Supporting Information

Visible-light-mediated photoredox decarbonylative Minisci-type alkylation with aldehydes under ambient air conditions

Zhongzhen Wang,^a Xiaochen Ji,^{*a} Jinwu Zhao,^{*b} and Huawen Huang^{*a}

^a Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. E-mail: xcji@xtu.edu.cn; hwhuang@xtu.edu.cn b School of Pharmacy, Guangdong Medical University, Dongguan 523808, China. E-mail: jwzhao@gdmu.edu.cn

List of Contents

1. General information	S2
2. General procedure for alkylations	\$3
3. Mechanistic studies	S4
3.1. Radical trapping experiments	S4
3.2. Stern–Volmer Quenching	\$6
3.3. Cyclic Voltammetry	S8
4. Characterization data of products	S9
5. References	S26
6. Copies of ¹ H and ¹³ C NMR spectra of all products	S27

1. General information

The reactions via general procedure were carried out under an atmosphere of air unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument using CDCl₃, acetone- d_6 or dimethyl sulfoxide- d_6 as solvent. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those in literature. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. Cyclic voltammograms were recorded with a CHI604E potentiostat at room temperature in MeCN. *n*-Bu₄NBF₄ (0.1 M) was used as the supporting electrolyte and a glass carbon electrode was used as the working electrode. The auxiliary electrode was a platinum wire electrode. All potentials are referenced against the Ag/AgCl redox couple. The scan rate was 100 mV·s⁻¹.

2. General procedure for alkylations

Reaction device diagram: We use a commercially available 35W (HIPAR30) blue LED lamp as the reaction light source.

General procedure for alkylations: A 10 mL reaction vessel was charged

with NaBr (10.3 mg, 0.1 mmol), 4CzIPN (1.6 mg, 0.002 mmol), 4-methylquinoline (26.4 μ L, 0.2 mmol), TsOH·H₂O (38.0 mg, 0.2 mmol), H₂O (18 μ L, 1.0 mmol), DCE (3.0 mL), 2-ethylcapronaldehyde (62 μ L, 0.4 mmol). The resulting mixture was stirred under ambient air for 18 h under irradiation with a 35W blue LED. The reaction was monitored by TLC. The crude reaction mixture was quenched with saturated sodium carbonate and extracted with dichloromethane (3×10 mL). The extracts were combined, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254) to give product **3a**.

Gram scale reactions: A 250 mL round bottom flask was charged with NaBr (0.42 g, 4.0 mmol), 4CzIPN (63.0 mg, 0.08 mmol), 4-methylquinoline (1.06 mL, 8.0 mmol), TsOH·H₂O (1.52 g, 8.0 mmol), H₂O (0.5 mL), DCE (60 mL), 2-methylbutyraldehyde (1.72 mL, 16 mmol) or trimethylacetaldehyde (1.75 mL, 16 mmol). The resulting mixture was stirred under air for 18 h under irradiation with 3×35 w blue LED. The crude reaction mixture was quenched with saturated sodium carbonate the organic layer was separated and extracted with dichloromethane (3×30 mL). The extracts were combined, dried over sodium sulfate, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA = 60:1) to give **3c** (1.21 g, 76% yield) or **3k** (1.30 g, 82% yield), respectively.

3. Mechanistic studies

3.1. Radical trapping experiments

4-Methylquinoline (26.4 μ L, 0.2 mmol), 2-ethylhexanal (62 μ L, 0.4 mmol, 2.0 equiv), NaBr (10.5 mg, 0.1 mmol), *p*-toluenesulfonic acid (38.2 mg, 0.2 mmol), H₂O (18 μ L, 1.0 mmol, 5.0 equiv) 4CzIPN (1.6 mg, 1.0 mol%), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (62.8 mg, 0.4 mmol, 2.0 equiv), and DCE (3.0 mL) were placed in a 10 mL reaction tube. The reaction mixture was stirred under air using a 35 W blue LED for 18 h. The formation of **3a** was suppressed. Meanwhile, the TEMPO-trapped product (**6**) was isolated in 34% yield (PE/EA = 30/1, 38.5 mg).

2,2,6,6-Tetramethylpiperidin-1-yl 2-ethylhexanoate (6): Red oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 2.37 (p, J = 7.4 Hz, 1H), 1.81 – 1.55 (m, 9H), 1.48 – 1.30 (m, 6H), 1.28 – 1.05 (m, 11H), 1.01 (t, J = 7.4 Hz, 3H), 0.95 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.4, 58.9, 45.3, 38.1, 31.0, 30.3, 28.6, 24.0, 21.6, 19.5, 15.9, 12.9, 11.0. HRMS (ESI) m/z calcd for C₁₇H₃₄NO₂⁺ (M+H)⁺ 284.2584, found 284.2586.

4-Methylquinoline (**1a**, 26.4 μ L, 0.2 mmol), 2-ethylhexanal (**2a**, 62 μ L, 0.4 mmol, 2.0 equiv), NaBr (10.5 mg, 0.1 mmol), *p*-toluenesulfonic acid (38.2 mg, 0.2 mmol), H₂O (18 μ L, 1.0 mmol, 5.0 equiv) 4CzIPN (1.6 mg, 1.0 mol%), butylated hydroxytoluene (BHT) (88.0 mg, 0.4 mmol, 2.0 equiv) or 1,1-Diphenylethylene (DPE) (71 μ L, 0.4 mmol, 2.0 equiv), and DCE (3.0 mL) were placed in a 10 mL reaction tube. The reaction mixture was stirred under air using a 35 W blue LED for 18 h. The formation of **3a** was suppressed.

