Supporting Information

Diastereoselective synthesis of CF3-oxazinoquinolines in water

Vasiliy M. Muzalevskiy^a, Kseniya V. Belyaeva^b, Boris A. Trofimov^{*b}, Valentine G. Nenajdenko^{*a}

^a M. V. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1, Moscow, 119991 Russian Federation

^bA. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk, 664033

Russian Federation; Fax: (395-2)41-93-46

Table of contents

General remarks	S2
Reaction of CF ₃ -ynones and quinolines in water (general procedure)	S2
Characterization data of CF ₃ -oxazinoquinolines 3	S2-S8
Epimerization of (3 <i>R</i> *,4a <i>R</i>)-1-phenyl-3-(trifluoromethyl)-3 <i>H</i> ,4a <i>H</i> -[1,3]oxazino[3,2-a]quinolin-3-ol (3a)	S8
(3R*,4aR*)-3-Ethoxy-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinoline (4)	S8
Reaction of oxazine (3a) with methyl 2-mercaptoacetate	S9
Transformation of oxazine (3a) into 2-phenylquinoline (6)	S9
Transformation of oxazine (3a) into 2,2,2-trifluoro-1-(2-phenylquinolin-3-yl)ethanone (7)	S10
Hydrogenation of (3R*,4aR)-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3a) to for	orm 8 and 9
	S11
Hydrogenation of (3 <i>R</i> *,4a <i>R</i>)-1-phenyl-3-(trifluoromethyl)-3 <i>H</i> ,4a <i>H</i> -[1,3]oxazino[3,2- <i>a</i>]quinolin-3-ol (3a)	
to form 11	S11
Copies of all NMR spectra	S13-S83

General remarks. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AVANCE 400 MHz spectrometer in CD₃CN and CDCl₃ at 400, 100 and 376 MHz respectively. Chemical shifts (δ) in ppm are reported with the use of the residual CHD₂CN and chloroform signals (1.94 and 7.25 for ¹H and 77.0 for ¹³C) as internal reference. The ¹⁹F chemical shifts were referenced to C₆F₆, (-162.9 ppm). HRMS (ESI-TOF) spectra were measured with an Orbitrap Elite instrument. TLC analysis was performed on "Merck 60 F₂₅₄" plates. All reagents were of reagent grade and were used as such or distilled prior to use. CF₃-ynones **2** were prepared as reported previously¹. Melting points were determined on an Electrothermal 9100 apparatus. The NMR and m.p. data of compounds **3** (with the exception of **3i,j,k,n**, which is a new compound) are in agreement with those in the literature².

Reaction of CF₃-ynones and quinolines in water (general procedure): A 4 mL vial with a screw cap was charged with water (0.5 mL), quinoline 1 (0.475 mmol, 0.95 equiv.) and then CF₃-ynone 2 (0.5 mmol, 1 equiv.) was added at vigorous stirring. The reaction mixture was stirred at room temperature for 1-2 h (TLC or ¹⁹F NMR control; 24 h for quinoline 1c and for ketone 2i). Excess water was decanted; the residue was dissolved in ethyl acetate (0.5 mL) and dried over Na₂SO₄ (directly in the reaction vial). The solution was transferred into a round bottomed flask and the product crystallized by addition of appropriate amount of heptane (2-3 mL). The mother liquor was decanted, the crude product was dried under reduced pressure to give pure (3*R**,4a*R**)-isomer of **3**.

(3R*,4aR*)-1-Phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]-quinolin-3-ol (3a). Obtained from

quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2a** (0.099 g, 0.5 mmol). White powder, m.p. 154-156 °C (heptane), yield 0.153 g (93%). For multi gram scale reaction (60 equivalents of water): compound **3a** was obtained from quinoline **1a** (0.613 g, 4.75 mmol), water (5 mL) and acetylene **2a** (0.995 g, 5 mmol). Ethyl acetate

(2.5 mL) and heptane (8 mL) were used for isolation of 3a. White powder, m.p. 154-

