Supporting Information

Total hydrogenation of bio-derived furans over supported Ru

subnanoclusters prepared via amino acid-assisted deposition

Yang Qian^{†,§}, Ze-Jun Li^{†,§}, Xian-Long Du[‡], Qi Zhang[†], Yi Zhao[†], Yong-Mei Liu^{*,†} and Yong Cao^{*,†}

[†]Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China

[‡]Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

[§]These two authors contribute equally to this work.

*Corresponding author; E-mail: yongcao@fudan.edu.cn; ymliu@fudan.edu.cn

1. General procedure for the synthesis of furan/acetone adducts

All the aldol adducts were prepared by previously reported methods. ^[S1] Typically, for the synthesis of FFR/acetone adduct, 20 mmol FFR, 1.5 g CaO and 50 mL acetone was added in a 250 mL stainless steel batch reactor. The mixture was stirred at 140 °C for 4 h under nitrogen atmosphere. The obtained liquid was purified by column chromatography using a mixture of ethyl acetate and petroleum ether (v/v = 1:10) and dried by anhydrous Na₂SO₄. All the adol adducts and their corresponding hydrogenated products were identified by ¹H-NMR and ¹³C-NMR.

2. Mathematical expressions

$$Conversion (\%) = (1 - \frac{amount of detected substrate [mmol]}{amount of loaded substrate [mmol]}) \times 100$$

$$Conversion (\%) = \frac{(1 - \frac{amount of loaded substrate [mmol]}{amount of loaded substrate [mmol]}} \times 100$$
Selectivity (\%) = $\frac{amount of detected product [mmol]}{amount of products [mmol]} \times 100$
Selectivity (\%) = $\frac{amount of detected product [mmol]}{amount of loaded substrate [mmol]} \times 100$
Selectivity (\%) = $\frac{amount of detected product [mmol]}{amount of loaded substrate [mmol]} \times 100$
Selectivity (\%) = $\frac{amount of detected product [mmol]}{amount of loaded substrate [mmol]} \times 100$
Selectivity (\%) = $\frac{amount of accumulated product [mmol]}{amount of Ru utilized [mmol]}$
TON = $\frac{amount of detected product [mmol]}{amount of Ru utilized [mmol]} \times reaction time [h]$
ATOF = $\frac{amount of Ru utilized [mmol] \times reaction time [h]}{time interval [h]}$

3. The elimination of mass transfer limitation

Based on Weisz-Prater and Mears Criterion, we verified the absence of mass transfer limitation in measurement.

3.1 Weisz-Prater Criterion for Internal Diffusion

$$N_{W-P} = \frac{-r_A \rho_b R^2}{C_{Ab} D_e} < 1$$
, the internal mass transfer effects can be neglected.

$$N_{W-P} = \frac{-r_A \rho_b R^2}{C_{Ab} D_e} = \frac{2.08 \times 10^{-5} \times 3 \times 10^4 \times (1.5 \times 10^{-4})^2}{520 \times 4.26 \times 10^{-9}} = 6.34 \times 10^{-3} < 10^{-3} < 10^{-1}$$

Therefore, internal mass transfer limitation is proved absent.

3.2 Mears Criterion for External Diffusion

 $\frac{-r_A \rho_b Rn}{C_{Ab} k_c} < 0.15$, the external mass transfer effects can be neglected.

$$\frac{-r_A \rho_b Rn}{C_{Ab} k_c} = \frac{2.08 \times 10^{-5} \times 3 \times 10^4 \times 1.5 \times 10^{-4} \times 1}{520 \times 6.93 \times 10^{-4}} = 2.60 \times 10^{-4} < 0.15$$

Therefore, external mass transfer limitation is proved absent.