3.2. Stern–Volmer Quenching^[1]

Formulation solution: 4-Methylquinoline (357.7 mg) was dissolved in acetone in a 25 mL volumetric flask to set the concentration is 0.1 M. p-CH₃C₆H₄SO₃H·H₂O (475.6 mg) was dissolved in deionized water in a 25 mL volumetric flask to set the concentration is 0.1 M. NaBr (129 mg) was dissolved in acetone in a 25 mL volumetric flask to set the concentration is 0.05 M. 2-Ethylhexanal (780 µL) was dissolved in DCE in a 25 mL volumetric flask to set the concentration is 0.2 M. Photocatalyst 4CzIPN (2.0 mg) was dissolved in DCE or acetone (25 mL) to set the concentration is 0.1 mM.

Experimental procedure: The resulting 0.1 mM solution (80 μ L) was added to cuvette to obtain different concentrations of catalyst solution. This solution was then diluted to a volume of 2.0 mL by adding further solvent (acetone) to prepare a 4.0 μ M solution. The resulting mixture was sparged with nitrogen for 3 minutes and then irradiated at 375 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 10.0 μ L of 4-methylquinoline solution and 10.0 μ L of *p*-CH₃C₆H₄SO₃H·H₂O was successively added, uniformly stirred and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 375 nm. Fluorescence emission spectra of 0 μ L, 10.0 μ L, 20.0 μ L, 30.0 μ L, 40.0 μ L, 50.0 μ L, 60.0 μ L (**1a**+PTSA) fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn.

(a) 4CzIPN quenched by **1a**+PTSA in acetone.

The emission intensity of the 4CzIPN catalyst solution was not affected by the gradual increase of the amount of **1**a+PTSA.

(b) 4CzIPN quenched by 2a in DCE.

The emission intensity of the 4CzIPN catalyst solution was not affected by the gradual increase of the amount of **2a**.

(c) 4CzIPN quenched by O_2 in DCE.

The emission intensity of the 4CzIPN catalyst solution was strongly affected by the gradual increase of the amount of O_2 .

(d) 4CzIPN quenched by NaBr in acetone.

The emission intensity of the 4CzIPN catalyst solution was slightly affected by the gradual increase of the amount of NaBr.

3.3. Cyclic Voltammetry

Cyclic voltammograms were recorded with a CHI604E potentiostat at room temperature in MeCN. n-Bu₄NBF₄ (0.1 M) was used as the supporting electrolyte, and a glass carbon electrode was used as the working electrode. The auxiliary electrode was a platinum wire electrode. All potentials are referenced against the Ag/AgCl redox couple. The scan rate was 100 mV·s⁻¹.

4. Characterization data of products

2-(Heptan-3-yl)-4-methylquinoline (3a)^[2]

The general procedure was followed using 4-methylquinoline (29.2 mg, 0.2 mmol), 2-ethylcapronaldehyde (65 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3a** (37.9 mg, 78%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 8.4 Hz, 1H), 7.95 (dd, J = 8.4, 1.4 Hz, 1H), 7.67 (dd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.50 (td, J = 7.3, 6.9, 1.3 Hz, 1H), 7.11 (s, 1H), 2.84 – 2.77 (m, 1H), 2.69 (s, 3H), 1.81 – 1.72 (m, 4H), 1.35 – 1.23 (m, 3H), 1.17 – 1.07 (m, 1H), 0.83 (t, J = 7.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.0, 147.7, 144.1, 129.7, 128.9, 127.2, 125.4, 123.7, 120.8, 50.7, 35.3, 30.0, 28.7, 23.0, 19.0, 14.1, 12.4. HRMS (ESI) m/z calcd for C₁₇H₂₄N⁺ (M+H)⁺ 242.1903, found 242.1921.

4-Methyl-2-(pentan-3-yl)quinoline (3b)^[3]

The general procedure was followed using 4-methylquinoline (29.1 mg, 0.2 mmol), 2-ethylbutyraldehyde (50 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3b** (33 mg, 77%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.67 (t, J = 8.1 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 2.80 – 2.71 (m, 1H), 2.69 (s, 3H), 1.83 – 1.73 (m, 4H), 0.83 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.8, 147.8, 144.1, 129.7, 129.0, 127.2, 125.5, 123.7, 120.9, 52.3, 28.4, 19.0, 12.4. HRMS (ESI) m/z calcd for C₁₅H₂₀N⁺ (M+H)⁺ 214.1590, found 214.1600.

2-(sec-Butyl)-4-methylquinoline (3c)^[4]

The general procedure was followed using 4-methylquinoline (29.0 mg, 0.2 mmol), 2-methylbutyraldehyde (43 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3c** (35.5 mg, 89%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.67 (ddd, J = 8.3, 6.8, 1.5 Hz, 1H), 7.50 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.15 (d, J = 17.2 Hz, 1H), 3.25 – 2.91 (m, 1H), 2.68 (s, 3H), 1.98 – 1.54 (m, 2H), 1.37 (dd, J = 12.5, 7.0 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.8, 147.7, 144.3, 129.6, 129.0, 127.1, 125.5, 123.7, 120.3, 44.7, 30.0, 20.5, 18.9, 12.4. HRMS (ESI) m/z calcd for C₁₄H₁₈N⁺ (M+H)⁺ 200.1434, found 200.1436.

