp 270 °C (dec.). ¹H NMR (400 MHz, DMSO-d₆) δ (ppm) 12.50 (1H, br s, NH); 8.24 (2H, d, J = 8,0 Hz, 12-H,13-H); 7.81 (1H, d, J = 8,4 Hz, 5-

H); 7.34–7.28 (4H, m, 6-H, 8-H, 14-H, 15-H); 2.38 (3H, s, 17-H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 154.4, 154.0, 140.3, 134.0, 132.9, 132.6, 130.8, 130.3, 129.2, 128.5, 123.4, 114.3, 21.1. ¹⁵N NMR (40 MHz, DMSO-*d*₆) δ (ppm) 324.2 (5-H), 153.4 (8-H). MS (relative intensity) m/z: 270 (84), 242 (100), 107 (19), 134 (18), 116 (10), 103 (13), 90 (14). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₂ClN₂O, 271.0633; found, 271.0629.

6-chloro-3-(p-tolyl)quinoxalin-2(1H)-one (3o*)

 $\begin{array}{c} N & O \\ \begin{array}{c} 9 \\ 10 \\ 1 \\ \end{array} \\ \begin{array}{c} 12 \\ 12 \\ 11 \\ \end{array} \\ \begin{array}{c} 12 \\ 16 \end{array} \end{array} \end{array}$ Yield: 30 mg (38%); yellow solid; mp 241 °C (dec.). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.63 (1H, br s, NH); ^{Me}₁₇ 8.25 (2H, d, *J* = 8.2 Hz, 12-H, 13-H); 7.86 (1H, d, *J* = 2.3

Hz, 5-H); 7.56 (1H, dd, J = 8.7, 2.4 Hz, 7-H); 7.31 (3H, t, J = 8.2 Hz, 8-H, 14-H, 15-H); 2.38 (3H, s, 17-H). ¹³C RMN (100 MHz, DMSO- d_6) δ (ppm) 155.1, 154.4, 140.6, 132.6, 132.5, 130.9, 129.9, 129.3, 128.5, 127.5, 126.9, 116.7, 21.1. ¹⁵N NMR (40 MHz, DMSOd₆): δ 323.6 (5-H), 153.1 (8-H). MS (intensidade relativa) m/z: 270 (84), 242 (100), 207 (18), 134 (19), 116 (9), 103 (17), 90 (18). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₂CIN₂O, 271.0633; found, 271.0630.

MHz, DMSO- d_6) δ (ppm) 12.72 (1H, br s, NH); 7.82 (1H, d, J = 9.2 Hz, 5-H); 7.72 (1H, d, J = 7.6 Hz, 12-H); 7.58–7.46 (2H, m,

15-H, 16-H); 7.42 (1H, td, J = 7.6, 2.1 Hz, 14-H); 7.38–7.33 (2H, m, 8-H, 6-H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 158.7 (C=N), 153.4 (C=O), 137.3 (C-11), 135.0 (C-CI), 133.5 (C-10), 132.3 (C-12), 132.2 (C-14), 130.9 (C-5), 130.6 (C-9), 130.4 (C-15), 127.4 (C-16), 123.6 (C-8), 121.6 (C-Br), 114.7 (C-6). ¹⁵N NMR (40 MHz, DMSO- d_6) δ (ppm) 334.4 (5-H), 151.9 (8-H). MS (relative intensity) m/z: 336 (3), 255 (100), 192 (24), 127 (20), 124 (14), 96 (8). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₉BrClN₂O, 336.9559; found, 336.9557.

3-(2-bromophenyl)-6-chloroquinoxalin-2(1H)-one (3p*)

Yield: 26 mg (28%); yellow solid; mp 236.8 °C (dec.) ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.77 (1H, br s, NH); 7.89 (1H, d, *J* = 2.3 Hz, 5-H); 7.72 (1H, d, *J* = 7.9 Hz, 12-H); 7.65 (1H, dd, *J*

= 8.8, 2.3 Hz, 7-H), 7.55 - 7.48 (2H, m, 15-H, 16-H); 7.47 - 7.38 (1H, m, 14-H), 7.38 (1H, d, J = 8.8 Hz, 8-H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 159.86 (C=N), 153.51 (C=O), 137.31 (C-Br), 132.27 (C-Cl), 132.22 (C-9), 131.51 (C-11), 131.00 (C-7), 130.89 (C-15), 127.94 (C-8), 127.55 (C-5), 127.22 (C-12), 121.64 (C-10), 117.24 (C-14). ¹⁵N NMR (40 MHz, DMSO- d_6) δ (ppm) 146.0 (8-H). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₉BrClN₂O, 334.9587; found, 334.9588.