156 °C (heptane), yield 1.480 g (90%). Calculation of E-factor for multi gram scale reaction (60 equiv.): $E=[m(EtOAc)+m(heptane)+m(water)+m(Na_2SO_4)+m(1a)+m(2a)]/m(3a)=(2.25+5.44+5+0.30+0.613+0.995)/1.480=9.86$. For multi gram scale reaction (3 equivalents of water): compound 3a was obtained from quinoline 1a (1.612 g, 12.5 mmol), water (0.675 mL) and acetylene 2a (2.612 g, 13.1 mmol). Ethyl acetate (6 mL) and heptane (20 mL) were used for first crystallization. For purification of material obtained from the mother liquor ethyl acetate (2.5 mL) and heptane (8 mL) were used. White powder, m.p. 154-156 °C (heptane), yield 3.878 g (90%). Calculation of E-factor for multi gram scale reaction (3 equiv.):

¹ V. M. Muzalevskiy, A. Yu. Rulev, A. R. Romanov, E. V. Kondrashov, I. A. Ushakov, V. A. Chertkov and V. G. Nenajdenko, *J. Org. Chem.*, 2017, **82**, 7200.

² B. A. Trofimov, K. V. Belyaeva, L. P. Nikitina, A. V. Afonin, A. V. Vashchenko, V. M. Muzalevskiy and V. G. Nenajdenko, *Chem. Commun.*, 2018, **54**, 2268.

 $E=[m(EtOAc)+m(heptane)+m(water)+m(Na_2SO_4)+m(1a)+m(2a)]/m(3a)=(7.667+19.152+0.675+0.70+1.613 +2.612)/3.878=8.36.$ Calculation of E-factor (approximate value) for the reaction in MeCN²: E=[m(MeCN)+m(water)+m(1a)+m(2a)+m(Sicagel)+m(eluents)]/m(3a)=(2.37+0.009+0.061+0.099+25.0+26 +0.099+260+0.099+26

¹H NMR (400.13 MHz, CD₃CN): δ 7.56-7.54 (m, 2H, H_o from Ph), 7.47-7.39 (m, 3H, H_{m,p} from Ph), 7.25 (dd, ${}^{3}J = 7.1$ Hz, ${}^{4}J = 1.9$ Hz, 1H, H-7), 7.01 (d, ${}^{3}J_{5,6} = 9.8$ Hz, 1H, H-6), 6.90 (td, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.8$ Hz, 1H, H-9), 6.85 (td, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H-8), 6.31 (d, ${}^{3}J = 7.8$ Hz, 1H, H-10), 6.12 (dd, ${}^{3}J_{5,6} = 9.8$ Hz, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 6.03 (s, 1H, H-2), 5.66 (d, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-4a), 5.55 (s, 1H, OH) ppm. ¹⁹F NMR (376.50 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

¹H NMR (400.13 MHz, CDCl₃): δ 7.54-7.52 (m, 2H, H_o from Ph), 7.43-7.35 (m, 3H, H_{m,p} from Ph), 7.18 (dd, ³*J* = 7.2 Hz, ⁴*J* = 0.8 Hz, 1H, H-7), 6.95 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.90 (td, ³*J* = 7.7 Hz, ⁴*J* = 1.1 Hz, 1H, H-9), 6.84 (t, ³*J* = 7.2 Hz, 1H, H-8), 6.33 (d, ³*J* = 8.1 Hz, 1H, H-10), 6.04 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 5.97 (s, 1H, H-2), 5.68 (d, ³*J*_{4a,5} = 4.8 Hz, 1H, H-4a), 3.19 (s, 1H, OH) ppm.

(3R*,4aR*)-1-(4-Methylphenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3b)

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2b** (0.106 g, 0.5 mmol). Light-brown powder, m.p. 132-134 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.27$, yield 0.163 g (96%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.43 (d, ³*J* = 8.1 Hz, 2H, H-2',6'), 7.24 (dd, ³*J* = 7.1 Hz, ⁴*J* = 1.6 Hz, 1H, H-7), 7.22 (d, ³*J* = 8.1 Hz, 2H, H-3',5'), 6.99 (d, ³*J*_{5.6} = 9.7

Hz, 1H, H-6), 6.91-6.83 (m, 2H, H-9, H-8), 6.33 (d, ${}^{3}J = 8.0$ Hz, 1H, H-10), 6.11 (dd, ${}^{3}J_{5,6} = 9.7$ Hz, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 5.97 (s, 1H, H-2), 5.63 (d, ${}^{3}J = 4.7$ Hz, 1H, H-4a), 5.54 (br s, 1H, OH), 2.35 (s, 3H, Me) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