2-Isopropyl-4-methylquinoline (3d)^[5]

The general procedure was followed using 4-methylquinoline (29.2 mg, 0.2 mmol), 2-methylpropanal (37 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3d** (33.5 mg, 90%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.67 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.50 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.18 (s, 1H), 3.27 – 3.16 (m, 1H), 2.69 (s, 3H), 1.39 (d, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.5, 147.7, 144.5, 129.6, 129.1, 127.1, 125.5, 123.7, 119.9, 37.4, 22.7, 19.0. HRMS (ESI) m/z calcd for C₁₃H₁₆N⁺ (M+H)⁺ 186.1277, found 186.1272.

4-Methyl-2-(pentan-2-yl)quinoline (3e)^[6]

The general procedure was followed using 4-methylquinoline (29.1 mg, 0.2 mmol),

2-methylvaleraldehyde (50 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3e** (42.3 mg, 93%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.66 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.49 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.14 (s, 1H), 3.08 – 3.01 (m, 1H), 2.68 (s, 3H), 1.84 – 1.75 (m, 1H), 1.69 – 1.60 (m, 1H), 1.42 – 1.30 (m, 4H), 1.29 – 1.16 (m, 1H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.0, 147.7, 144.3, 129.6, 129.0, 127.1, 125.5, 123.7, 120.3, 42.8, 39.4, 21.0, 20.9, 19.0, 14.3. HRMS (ESI) m/z calcd for C₁₅H₂₀N⁺ (M+H)⁺ 214.1590, found 214.1587.

2-Cyclopentyl-4-methylquinoline (3f)^[7]

The general procedure was followed using 4-methylquinoline (29.0 mg, 0.2 mmol), cyclopentanecarbaldehyde (42 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3f** (13 mg, 31%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, J = 8.4 Hz, 1H), 7.93 (dd, J = 8.3, 1.4 Hz, 1H), 7.66 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.18 (s, 1H), 3.33 (m, 1H), 2.67 (m, 3H), 2.21 – 2.12 (m, 2H), 1.88 (m, 5H), 1.75 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.1, 147.6, 144.2, 129.6, 129.0, 127.1, 125.5, 123.7, 120.8, 48.9, 33.7, 26.2, 18.9. HRMS (ESI) m/z calcd for C₁₅H₁₈N⁺ (M+H)⁺ 212.1434, found 212.1434.

2-Cyclohexyl-4-methylquinoline (3g)^[7]

The general procedure was followed using 4-methylquinoline (29.0 mg, 0.2 mmol), cyclohexanecarbaldehyde (50 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3g** (31.1 mg, 69%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.65 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.48 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.16 (s, 1H), 2.87 (tt, J = 12.0, 3.4

Hz, 1H), 2.67 (s, 3H), 2.01 (d, J = 11.7 Hz, 2H), 1.89 (d, J = 12.9 Hz, 2H), 1.79 (d, J = 12.4 Hz, 1H), 1.62 (qd, J = 12.4, 2.8 Hz, 2H), 1.52 – 1.41 (m, 2H), 1.35 (tt, J = 12.7, 3.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.6, 147.7, 144.3, 129.6, 129.0, 127.1, 125.5, 123.7, 120.4, 47.7, 32.9, 26.7, 26.2, 18.9. HRMS (ESI) m/z calcd for C₁₆H₂₀N⁺ (M+H)⁺ 226.1590, found 226.1593. **tert-Butyl 3-(4-methylquinolin-2-yl)pyrrolidine-1-carboxylate (3h)**

The general procedure was followed using 4-methylquinoline (29.2 mg, 0.2 mmol), 3-formyl-pyrrolidine-1-carboxylicacidtert-butylester (70 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **3h** (32.5 mg, 52%) as a colorless liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.17 (s, 1H), 3.94 – 3.83 (m, 1H), 3.74 – 3.62 (m, 3H), 3.51 – 3.42 (m, 1H), 2.70 (s, 3H), 2.36-2.31 (m, 2H), 1.49 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 161.0, 154.8, 147.8, 144.9, 129.8, 129.4, 127.3, 126.0, 123.7, 120.8, 79.3, 51.3, 51.0, 47.1, 46.2, 46.0, 45.9, 32.4, 31.7, 28.7, 18.9. HRMS (ESI) m/z calcd for C₁₉H₂₅N₂O₂⁺ (M+H)⁺ 313.1911, found 313.1910.

2-(1-(4-Isopropylphenyl)propan-2-yl)-4-methylquinoline (3i)

The general procedure was followed using 4-methylquinoline (29.1 mg, 0.2 mmol), cyclamen aldehyder (80 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3i** (37.6 mg, 62%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.69 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.51 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.12 (s, 5H), 3.39-3.31 (m, 1H), 3.26 – 3.13 (m, 1H), 2.87 (ddd, J = 13.7, 8.0, 5.6 Hz, 2H), 2.68 (d, J = 9.3 Hz, 3H), 1.40 (d, J = 7.0 Hz, 1H), 1.35 (d, J = 6.9 Hz, 3H), 1.23 (d, J = 6.9 Hz, 5H). ¹³C NMR (100 MHz,

Chloroform-*d*) δ 166.2, 147.8, 146.5, 144.3, 138.0, 129.7, 129.3, 129.1, 127.2, 126.3, 125.6, 123.7, 121.0, 44.6, 42.6, 33.8, 24.2, 22.7, 20.1, 18.9. HRMS (ESI) m/z calcd for C₂₂H₂₆N⁺ (M+H)⁺ 304.2060, found 304.2061.