7-chloro-3-(4-fluorophenyl)quinoxalin-2(1*H*)-one (3q)

Yield: 48 mg (58%); white solid; mp 277 °C (dec.). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.65 (1H, br s, NH); 8.41–8.38 (2H, m, 14-H, 15-H); 7.84 (1H, d, *J* = 8.5 Hz, 5-H); 7.37–7.31 (4H,

m, 6-H, 8-H, 12-H, 13-H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 163.45 (d, ¹*J*_{C-F} = 249.2 Hz, C-F), 154.36 (C=N), 153.16 (C=O), 134.33 (C-9), 133.07 C-Cl), 131.75 (d, ²*J*_{C-F} = 8.7 Hz, C-12, C-13), 130.71 (C-10), 130.39 (C-5), 123.56 (C-8), 114.91 (d, ³*J*_{C-F} = 21.5 Hz, C-14, C-15), 114.35 (C-6). ¹⁵N NMR (40 MHz, DMSO-d₆) δ (ppm) 325,2 (5-H), 153.2 (8-H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) 110.03 (dt, ⁴*J*_{C-F} = 7.5 Hz; ³*J*_{C-F} = 11.2 Hz). MS (relative intensity) *m/z*: 274 (68), 246 (100), 184 (11), 124 (12), 90 (16), 63 (33). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₉CIFN₂O, 275.0388; found, 275.0386.

6-nitro-3-fenilquinoxalin-2(1*H*)-ona (3r*)

Yield: 30 mg (37%). yellow solid. mp: 279 °C (dec.). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.86 (1H, br s, NH); 8.36–8.33 (2H, m, 12-H, 13-H); 8.13 (1H, d, *J* = 2.3 Hz, 5-H); 8.10–8.07

(1H, m,7-H); 8.04 (1H, d, J = 8.7 Hz, 5-H); 7.59–7.50 (3H, m, 14-H, 15-H, 16-H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 158.1 (C=N), 155.0 (C=O), 147.6 (C-9), 136.1 (C-NO₂), 134.8 (C-10), 131.8 (C-11), 131.5 (C-16), 130.3 (C-8), 129.8 (C-12, C-13), 128.3 (C-14, C-15), 118.2 (C-7), 111.0 (C-5). ¹⁵N NMR (40 MHz, DMSO-d₆) δ (ppm) 368.9 (5-H), 323.2, (7-H) 156.9 (8-H). MS (relative intensity) *m/z*: 267 (100), 239 (45), 209 (92), 193 (39), 166 (43), 104 (66), 90 (80).

3-(2-bromophenyl)-6-nitroquinoxalin-2(1*H*)-one (3s*)

Yield: 29 mg (28%); white solid; mp 257 °C (dec.).¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 13.16 (1H, br s, NH); 8.60 (1H, d, *J* = 2.5 Hz, 5-H); 8.42 (1H, dd, *J* = 9.1, 2.5 Hz, 7-H); 7.74 (1H, d, *J*

= 7.6 Hz, 16-H); 7.58–7.51 (3H, m, 14-H, 12-H, 8-H); 7.45 (1H, td, J = 7.7, 2.0 Hz, 15-H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 160.8 (C=N), 153.6 (C=O), 142.7 (C-NO₂), 137.6 (C-9), 136.8 (C-11), 132.3 (C-12), 131.2 (C-14), 130.9 (C-16), 130.4 (C-10), 127.5 (C-15), 125.5 (C-7), 124.5 (C-5), 121.5 (C-Br), 116.6 (C-8). ¹⁵N NMR (40 MHz, DMSO- d_6) δ (ppm) 369,1 (5-H, 7-H, 8-H), 333,4 (5-H), 160,6 (8-H). MS (relative intensity) m/z: 345 (3), 266 (100), 220 (31), 192 (11), 165 (6), 102 (7), 90 (18). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₉BrN₃O₃, 345.9822; found, 345.9810.

7-nitro-3-(p-tolyl)quinoxalin-2(1H)-one (3t)

Yield: 32 mg (38%); yellow solid; mp 274.2 °C (dec.). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 12.83 (1H, br s, NH); 8.31 (2H, d, *J* = 8.2 Hz, 14-H, 15-H); 8.13–8.04 (2H, m,

6-H, 8-H); 8.00 (1H, d, J = 8.8 Hz; 5-H); 7.33 (2H, d, J = 8.1 Hz; 12-H, 13-H); 2.39 (3H, s, 17-H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 157.1, 154.4, 146.8, 141.4, 135.6, 132.2, 132.2, 129.8, 129.7, 128.7, 117.6, 110.5, 21.1. MS *m/z* (relative intensity): 281 (100), 253 (39), 223 (32), 207 (26), 180 (16), 90 (19). ¹⁵N NMR (40 MHz, DMSO- d_6) δ (ppm) 369,2 (8-H), 321,2 (6-H). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₅H₁₂N₃O₃, 282.0873; found, 282.0870.