3.3 Parameters used in the Weisz-Prater criterion and Mears Criterion

Parameter	Value
Reaction rate: $-r_A(mmol/mg_{cat} \cdot s)$	2.08×10^{-5}
Density of catalyst: $\rho_b(kg/m^3)$	3×10^4
Radius of catalyst: <i>R</i> (<i>m</i>)	$1.5 imes 10^{-4} (100 mesh)$
Surface reactant concentration: $C_{Ab}(kmol/m^3)$	520
Effective liquid-phase diffusivity: $D_e(m^2/s)_a$	4.26×10^{-9}
Reaction order: <i>n</i>	1
Mass transfer coefficient: $k_c(m/s)_b$	6.93×10^{-4}
Viscosity of ethanol: $\eta_{EtOH}(Pa \cdot s)$	3.32×10^{-4}
Latent heat of vaporization of ethanol: L_{EtOH} (J/kmol)	3.94×10^{7}

Latent heat of vaporization of FFA: L_{FFA} (J/kmol)	4.28×10^7
Schmidt number: <i>Sc</i> ^c	1512
Reynolds number: <i>Re</i> ^d	1102
Sherwood number: She	231
Viscosity of the reactant mixture: $\mu (Pa \cdot s)$	1.074×10^{-3}
Density of reactant mixture: $\rho (kg/m^3)$	789
Liquid-phase diffusivity: $D_{Ab}(m^2/s)$	9×10^{-10}
Superficial velocity: U (m/s)	10

$${}_{a} D_{e} = 4.4 \times 10^{-15} \frac{T}{\eta_{EtOH}} \left(\frac{V_{EtOH}}{V_{FFA}}\right)^{1/6} \left(\frac{L_{EtOH}}{L_{FFA}}\right)^{1/2}$$

$$_{b}k_{c} = \frac{ShD_{Ab}}{2R}$$

$$_{c}Sc = \frac{\mu}{\rho D_{Ab}}$$

$$_{\rm d} Re = \frac{UR\rho}{\mu}$$

$$Sh = 2 + 0.6Re^{1/2}Sc^{1/3}$$

4. Supplementary data

 Table S1. Summary of TPR results

	Sample	Metal (mmol)	Peak Quantity	H ₂ Consumption (mmol)	Reduction Degree ^a
_	Ru/TiO ₂ -lys- DP	4.85×10^{-3}	4.25	7.67 × 10 ⁻³	79%
_	Ru/TiO ₂ -DP	5.54×10^{-3}	6.08	11.0×10^{-3}	99%
				1 D 0 [92]	

 a Based on the assumption that the unreduced species are sole $RuO_2.\,^{\rm [S2]}$

Sample	Coordination	CN	R(Å)	σ ² (×10 ⁻³ Å ²)	ΔE(eV)	R-factor
Ru foil	Ru-Ru	12	2.67			
Ru/TiO ₂ -lys-	Ru-O	5.2	1.96	7.7	-3.1	1 200/
DP	Ru-Ru	1.5	2.66	5.4	-3.1	1.39%
Ru/TiO ₂ -DP	Ru-O	2.7	1.91	5.7	-5.7	0.72%

Table S2. Summary of EXAFS fits at Ru K-edge

	Ru-Ru	4.9	2.67	5.1	-5.7	
RuO ₂	Ru-O	6	1.98			

CN, coordination number; R, distance between absorber and backscatter atoms; σ^2 , Debye-Waller factor.

Table S3. Catalytic activities of recently reported heterogeneous and homogeneous catalysts for total hydrogenation of FFR

Catalyst	S/C	Temp. (°C)	H ₂ (MPa)	Time (h)	ATOF(h ⁻	Ref.
Ru/TiO ₂ -lys-DP	550	80	4	1.5	367	This work
Ru/TiO ₂ -lys-DP	550	2	4	25	22	This work
Pd-Ir/SiO ₂	89	2	8	4	21	S3
Ni-Pd/SiO ₂	33	40	8	2	17	S4
Ni-Pd/TiO ₂ -ZrO ₂	66	130	5	8	8	S5
Pd/Al ₂ O ₃	11	90	2	2	4	S6
Pd/Al ₂ O ₃	220	25	6	8	27	S7
Pd/MFI	350	220	3.4	5	67	S8
Pd/HAP	368	40	1	4	92	S9
Pd-Pt/TiO ₂	500	30	0.3	4	119	S10
Ru/ZrO ₂ +Pd/Al ₂ O ₃	45	30	0.5	3	12	S11
CuNi/CNT	14	130	4	10	1	S12
CuNi/MgAlO	12	150	4	3	4	S13
Ni-Ba/Al ₂ O ₃	15	140	4	4	4	S14
Ni/C	12	120	1	2	6	S15
Ni/NAC	6	80	4	3	2	S16
Ru@C/TiO ₂	290	80	4	7	41	S17
Ru@G-CS	20	180	3	2	10	S18
polyCTR- β -CD Ru	50	30	1	4	7	S19

S/C, the molar ratio of substrate to active metal.