2-(1-(4-(tert-Butyl)phenyl)propan-2-yl)-4-methylquinoline (3j)

The general procedure was followed using 4-methylquinoline (29.2 mg, 0.2 mmol), lily aldehyde (87 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3j** (50.5 mg, 80%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.17 – 7.13 (m, 3H), 3.41 – 3.33 (m, 1H), 3.24 (dd, J = 13.5, 6.1 Hz, 1H), 2.89 (dd, J = 13.5, 8.9 Hz, 1H), 2.68 (s, 3H), 1.36 (d, J = 6.9 Hz, 3H), 1.32 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.2, 148.7, 147.8, 144.3, 137.7, 129.7, 129.0, 129.0, 127.2, 125.6, 125.2, 123.7, 120.9, 44.5, 42.5, 34.4, 31.5, 20.1, 18.9. HRMS (ESI) m/z calcd for C₂₃H₂₈N⁺ (M+H)⁺ 318.2216, found 318.2222.

2-(tert-Butyl)-4-methylquinoline (3k)^[8]

The general procedure was followed using 4-methylquinoline (29.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **3k** (35.8 mg, 90%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.37 (s, 1H), 2.70 (s, 3H), 1.49 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.1, 147.4, 143.7, 130.1, 128.8, 126.7, 125.5, 123.5, 119.0, 38.0, 30.3, 19.1. HRMS (ESI) m/z calcd for C₁₄H₁₈N⁺ (M+H)⁺ 200.1434, found 200.1436.

2-(tert-Butyl)quinoline (4a)^[9]

The general procedure was followed using quinoline (25.8 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4a** (20.0 mg, 54%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 8.07 (s, 1H), 7.78 (dd, J = 8.0, 1.5 Hz, 1H), 7.68 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.49 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.4, 147.5, 136.0, 129.5, 129.1, 127.4, 126.6, 125.7, 118.4, 38.3, 30.3. HRMS (ESI) m/z calcd for C₁₃H₁₆N⁺ (M+H)⁺ 186.1277, found 186.1276.

2-(tert-Butyl)-4-ethylquinoline (4b)

The general procedure was followed using 4-ethylquinoline (32.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4b** (30.0 mg, 68%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.66 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.49 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.38 (s, 1H), 3.11 (q, J = 7.5 Hz, 2H), 1.49 (s, 9H), 1.41 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.2, 149.4, 147.7, 130.3, 128.7, 125.8, 125.5, 123.2, 116.9, 38.2, 30.3, 25.6, 14.5. HRMS (ESI) m/z calcd for C₁₅H₂₀N⁺ (M+H)⁺ 214.1590, found 214.1593.

2-(tert-Butyl)-4-chloroquinoline (4c)

The general procedure was followed using 4-chloroquinoline (33.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was

performed (PE/EA: 60/1) to yield 4c (33.0 mg, 75%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.09 (dd, J = 8.5, 1.2 Hz, 1H), 7.73 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.62 (s, 1H), 7.58 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.5, 148.5, 142.4, 130.1, 129.9, 126.8, 124.8, 123.8, 118.6, 38.4, 30.1. HRMS (ESI) m/z calcd for C₁₃H₁₅ClN⁺ (M+H)⁺ 220.0888, found 220.0886.

3-Bromo-2-(tert-butyl)quinoline (4d)

The general procedure was followed using 3-bromoquinoline (41.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4d** (22.2 mg, 42%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (s, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.71 – 7.65 (m, 2H), 7.50 (t, J = 7.5 Hz, 1H), 1.65 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.0, 145.3, 141.5, 129.6, 129.5, 127.8, 127.0, 126.1, 116.6, 40.4, 29.2. HRMS (ESI) m/z calcd for C₁₃H₁₅BrN⁺ (M+H)⁺ 264.0382, found 264.0383.

5-Bromo-2-(tert-butyl)quinoline (4e)

The general procedure was followed using 5-bromoquinoline (41.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4e** (36.0 mg, 68%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 (d, *J* = 8.9 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.74 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.61 (d, *J* = 8.9 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 148.3, 135.4, 129.5, 129.5, 129.3, 126.1, 121.7, 119.6, 38.2, 30.2. HRMS (ESI) m/z calcd for C₁₃H₁₅BrN⁺ (M+H)⁺ 264.0382, found 264.0383.

7-Bromo-2-(tert-butyl)quinoline (4f)

The general procedure was followed using 7-bromoquinoline (41.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4f** (44.2 mg, 84%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, J = 1.7 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.57 – 7.50 (m, 2H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5, 148.2, 135.8, 131.9, 129.2, 128.6, 125.1, 123.10, 118.7, 38.4, 30.2. HRMS (ESI) m/s calcd for C₁₃H₁₅BrN⁺ (M+H)⁺ 264.0382, found 264.0383.