$(3R^*,4aR^*)$ -1-(3,4-Dimethylphenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3c).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2c** (0.113 g, 0.5 mmol). Light-brown powder, m.p. 95-97 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.30$, yield 0.169 g (95%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.34 (s, 1H, H-2'), 7.24-7.22 (m, 2H, H-7, H-6'), 7.16 (d, ³*J* = 7.8 Hz, 1H, H-5'), 6.99 (d, ³*J*_{5.6} = 9.7 Hz, 1H, H-6), 6.92-6.83 (m,

2H, H-9, H-8), 6.34 (d, ${}^{3}J$ = 7.9 Hz, 1H, H-10), 6.10 (dd, ${}^{3}J_{5,6}$ = 9.5 Hz, ${}^{3}J_{4a,5}$ = 4.6 Hz, 1H, H-5), 5.93 (s, 1H, H-2), 5.61 (d, ${}^{3}J_{4a,5}$ = 4.5 Hz, 1H, H-4a), 5.47 (br s, 1H, OH), 2.27 (s, 3H, Me), 2.24 (s, 3H, Me) ppm. ¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

(3*R**,4a*R**)-1-(4-(*tert*-Butyl)phenyl)-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2-*a*]quinolin-3-ol (3d).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2d** (0.127 g, 0.5 mmol). Light-brown powder, m.p. 104-106 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.27$, yield 0.182 g (96%). ¹H NMR (400.1 MHz, CD₃CN): δ 7.42-7.48 (m, 4H, H-2',3',5',6'), 7.24 (dd, ³*J* = 7.2 Hz, ⁴*J* = 1.6 Hz, 1H, H-7), 7.00 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.90-6.83 (m, 2H, H-9, H-8), 6.32 (d, ³*J* = 7.8 Hz, 1H, H-10),

6.10 (dd, ${}^{3}J_{5,6} = 9.7$ Hz, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 5.98 (s, 1H, H-2), 5.63 (d, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-4a), 5.51 (s, 1H, OH), 1.31 (s, 9H, 3Me from *t*-Bu) ppm.

¹⁹F NMR (376.3 Hz, CD₃CN): δ -82.0 (CF₃) ppm.

 $(3R^*,4aR^*)$ -1-(4-Methoxyphenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (3e).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2e** (0.114 g, 0.5 mmol). Light-brown powder, m.p. 95-97 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.43$, yield 0.176 g (99%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.46 (d, ³*J* = 8.9 Hz, 2H, H-2',6'), 7.24 (dd, ³*J* = 7.3 Hz, ⁴*J* = 1.5 Hz, 1H, H-7), 7.00 (d, ³*J*_{5.6} = 9.7 Hz, 1H, H-6), 6.93 (d, ³*J* = 8.9

Hz, 2H, H-3',5'), 6.90-6.83 (m, 2H, H-9, H-8), 6.35 (d, ${}^{3}J = 8.0$ Hz, 1H, H-10), 6.10 (dd, ${}^{3}J_{5,6} = 9.8$ Hz, ${}^{3}J_{4a,5} = 4.9$ Hz, 1H, H-5), 5.92 (s, 1H, H-2), 5.63 (d, ${}^{3}J_{4a,5} = 4.7$ Hz, 1H, H-4a), 5.58 (br s, 1H, OH), 3.79 (s, 3H, OMe) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

$(3R^*,4aR^*)-1-[4-(Methylthio)phenyl]-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3f).$

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2f** (0.122 g, 0.5 mmol). Light-brown powder, m.p. 98-100 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.20$, yield 0.178 g (96%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.45 (d, ³*J* = 8.4 Hz, 2H, H-2',6'), 7.26-7.21 (m, 3H, H-7, H-3',5'), 6.99 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.94-6.84 (m, 2H, H-9, H-8),

6.33 (d, ${}^{3}J = 8.1$ Hz, 1H, H-10), 6.10 (dd, ${}^{3}J_{5,6} = 9.6$ Hz, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 5.98 (s, 1H, H-2), 5.61 (d, ${}^{3}J_{4a,5} = 4.3$ Hz, 1H, H-4a), 5.54 (br s, 1H, OH), 2.47 (s, 3H, MeS) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