ATOF, average turnover frequency (based on maximum product yield)

Table S4. Effect of solvent on FFR hydrogenation

F 49	Salwant	C_{oper} (0/)	Se	Selectivity (%) ^b		
Entry"	Solvent	Conv. (%)	THFA	FA	Othersc	
1	MeOH	>99	57	37	6	
2	EtOH	>99	>99	0	0	
3	2-propanol	>99	31	69	0	
4	THFA	>99	11	89	0	
5	THF	70	3	86	11	
6	DMF	30	0	83	17	
7	toluene	27	0	>99	0	
8	<i>n</i> -heptane	44	0	>99	0	
9	H ₂ O	81	2	98	0	
10 ^d	THFA	>99	>99	0	0	

^a Reaction conditions: FFR (5.2 mmol), solvent (10 mL), Ru/TiO₂-lys-DP (metal 0.18 mol%), H₂ (4 MPa), 80 °C, 1.5 h. ^b Determined by GC methods using naphthalene as internal standard. ^c Others include ethers and unidentified oligomers. ^d 4 h.

Table S5. Summary of the XPS results of Ru/TiO₂-lys-DP reduced at different temperatures

B oduction tomporture (°C)	Ratio between species (%)		
Keduction temperature (C) —	$Ru^{\delta+}/(Ru^0+Ru^{\delta+})$	Ti ³⁺ /(Ti ³⁺ +Ti ⁴⁺)	
100	50	10	
300	20	40	
500	5	50	

Table S6. Summary of the XPS results of Ru/TiO₂-DP reduced at different temperatures

Deduction termoneture (°C)	Ratio between spe	ecies (%)
Reduction temperature (C) —	$Ru^{\delta+}/(Ru^0+Ru^{\delta+})$	Ti ³⁺ /(Ti ³⁺ +Ti ⁴⁺)
100	20	0
300	0	0
500	0	20

Fig. S1 UV-vis spectra of aqueous solutions containing various species

Fig. S2 HAADF-STEM image (a) and corresponding particle size distribution (b) of Ru/TiO₂-DP

Fig. S3 TPR profiles of Ru/TiO₂-lys-DP and Ru/TiO₂-DP

Fig. S4 Reaction profile of Ru/TiO₂-lys-DP in FFR hydrogenation. Reaction conditions: FFR (5.2 mmol), EtOH (10 mL), catalyst (metal 0.18 mol%), H₂ (4 MPa), 80 °C.

Fig. S5 Reuse of Ru/TiO₂-lys-DP in 5.2mmol-scale hydrogenation of FFR. Reaction conditions: FFR (5.2 mmol), EtOH (10 mL), catalyst (metal 0.18 mol%), H₂ (4 MPa), 80 °C, 1.5 h. Note: The catalysts lost about 25 wt% mass in total in repetitive recovery process.

Fig. S6 HAADF-STEM images and corresponding particle size distributions of (a,c) Ru/TiO₂-trp-DP and (b,d) Ru/TiO₂-tyr-DP

Fig. S7 TEM images and corresponding particle size distributions of Ru/TiO₂-DP catalysts prepared with (a,e) 0.01 mmol, (b,f) 0.025 mmol (c,g) 0.05 mmol and (d,h) 0.2 mmol lysine

Fig. S8 Catalytic activities of Ru/TiO₂-DP catalysts prepared with various amounts of lysine in total hydrogenation of FFR. Reaction conditions: FFR (5.2 mmol), EtOH (10 mL), catalysts (metal 0.18 mol%), H₂ (4 MPa), 80 °C, 1.5 h.