2-(tert-Butyl)-6-methylquinoline (4g)^[10]

The general procedure was followed using 6-methylquinoline (29.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4g** (32.5 mg, 81%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (dd, J = 8.5, 4.4 Hz, 2H), 7.54 – 7.48 (m, 3H), 2.53 (s, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.4, 146.1, 135.4, 135.4, 131.3, 129.2, 126.6, 126.2, 118.3, 38.1, 30.3, 21.6. HRMS (ESI) m/z calcd for C₁₄H₁₇N⁺ (M+H)⁺ 200.1434; found 200.1435.

2-(tert-Butyl)-6-methoxyquinoline (4h)

The general procedure was followed using 6-methoxyquinoline (32.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 20/1) to yield **4h** (17.5 mg, 40%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (dd, J = 8.9, 4.0 Hz, 2H), 7.49 (d, J = 8.7 Hz, 1H), 7.33 (dd, J = 9.2, 2.8 Hz, 1H), 7.05 (d, J = 2.8 Hz, 1H), 3.93 (s, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz,

Chloroform-*d*) δ 167.0, 157.3, 143.6, 134.9, 130.9, 127.3, 121.6, 118.6, 105.1, 55.6, 38.0, 30.3. HRMS (ESI) m/z calcd for C₁₄H₁₈NO⁺ (M+H)⁺ 216.1383, found 216.1388.

6-Bromo-2-(tert-butyl)quinoline (4i)

The general procedure was followed using 6-bromoquinoline (41.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4i** (36.3 mg, 69%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.95 – 7.90 (m, 2H), 7.72 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.9, 146.1, 135.0, 132.5, 131.3, 129.4, 127.7, 119.4, 119.2, 38.4, 30.2. HRMS (ESI) m/z calcd for C₁₃H₁₅BrN⁺ (M+H)⁺ 264.0382, found 264.0383.

Methyl 2-(tert-butyl)quinoline-6-carboxylate (4j)

The general procedure was followed using quinoline-6-carboxylate (37.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 15/1) to yield **4j** (45.2 mg, 93%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, J = 2.0 Hz, 1H), 8.24 (dd, J = 8.8, 1.9 Hz, 1H), 8.14 (d, J = 8.7 Hz, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H), 3.97 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.9, 167.0, 149.5, 137.1, 130.6, 129.8, 128.6, 127.2, 125.6, 119.2, 52.4, 38.5, 30.1. HRMS (ESI) m/z calcd for C₁₅H₁₈NO₂⁺ (M+H)⁺ 244.1332, found 244.1334.

2-(tert-Butyl)-6-nitroquinoline (4k)

The general procedure was followed using 6-nitroquinoline (35.0 mg, 0.2 mmol),

trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 20/1) to yield **4k** (14.0 mg, 30%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.74 (d, J = 2.6 Hz, 1H), 8.43 (dd, J = 9.3, 2.6 Hz, 1H), 8.24 (d, J = 8.7 Hz, 1H), 8.16 (d, J = 9.2 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 1.48 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 149.8, 145.1, 137.6, 131.2, 125.3, 124.3, 122.6, 120.4, 38.9, 30.0. HRMS (ESI) m/z calcd for C₁₃H₁₅N₂O₂⁺ (M+H)⁺ 231.1128, found 231.1134.

2,6-Di-tert-butyl-4-methylquinoline (4l)

The general procedure was followed using 6-(tert-butyl)-4-methylquinoline (40.1 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **41** (22.0 mg, 55%) as a colorless solid. mp: 112 – 114 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 8.9 Hz, 1H), 7.85 (d, *J* = 2.2 Hz, 1H), 7.76 (dd, *J* = 8.9, 2.2 Hz, 1H), 7.33 (d, *J* = 1.2 Hz, 1H), 2.71 (s, 3H), 1.46 (s, 9H), 1.44(s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.4, 148.2, 145.8, 143.6, 129.6, 127.6, 126.1, 119.0, 118.3, 77.2, 77.2, 76.8, 37.9, 35.1, 31.5, 30.3, 19.2. HRMS(ESI) m/z calcd for C₁₈H₂₆N⁺ (M+H)⁺ 256.2060, found 256.2065.

2-(tert-Butyl)-4-methyl-6-(trifluoromethyl)quinoline (4m)

The general procedure was followed using 4-methyl-6-(trifluoromethyl)quinoline (42.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4m** (41.5 mg, 77%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.83 (dd, J = 8.8, 2.0 Hz, 1H), 7.45 (s, 1H), 2.74 (s, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.5, 148.6, 144.7, 131.2, 127.3 (q, J = 32.2 Hz), 125.8, 124.5 (d, J = 270.4 Hz), 124.5 (q, J = 3.1 Hz), 121.6 (q, J = 4.3 Hz), 120.2, 38.3, 30.1, 19.0. HRMS (ESI) m/z calcd for C₁₅H₁₇F₃N⁺ (M+H)⁺

268.1308, found 268.1310.

2-(tert-Butyl)-4-methyl-6-(trifluoromethoxy)quinoline (4n)

The general procedure was followed using 4-methyl-6-(trifluoromethoxy)quinoline (46.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 20/1) to yield **4n** (48.2 mg, 85%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 9.1 Hz, 1H), 7.75 (s, 1H), 7.53 (d, *J* = 10.2 Hz, 1H), 7.41 (s, 1H), 2.68 (s, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.8, 146.4 (d, *J* = 1.92 Hz), 145.8, 143.7, 132.2, 126.9, 122.8, 122.1 (q, *J* = 258.4 Hz), 119.9, 114.5, 38.2, 30.2, 19.0. HRMS (ESI) m/z calcd for C₁₅H₁₇F₃NO⁺ (M+H)⁺ 284.1257, found 284.1260.