(3*R**,4a*R**)-1-(4-Chlorophenyl)-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2-*a*]quinolin-3-ol (3g).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2g** (0.116 g, 0.5 mmol). Light-brown powder, m.p. 91-93 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.70$, yield 0.159 g (88%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.53 (d, ³*J* = 8.7 Hz, 2H, H-2',6'), 7.42 (d, ³*J* = 8.7 Hz, 2H, H-3',5'), 7.25 (dd, ³*J* = 7.4 Hz, ⁴*J* = 1.4 Hz, 1H, H-7), 6.99 (d, ³*J*_{5,6} = 9.8 Hz, 1H, H-6), 6.95-6.85 (m, 2H, H-9, H-8), 6.27 (d, ³*J* = 8.0 Hz, 1H, H-10), 6.11 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 6.03 (s, 1H, H-2), 5.62 (d, ³*J* = 4.8 Hz, 1H, H-4a), 5.55 (br s, 1H, OH) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

$(3R^*,4aR^*)$ -1-(4-Bromophenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a/quinolin-3-ol (3h).

Br 4' 5'

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2h** (0.138 g, 0.5 mmol). Light-brown powder, m.p. 128-130 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.73$, yield 0.192 g (95%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.57 (d, ³*J* = 8.6 Hz, 2H, H-3',5'), 7.45 (d, ³*J* = 8.6 Hz, 2H, H-2',6'), 7.25 (dd, ³*J* = 7.3 Hz, ⁴*J* = 1.2 Hz, 1H, H-7), 7.00 (d, ³*J*_{5.6} =

9.7 Hz, 1H, H-6), 6.95-6.85 (m, 2H, H-9, H-8), 6.27 (d, ${}^{3}J$ = 8.0 Hz, 1H, H-10), 6.10 (dd, ${}^{3}J_{5,6}$ = 9.7 Hz, ${}^{3}J_{4a,5}$ = 4.8 Hz, 1H, H-5), 6.04 (s, 1H, H-2), 5.61 (d, ${}^{3}J_{4a,5}$ = 4.8 Hz, 1H, H-4a), 5.56 (s, 1H, OH) ppm. ¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.9 (CF₃) ppm.

$(3R^*, 4aR^*)$ -1-(2-Chlorophenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3i).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2i** (0.116 g, 0.5 mmol). Light-brown powder, m.p. 100-102 °C (heptane), yield 0.165 g (91%).

H-8), 6.36 (d, ${}^{3}J$ = 8.1 Hz, 1H, H-10), 6.09 (dd, ${}^{3}J_{5,6}$ = 9.8 Hz, ${}^{3}J_{4a,5}$ = 4.6 Hz, 1H, H-5), 5.94 (s, 1H, H-2), 5.71 (d, ${}^{3}J$ = 4.3 Hz, 1H, H-4a), 5.53 (br s, 1H, OH) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.8 (CF₃) ppm.

¹³C NMR (100.6 Hz, CD₃CN): δ 145.0 (C-1), 137.4, 134.4, 133.0, 131.79, 131.77, 131.5, 130.2, 129.9, 129.1, 128.6, 123.6 (q, ${}^{1}J_{CF}$ = 285.3 Hz, CF₃), 122.1, 121.9, 121.6, 119.1, 116.4, 116.0, 92.7 (q, ${}^{2}J_{CF}$ = 32.8 Hz, C-3), 78.8 (C-4a) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for $C_{19}H_{12}ClF_3NO^+$: 362.0554; found: 362.0554; m/z [M+H]⁺ Calcd for $C_{19}H_{14}ClF_3NO_2^+$: 380.066; found: 380.0658.