Fig. S9 TEM images and corresponding particle size distributions of (a,c) Ru/TiO₂-lys-imp and (b,d) Ru/TiO₂-imp

Fig. S10 FTIR spectra of Ru/TiO₂-lys-DP and Ru/TiO₂-lys-imp

Fig. S11 DRIFT spectra in the carbonyl region of Ru/TiO₂-lys-DP and Ru/TiO₂-lys-imp

Fig. S12 TEM images and corresponding particle size distributions of (a,c) Ru/TiO₂-R-lys-DP and (b,d) Ru/TiO₂-A-lys-DP

Fig. S13 XPS spectra of Ru/TiO₂-R-lys-DP and Ru/TiO₂-A-lys-DP (a) C 1s and Ru 3d spectra, (b) Ti 2p and Ru $3p_{3/2}$ spectra and (c) O 1s spectra (O1 refers to stoichiometric O in TiO₂, O2 to O in reduced TiO_x and O3 to organic and hydroxylic O)^[S20]

Fig. S14 Catalytic activities of Ru/MO_x-lys-DP catalysts in total hydrogenation of FFR. Reaction conditions:

FFR (5.2 mmol), EtOH (10 mL), catalysts (metal 0.18 mol%), H₂ (4 MPa), 80 °C, 1.5 h.

Fig. S15 TEM images and corresponding particle size distributions of (a,d) Ru/CeO₂-lys-DP, (b,e) Ru/Al₂O₃-lys-DP and (c,f) Ru/SiO₂-lys-DP

Fig. S16 Reaction profile of Ru/TiO₂-lys-DP in FFR hydrogenation. Reaction conditions: FFR (52 mmol), EtOH (10 mL), catalyst (metal 0.04 mol%), H₂ (4 MPa), 80 °C.

Fig. S17 Reuse of Ru/TiO₂-lys-DP in 5.2mmol-scale hydrogenation of FFR.

Fig. S18 HAADF-STEM image (a) and corresponding particle size distribution (b) of spent Ru/TiO₂-lys-DP

Fig. S19 XPS spectra of spent Ru/TiO₂-lys-DP (a) C 1s and Ru 3d spectra, (b) Ti 2p and Ru $3p_{3/2}$ spectra and (c) O 1s spectra (O1 refers to stoichiometric O in TiO₂, O2 to O in reduced TiO_x and O3 to organic and hydroxylic O)^[S20]

Fig. S20 Effect of FA concentration on the reaction rate. Reaction conditions: FA (3-7 mmol), EtOH (10 mL), catalysts (200 mg), H_2 (4 MPa), 25 °C. Each rate was calculated by five data points (0, 5, 10, 15 and 20 mins). The raw data are shown in Fig. S21.

Fig. S21 Determination of FA conversion rate from the data in Fig. S20

Fig. S22 Effect of H₂ pressure on the reaction rate. Reaction conditions: H₂ (4-8 MPa), FFR (5.2 mmol), EtOH (10 mL), catalysts (200 mg), 25 °C. Each rate was calculated by five data points (0, 3, 7, 10 and 15 mins). The raw data are shown in Fig. S23.

Fig. S23 Determination of FFR conversion rate from the data in Fig. S22

Fig. S24 *In situ* Fourier transform infrared spectra of (a) gaseous furan and furan adsorbed on (b) Ru/TiO₂-DP and (c) Ru/TiO₂-lys-DP.

Fig. S25 HAADF-STEM images and corresponding particle size distributions of Ru/TiO₂-lys-DP reduced at

(a,c) 100 °C and (b,d) 500 °C.

Fig. S26 TEM images and corresponding particle size distributions of Ru/TiO₂-DP reduced at (a,c) 100 °C and (b,d) 500 °C

Fig. S27 XPS spectra of Ru/TiO₂-lys-DP reduced at different temperatures (a) C 1s and Ru 3d spectra and (b) Ti 2p and Ru $3p_{3/2}$ spectra. The ratios between different species are summarized in Table S5.

Fig. S28 XPS spectra of Ru/TiO₂-DP reduced at different temperatures (a) C 1s and Ru 3d spectra and (b) Ti 2p and Ru $3p_{3/2}$ spectra. The ratios between different species are summarized in Table S6.