2-(tert-Butyl)-6-fluoro-4-methylquinoline (40)

The general procedure was followed using 4-methyl-6-(trifluoromethoxy)quinoline (32.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **40** (33.5 mg, 77%) as a colorless liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, *J* = 9.2, 5.6 Hz, 1H), 7.53 (dd, *J* = 9.9, 2.8 Hz, 1H),

7.42 (ddd, J = 9.2, 8.2, 2.8 Hz, 1H), 7.37 (s, 1H), 2.64 (s, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.4 (d, J = 2.5 Hz), 158.9 (d, J = 246.6 Hz), 144.5, 143.2 (d, J = 5.3 Hz), 132.3 (d, J = 9.1 Hz), 127.3 (d, J = 9.3 Hz), 119.6, 118.5 (d, J = 25.4 Hz,), 107.0 (d, J = 22.0 Hz,), 38.0, 30.2, 19.1. HRMS (ESI) m/z calcd for C₁₄H₁₇FN⁺ (M+H)⁺ 218.1340, found 218.1340.

2-(tert-Butyl)-4-methylquinoline-6-carbonitrile (4p)

The general procedure was followed using 4-methylquinoline-6-carbonitrile (34.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 20/1) to yield **4p** (38.1 mg, 85%) as a colorless solid. mp: 97 – 99 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 (d, *J* = 1.5 Hz, 1H), 8.10 (d, *J* = 8.7 Hz, 1H), 7.78 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.46 (s, 1H), 2.71 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.5, 148.6, 144.3, 131.4, 130.1, 129.6, 126.2, 120.6, 119.3, 108.9, 38.5, 30.0, 18.9. HRMS (ESI) m/z calcd for C₁₅H₁₇N₂⁺ (M+H)⁺ 225.1386, found 225.1384.

2-(tert-Butyl)-4,7-dichloroquinoline (4q)

The general procedure was followed using 4,7-dichloroquinoline (39.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4q** (44.6 mg, 88%) as a colorless solid. mp: 60 – 62°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (dd, J = 5.5, 3.4 Hz, 2H), 7.59 (s, 1H), 7.51 (dd, J = 9.0, 2.1 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.9, 148.8, 142.4, 136.1, 128.8, 127.7, 125.2, 123.3, 118.8, 38.5, 30.0. HRMS(ESI) m/s calcd for C₁₃H₁₄Cl₂N⁺ (M+H)⁺ 254.0498, found 254.0497.

6-Bromo-2-(tert-butyl)-5,7-difluoroquinoline (4r)

The general procedure was followed using 6-bromo-5,7-difluoroquinoline (49.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **4r** (53.5 mg, 89%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, *J* = 8.9 Hz, 1H), 7.61 (dd, *J* = 9.7, 1.9 Hz, 1H), 7.56 (d, *J* = 8.9 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 159.7 (dd, *J* = 242.5, 5.3 Hz), 155.6 (dd, *J* = 247.8, 6.2 Hz), 146.7 (q, *J* = 9.3, 4.2 Hz), 128.9 (t, *J* = 2.9 Hz),

118.5 (t, J = 2.9 Hz), 114.5 (q, J = 15.2, 1.6 Hz), 110.0 (q, J = 17.5, 4.6 Hz), 95.4 (q, J = 23.9, 3.7 Hz), 38.6, 30.0. HRMS (ESI) m/z calcd for $C_{13}H_{13}BrF_2N^+$ (M+H)⁺ 300.0194, found 300.0195. **2-(tert-Butyl)-5,7-dichloro-4-(4-fluorophenoxy)quinoline (4s)**^[8]

The general procedure was followed using 5,7-dichloro-4-(4-fluorophenoxy)quinoline (61.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **4s** (53.1 mg, 73%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 2.1 Hz, 1H), 7.50 (d, J = 2.1 Hz, 1H), 7.18 – 7.08 (m, 4H), 6.77 (s, 1H), 1.32 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.3, 162.1, 159.8 (d, J = 244.7 Hz), 151.1, 150.8 (d, J = 2.7 Hz), 150.8, 134.7, 129.8, 128.8, 128.0, 121.8, 121.7, 117.2, 116.9, 104.8, 38.4, 29.8. HRMS (ESI) m/z calcd for C₁₉H₁₇Cl₂FNO⁺ (M+H)⁺ 364.0666, found 364.0668.