(3R*,4aR*)-1-(2,3-Dihydrobenzo[b][1,4]dioxin-7-yl)-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-

a]quinolin-3-ol (3j). Obtained from quinoline 1a (0.061 g, 0.475 mmol) and acetylene 2j (0.114 g, 0.5 mmol). Yellow-brown powder, m.p. 114-116 °C (heptane), yield 0.190 g (99%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.24 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.5 Hz, 1H, H-7), 7.03-6.92 (m, 4H, H-6, H-9, H-5',6'), 6.88-6.84 (m, 2H, H-8, H-2'), 6.36 (d, ³*J* = 8.2 Hz, 1H, H-10), 6.08 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 5.89 (s, 1H, H-2), 5.58 (d, ³*J*_{4a,5} = 4.8 Hz, 1H, H-4a), 5.34 (br s, 1H, OH), 4.27-4.21 (m, 4H, OCH₂CH₂O) ppm.

¹³C NMR (100.6 Hz, CD₃CN): δ 148.0, 146.2, 144.9 (C-1), 138.3, 130.4, 129.5, 128.8, 128.7, 123.5 (q, ¹*J*_{CF} = 285.5 Hz, CF₃), 122.5, 121.4, 120.3, 119.2, 118.6, 118.0, 116.0, 111.2, 93.0 (q, ²*J*_{CF} = 32.8 Hz, C-3), 78.3 (C-4a), 65.3 (CH₂), 65.0 (CH₂) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.2 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for $C_{21}H_{15}F_3NO_3^+$: 386.0999; found: 386.0999; m/z [M+H]⁺ Calcd for $C_{21}H_{17}F_3NO_4^+$: 404.1104; found: 404.1108.

(3*R**,4a*R**)-9-Chloro-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]-oxazino[3,2-*a*]quinolin-3-ol (3k).

Obtained from quinoline **1b** (0.078 g, 0.475 mmol) and acetylene **2a** (0.099 g, 0.5 mmol). Pale yellow powder, m.p. 146-148 °C (heptane), yield 0.169 g (94%). ¹H NMR (400.13 MHz, CD₃CN): δ 7.59-7.54 (m, 2H, H_o from Ph), 7.49-7.41 (m, 3H, H_{m,p} from Ph), 7.22 (d, ³J_{7,8} = 8.1 Hz, 1H, H-7), 6.99 (d, ³J_{5,6} = 9.8 Hz, 1H, H-6), 6.85 (dd, ³J_{7,8} = 8.1 Hz, ⁴J_{8,10} = 1.9 Hz, 1H, H-8), 6.28 (d, ⁴J_{8,10} = 1.5 Hz, 1H, H-

10), 6.13 (dd, ${}^{3}J_{5,6} = 9.8$ Hz, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 6.07 (s, 1H, H-2), 5.67 (d, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-4a), 5.49 (s, 1H, OH) ppm.

¹³C NMR (100.6 Hz, CD₃CN): δ 148.0 (C-1), 139.2, 135.0, 134.2, 131.1, 130.2, 130.1, 129.5, 127.3, 123.5 (q, ${}^{1}J_{CF}$ = 285.1 Hz, CF₃), 121.4, 121.3, 119.7, 117.6, 113.3, 93.0 (q, ${}^{2}J_{CF}$ = 33.0 Hz, C-3), 78.2 (C-4a) ppm. ¹⁹F NMR (376.50 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for $C_{19}H_{12}ClF_3NO^+$: 362.0554; found: 362.0555; m/z [M+H]⁺ Calcd for $C_{19}H_{14}ClF_3NO_2^+$: 380.066; found: 380.0655.

 $(3R^*,4aR^*)$ -8-Chloro-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (31).

CN

10a N 4a O

ʹ ϶ʹʹCF₃ Obtained from quinoline **1c** (0.078 g, 0.475 mmol) and acetylene **2a** (0.099 g, 0.5 mmol). White powder, m.p. 138-140 °C (heptane), yield 0.175 g (97%). ¹H NMR (400.13 MHz, CDCl₃): δ 7.53-7.50 (m, 2H, H_o from Ph), 7.44-7.36 (m, 3H, H_{m,p} from Ph), 7.16 (d, ⁴J_{7,9} = 2.4 Hz, 1H, H-7), 6.86 (d, ³J_{5,6} = 8.9 Hz, 1H, H-6), 6.85 (d, ³J_{9,10} = 8.8 Hz, 1H, H-9), 6.28 (d, ³J_{9,10} = 8.8 Hz, 1H, H-10), 6.08 (dd, ³J_{5,6} =

9.8 Hz, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 6.00 (s, 1H, H-2), 5.67 (d, ${}^{3}J_{4a,5} = 4.5$ Hz, 1H, H-4a), 3.22 (s, 1H, OH) ppm. ¹⁹F NMR (376.3 MHz, CDCl₃): δ -84.2 (CF₃) ppm.