¹H-NMR and ¹³C-NMR spectra of compounds

50 45 f1 (ppm)

Reference:

[S1] S. S. Li, F. Chen, N. Li, W. T. Zhang, X. R. Sheng, A. Q. Wang, Y. Cong, X. D. Wang and T. Zhang, *ChemsusChem*, 2017, **10**, 711–719.

[S2] J. L. Gomez de la Fuente, F.J. Perez-Alonso, M.V. Martinez-Huerta, M.A. Pena, J.L.G. Fierro and S. Rojas, *Catal. Today*, 2009, **143**, 69–75.

[S3] Y. Nakagawa, K. Takada, M. Tamura and K. Tomishige, Acs Catal., 2014, 4, 2718–2726.

[S4] Y. Nakagawa and K. Tomishige, Catal. Commun., 2010, 12, 154–156.

[S5] B. F. Chen, F. B. Li, Z. J. Huang and G. Q. Yuan, Appl. Catal. A: Gen., 2015, 500, 23-29.

[S6] M. Lesiak, M. Binczarski, S. Karski, W. Maniukiewicz, J. Rogowski, E. Szubiakiewicz, J. Berlowska, P. Dziugan and I. Witonska, *J. Mol. Catal. A: Chem.*, 2014, **395**, 337–348.

[S7] S. Bhogeswararao and D. Srinivas, J. Catal., 2015, 327, 65-77.

[S8] N. S. Biradar, A. M. Hengne, S. N. Birajdar, P. S. Niphadkar, P. N. Joshi, and C. V. Rode, ACS Sustain. Chem. Eng., 2014, 2, 272–281.

[S9] C. Li, G. Y. Xu, X. H. Liu, Y. Zhang and Y. Fu, Ind. Eng. Chem. Res., 2017, 56, 8843-8849.

[S10] R. Albilali, M. Douthwaite, Q. He and S. H. Taylor, Catal. Sci. Technol., 2018, 8, 252–267.

[S11] R. J. Huang, Q. Q. Cui, Q. Q. Yuan, H. H. Wu, Y. J. Guan and P. Wu, *ACS Sustain. Chem. Eng.*, 2018, **6**, 6957–6964.

[S12] L. J. Liu, H. Lou and M. Chen, Int. J. Hydrogen Energy, 2016, 41, 14721-14731.

[S13] J. Wu, G. Gao, J. L. Li, P. Sun, X. D. Long and F. W. Li, *Appl. Catal. B: Environ.*, 2017, 203, 227–236.

[S14] Y. L. Yang, J. P. Ma, X. Q. Jia, Z. T. Du, Y. Duan and J. Xu, RSC Adv., 2016, 6, 51221–51228.

[S15] Y. P. Su, C. Chen, X. G. Zhu, Y. Zhang, W. B. Gong, H. M. Zhang, H. J. Zhao and G. Z. Wang, *Dalton Trans.*, 2017, **46**, 6358–6365.

[S16] W. B. Gong, C. Chen, H. M. Zhang, Y. Zhang, Y. X. Zhang, G. Z. Wang and H. J. Zhao, *J. Mol. Catal. A: Chem.*, 2017, **429**, 51–59.

[S17] Z. R. Zhang, J. L. Song, Z. W. Jiang, Q. L. Meng, P. Zhang and B. X. Han, *ChemCatChem*, 2017, 9, 2448–2452.

[S18] J. J. Shi, M. S. Zhao, Y. Y. Wang, J. Fu, X. W. Lu and Z. Y. Hou, *J. Mater. Chem. A.*, 2016, 4, 5842–5848.

[S19] R. Herbois, S. Noël, B. Léger, S. Tilloy, S. Menuel, A. Addad, B. Martel, A. Ponchel and E. Monflier, *Green Chem.*, 2015, **17**, 2444–2454.

[S20] J. Ftouni, A. Muñoz-Murillo, A. Goryachev, J. P. Hofmann, E. J. M. Hensen, L. Lu, C. J. Kiely, P. C. A. Bruijnincx and B. M. Weckhuysen, *ACS Catal.*, 2016, 6, 5462–5472.

[S21] K. Gupta and S. K. Singh, ACS Sustain. Chem. Eng., 2018, 6, 4793–4800.

[S22] J. Julis, M. Hölscher and W. Leitner, Green Chem., 2010, 12, 1634–1639.