(*R*)-(2-(tert-Butyl)-6-methoxyquinolin-4-yl)[(1S,2S,4S,5R)-5-ethylquinuclidin-2-yl]methanol (4t)^[11]

The general procedure was followed using (R)-((1S,2S,4S,5R)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methanol (65.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (CH₂Cl₂/MeOH: 10:1) to yield **4t** (54.3 mg, 71%) as a yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (s, 1H), 7.60 (d, J = 9.2 Hz, 1H), 6.79 (dd, J = 9.1, 2.1 Hz, 1H), 6.71 (s, 1H), 6.31 (s, 1H), 6.12 (s, 1H), 4.53 (t, J = 11.3 Hz, 1H), 3.50 (s, 3H), 3.43 – 3.36 (m, 1H), 3.26 – 3.20 (m, 1H), 3.06 (td, J = 11.8, 5.5 Hz, 1H), 2.66 – 2.60 (m, 1H), 2.25 (t, J = 11.8, 5.5 Hz, 1H), 3.66 – 2.60 (m, 1H), 2.25 (t, J = 11.8, 5.5 Hz, 1H), 3.66 – 3.60 (m, 1H), 3.60 (

10.9 Hz, 1H), 2.13 (dd, J = 13.1, 7.1 Hz, 1H), 2.00 (s, 1H), 1.83 (s, 1H), 1.74 (t, J = 12.2 Hz, 1H), 1.47 (s, 9H), 1.19 (p, J = 7.5 Hz, 3H), 0.77 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.7, 157.4, 143.5, 143.1, 131.3, 123.2, 121.5, 115.7, 99.1, 66.3, 60.3, 57.1, 56.8, 44.2, 37.9, 35.7, 30.4, 27.0, 24.9, 24.8, 17.8, 11.5. HRMS (ESI) m/z calcd for C₂₄H₃₄N₂O₂⁺ (M+H)⁺ 382.2620, Found 382.2607.

2,6-Di-tert-butylisonicotinonitrile (5a)^[12]

The general procedure was followed using isonicotinonitrile (21.0 mg, 0.2 mmol), trimethylacetaldehyde (88 μ L, 0.8 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **5a** (22.5 mg, 52%) as a yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (s, 2H), 1.35 (s, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.5, 120.4, 118.1, 117.6, 38.2, 30.0. Mass spectrum, m/e (relative intensity) 216 (M⁺, 19), 215 (23), 201 (100), 186 (14), 185 (23), 174 (35), 171 (14), 145 (39), 97 (30), 41 (28), 39 (20).

1-(Heptan-3-yl)isoquinoline (5b)

The general procedure was followed using phenanthridine (26.0 mg, 0.2 mmol), 2-ethylcapronaldehyde (65 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **5b** (23.2 mg, 51%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, J = 5.7 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.58 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.48 (d, J = 5.7 Hz, 1H), 3.59 (tt, J = 8.4, 5.5 Hz, 1H), 2.02 – 1.90 (m, 2H), 1.88 – 1.75 (m, 2H), 1.29 – 1.18 (m, 3H), 1.11-1.03 (m, 1H), 0.78 (dt, J = 9.2, 7.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.5, 142.2, 136.4, 129.7, 128.2, 127.6, 126.9, 125.0, 118.8, 43.3, 35.3, 30.2, 28.7, 23.1, 14.2, 12.5. HRMS (ESI) m/z calcd for C₁₆H₂₂N⁺ (M+H)⁺ 228.1747, found 228.1750.

6-(Heptan-3-yl)phenanthridine (5c)

The general procedure was followed using phenanthridine (36.0 mg, 0.2 mmol), 2-ethylcapronaldehyde (65 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 60/1) to yield **5c** (36.2 mg, 65%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.68 (d, J = 8.2 Hz, 1H), 8.57 (d, J = 8.1 Hz, 1H), 8.37 (d, J = 8.3 Hz, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 7.72 (q, J = 7.9 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 3.68 (ddd, J = 13.6, 7.9, 5.8 Hz, 1H), 2.18 – 2.07 (m, 2H), 1.92 – 1.81 (m, 2H), 1.34 – 1.19 (m, 4H), 0.89 – 0.81 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.1, 144.1, 133.0, 130.1, 130.0, 128.5, 127.2, 126.3, 126.2, 125.8, 123.3, 122.6, 122.0, 43.7, 34.7, 30.3, 28.2, 23.2, 14.2, 12.6. HRMS (ESI) m/z calcd for C₂₀H₂₄N⁺ (M+H)⁺ 278.1903, found 278.1908.

2,9-Di-tert-butyl-1,10-phenanthroline (5d)

The general procedure was followed using 1,10-phenanthroline (21.0 mg, 0.2 mmol), trimethylacetaldehyde (88 μ L, 0.8 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **5d** (13.5 mg, 23%) as a colorless solid. mp: 154 – 156 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 8.5 Hz, 2H), 7.72 (s, 1H), 7.70 (s, 3H), 1.60 (s, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.4, 144.9, 136.1, 127.0, 125.5, 119.8, 38.8, 30.4. HRMS (ESI) m/z calcd for C₂₀H₂₅N₂⁺ (M+H)⁺ 293.2012, found 293.2017.

1,4-Di-tert-butylphthalazine (5e)

The general procedure was followed using phthalazine (26.2 mg, 0.2 mmol), trimethylacetaldehyde (88 µL, 0.8 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **5e** (9.8 mg, 20%) as a colorless solid. mp: 134 – 136 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.53 (dd, J = 6.5, 3.4 Hz, 2H), 7.80 (dd, J = 6.6, 3.4 Hz, 2H), 1.71 (s, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.0, 129.7, 127.3, 125.8, 39.0, 31.2. HRMS (ESI) m/z calcd for C₁₆H₂₃N₂⁺ (M+H)⁺ 243.1856, found 243.1862.