3-(4-fluorophenyl)-7-nitroquinoxalin-2(1*H*)-one (3u)

Yield: 30 mg (35%); yellow solid; mp 277 °C (dec.). ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 12.90 (1H, br s, NH); 8.48–8.44 (2H, m, 12-H); 8.13–8.08 (2H, m, 8-H, 6-H); 8.04 (1H, d, J =

8.8 Hz; 5-H); 7.39–7.34 (2H, m,13-H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 163.9 (d, ¹J_{C-F} = 250.1 Hz, C-F), 156.2 (C=N), 154.3 (C=O), 147.0 (C-NO₂), 135.4 (C-10), 132.3 (d, ³J_{C-F} = 8.8 Hz, C-12), 131.4 (d, ⁴J_{C-F} = 3.1 Hz, C-9), 129.9 (C-11), 117.6 (C-6), 115.1 (d, ²J_{C-F} = 21.5 Hz, C-13), 110.6 (C-8). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ (ppm) 108.77 (dt, ⁴J_{C-F} = 5.9 Hz; ³J_{C-F} = 8.7 Hz). ¹⁵N NMR (40 MHz, DMSO-*d*₆) δ (ppm) 369 (6-H), 322,5 (5-H), 153 (8-H). MS (relative intensity) *m/z*: 285 (64), 253 (26), 227 (39), 207 (100), 184 (21), 73 (48), 44 (84). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₉FN₃O₃, 286.0628; found, 286.0622.

(E)-(Phenylmethylidene)aniline (6)

Yield: 42 mg (79%); yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 8.69 (1H, s); 8.04 (2H, d, *J* = 7.2 Hz); 7.58–7.60 (3H, m); 7.48–7.52 (2H, m); 7.32–7.35 (2H, m). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 161.0, 151.9, 136.5, 131.9, 129.7, 129.2, 129.1, 126.4, 121.4.

References

1. J. Bergman, R. Engqvist, C. Stalhandske and H. Wallberg, *Tetrahedron* 2003, **59**, 1033-1048.

- 2. J. Yuan, S. Liu and L. Qu, Adv. Synth. Catal. 2017, 359, 4197-4207.
- 3. M. Nagaraj, S. Sathiyamoorthy, M. Boominathan, S. Muthusubramanian and N. Bhuvanesh, *J. Heterocyclic Chem.* 2013, **50**, 1146.
- 4. S. GräBle, S. Vanderheiden, P. Hodapp, B. Bulat, M. Nieger, N. Jung and S. Bräse, *Org. Lett.*, 2016, **18**, 3598-3601.
- 5. Y. Ahmad, M. S. Habib, Ziauddin and N. Bashir, *Bull. Chem. Soc. Japan* 1965, **38**, 1654-1659.
- 6. S. B. Bhagat, Y. S. Sutar, Y. Manohar and V. N. Telvekar, *Asian J. Chem.* 2018, **30**, 376-380.

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3a**.

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3a**.

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3b**.

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3d**.

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3d**.

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3e**.

S22

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3I + 3I***.

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3m + 3m***.

¹H-¹⁵N HMBC NMR (400 MHz, DMSO-d₆) spectrum of **3m + 3m***.

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3n**.

¹H-¹³C HSQC NMR (400 MHz, DMSO-d₆) spectrum of **3n**.

¹H-¹³C HMBC NMR (400 MHz, DMSO-d₆) spectrum of **3n**.

¹H COSY NMR (400 MHz, DMSO-d₆) spectrum of **3n**.

S28

¹H NMR (400 MHz, DMSO-d₆) spectrum of **4n**.

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **4n**.

¹H-¹³C HSQC NMR (400 MHz, DMSO-d₆) spectrum of **4n**.

¹H COSY NMR (400 MHz, DMSO-d₆) spectrum of 4n.

¹H NMR (400 MHz, DMSO-d₆) spectrum of **30**.

390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 ^{15}N NMR (40 MHz, DMSO-d_6) spectrum of 3o.

S33

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3o***

390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 ^{15}N NMR (40 MHz, DMSO-d_6) spectrum of $\boldsymbol{3o^{\star}}$

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3p**.

 ^{13}C NMR (100 MHz, DMSO-d_6) spectrum of 3p.

¹H-¹³C HMBC NMR (400 MHz, DMSO-d₆) spectrum of **3p**.

¹H-¹⁵N HBMC (400 MHz, DMSO-d₆) spectrum of **3p**.

390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm)

 ^{15}N NMR (40 MHz, DMSO-d_6) spectrum of $\boldsymbol{3p}.$

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3p***.

¹H-¹³C HSQC (400 MHz, DMSO-d₆) spectrum of **3p***.

¹H-¹³C HMBC (400 MHz, DMSO-d₆) spectrum of **3p***.

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3q**.

¹⁹F NMR (376 MHz, DMSO-d₆) spectrum of **3q**.

¹H-¹³C HMBC (400 MHz, DMSO-d₆) spectrum of **3q**.

¹⁵N NMR (40 MHz, DMSO-d₆) spectrum of **3q**.

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3r***.

¹³C NMR (100 MHz, CDCl₃) spectrum of **3r***.

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fi (ppm)

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3s***.

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3s***.

S48

S49

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3t**.

 $^1\text{H-}{}^{15}\text{N}$ HMBC NMR (DMSO-d_6) spectrum of 3t.

¹⁹F NMR (376 MHz, DMSO-d₆) spectrum of **3u**.

¹H-¹³C HSQC NMR (400 MHz, DMSO-d₆) spectrum of **3u**.

¹H-¹⁵N HMBC NMR (400 MHz, DMSO-d₆) spectrum of **3u**.

S56

NOESY 2D NMR (400 MHz, DMSO-d₆) spectrum of 6.