2-(tert-Butyl)-3-methylquinoxaline (5f)

The general procedure was followed using 3-methylquinoxaline (29.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **5f** (8.1 mg, 20%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.98 (m, 1H), 7.98 – 7.92 (m, 1H), 7.69 – 7.62 (m, 2H), 2.94 (s, 3H), 1.56 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.1, 152.8, 140.3, 140.1, 129.2, 129.1, 128.7, 127.9, 38.9, 29.6, 26.4. HRMS (ESI) m/z calcd for C₁₃H₁₇N₂⁺ (M+H)⁺ 201.1386, found 201.1388.

5-(tert-Butyl)-2-phenylimidazo[1,2-a]pyridine (5g)

The general procedure was followed using 2-phenylimidazo[1,2-a]pyridine (39.0 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **5g** (11.0 mg, 22%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 8.00 (dd, J = 8.2, 1.3 Hz, 2H), 7.59 (d, J = 8.9 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.18 (dd, J = 8.9, 7.3 Hz, 1H), 6.74 (d, J

= 7.2 Hz, 1H), 1.58 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.5, 146.0, 144.8, 134.0, 129.0, 128.1, 126.3, 125.2, 115.7, 109.0, 108.9, 35.6, 27.8. HRMS (ESI) m/z calcd for C₁₇H₁₉N₂⁺ (M+H)⁺ 251.1543, found 251.1546.

2-(tert-Butyl)benzo[d]thiazole (5h)^[13]

The general procedure was followed using benzothiazole (27.5 mg, 0.2 mmol), trimethylacetaldehyde (44 μ L, 0.4 mmol). Purification by thin layer chromatography was performed (PE/EA: 30/1) to yield **5h** (18.0 mg, 47%) as a colorless liquid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.46 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.35 (ddd, J = 8.2, 7.3, 1.2 Hz, 1H), 1.54 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 182.0, 153.4, 135.1, 125.9, 124.6, 122.8, 121.6, 38.4, 30.9. HRMS (ESI) m/z calcd for C₁₃H₁₆NO⁺ (M+H)⁺ 202.1226, found 202.1229.

5. References

- [1] E. D. Nacsa, D. W. C. MacMillan, J. Am. Chem. Soc. 2018, 140, 3322.
- [2] W.-M. Cheng, R. Shang, M.-C. Fu, Y. Fu, Chem. Eur. J. 2017, 23, 2537.
- [3] G. A. Price, A. Hassan, N. Chandrasoma, A. R. Bogdan, S. W. Djuric, M. G. Organ, Angew. Chem. Int. Ed. 2017, 56, 13347.
- [4] P. Nuhant, M. S. Oderinde, J. Genovino, A. Juneau, Y. Gagn, C. Allais, G. M. Chinigo, C.

Choi, N. W. Sach, L. Bernier, Y. M. Fobian, M. W. Bundesmann, B. Khunte, M. Frenette, O. O. Fadeyi, *Angew. Chem.Int. Ed.* **2017**, *56*, 15309.

- [5] T. McCallum, L. Barriault, Chem. Sci. 2016, 7, 4754.
- [6] M.-C. Fu, R. Shang, B. Zhao, B. Wang, Y. Fu, Science 2019, 363, 1429.
- [7] R. A. Garza-Sanchez, A. Tlahuext-Aca, G. Tavakoli, F. Glorius, ACS Catal. 2017, 7, 4057.
- [8] J. Dong, X. Lyu, Z. Wang, X. Wang, H. Song, Y. Liu, Q. Wang, Chem. Sci. 2019,10, 976.
- [9] C. S. Cho, W. X. Ren, N. S. Yoon, J. Mol. Catal. A: Chem 2009, 299, 117.
- [10] A. C. Sun, E. J. McClain, J. W. Beatty, C. R. J. Stephenson, Org. Lett. 2018, 20, 3487.
- [11] V. L. Revil-Baudard, J.-P. Vors, S. Z. Zard, Org. Lett. 2018, 20, 3531.
- [12] A. Citterio, F. Minisci, V. Franchi, J. Org. Chem. 1980, 45, 4752.
- [13] G. Zhang, L.-Z. Wu, A. Lei, J. Am. Chem. Soc. 2015, 137, 9273.

6.Copies of ¹H and ¹³C NMR spectra of all products

¹H and ¹³C NMR spectra of 3c

S29

¹H and ¹³C NMR spectra of 3d

¹H and ¹³C NMR spectra of 3e

¹H and ¹³C NMR spectra of 3f

¹H and ¹³C NMR spectra of 3g

¹H and ¹³C NMR spectra of 3h

¹H and ¹³C NMR spectra of 3i

¹H and ¹³C NMR spectra of 4a

S38

90 80 fl (ppm)

¹H and ¹³C NMR spectra of 4e

¹H and ¹³C NMR spectra of 4f

¹H and ¹³C NMR spectra of 4i

¹H and ¹³C NMR spectra of 4k

¹H and ¹³C NMR spectra of 4q

¹H and ¹³C NMR spectra of 4r

¹H and ¹³C NMR spectra of 4s

¹H and ¹³C NMR spectra of 4t

¹H and ¹³C NMR spectra of 5a

¹H and ¹³C NMR spectra of 5b

¹H and ¹³C NMR spectra of 5c

¹H and ¹³C NMR spectra of 5d

¹H and ¹³C NMR spectra of 5e

¹H and ¹³C NMR spectra of 5g