> (3*R**,4a*R**)-3-Hydroxy-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2*a*]quinoline-6-carbonitrile (3m). Obtained from quinoline 1f (0.073 g, 0.475 mmol)

and acetylene **2a** (0.099 g, 0.5 mmol). Light-brown powder, m.p. 107-110 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.30$, yield 0.170 g (97%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.56-7.52 (m, 2H, H_o from Ph), 7.46-7.39 (m, 3H, H_{m,p} from Ph), 7.31 (d, ³J_{5,6} = 10.0 Hz, 1H, H-6), 7.21 (dd, ³J = 7.7 Hz, ⁴J = 1.0 Hz, 1H, H-8), 7.00 (pseudo-t, ³J ~ 8 Hz, 1H, H-9), 6.59 (pseudo-d, ³J ~ 8 Hz, 1H, H-10), 6.38 (dd, ³J_{5,6} = 9.9 Hz, ³J_{4a,5} = 4.8 Hz, 1H, H-5), 6.10 (s, 1H, H-2), 5.72 (d, ³J_{4a,5} = 5.0 Hz, 1H, H-4a), 5.72 (br. s, 1H, OH) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.2 (CF₃) ppm.

 $(3R^*,4aR^*)$ -8-Bromo-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (3n).

Obtained from quinoline **1d** (0.098 g, 0.475 mmol) and acetylene **2a** (0.099 g, 0.5 mmol). White powder, m.p. 136-138 °C (heptane), yield 0.195 g (97%). ¹H NMR (400.1 MHz, CD₃CN): δ 7.55-7.53 (m, 2H, H_o from Ph), 7.45-7.39 (m,

4H, H_{*m,p*} from Ph, H-7), 7.00 (dd, ${}^{3}J_{9,10} = 8.8$ Hz, ${}^{4}J = 2.4$ Hz, 1H, H-9), 6.95 (d, ${}^{3}J_{5,6} = 9.9$ Hz, 1H, H-6), 6.21 (d, ${}^{3}J_{9,10} = 8.8$ Hz, 1H, H-10), 6.16 (dd, ${}^{3}J_{5,6} = 9.8$

Hz, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 6.02 (s, 1H, H-2), 5.64 (d, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-4a), 5.59 (s, 1H, OH) ppm. 13 C NMR (100.16 Hz, CD₃CN): δ 148.2 (C-1), 137.3 (C-10a), 135.1 (C_{*i*} from Ph), 131.9 (C-6), 131.00 and 130.98 (C_{*p*} from Ph, C-6), 130.1 (C_{*m*} from Ph), 129.3 (C-9), 127.3 (C_{*o*} from Ph), 127.3 (C-7), 124.5 (C-8), 123.5 (q, ${}^{1}J_{CF} = 284.9$ Hz, CF₃), 120.8 (C-5), 119.7 (C-10), 113.3 (C-6a), 113.0 (C-2), 93.0 (q, ${}^{2}J_{CF} = 33.2$ Hz, C-3), 78.2 (C-4a) ppm.

¹⁹F NMR (376.50 Hz, CD₃CN): δ -82.1 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for $C_{19}H_{12}BrF_3NO^+$: 406.0049; found: 406.0052; m/z [M+H]⁺ Calcd for $C_{19}H_{14}BrF_3NO_2^+$: 424.0155; found: 424.0157.

(3*R**,4a*R**)-6-Bromo-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2-*a*]quinolin-3-ol (30).

6a

5.Br

3''CF3

10a N 4a O

Obtained from quinoline **1e** (0.099 g, 0.475 mmol) and acetylene **2a** (0.099 g, 0.5 mmol). Light-brown powder, m.p. 115-117 °C (heptane), $R_F(CH_2Cl_2-MeOH 100:1) = 0.71$, yield 0.199 g (99%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.55-7.53 (m, 2H, H_o from Ph), 7.45-7.36 (m, 4H, H-6, H_{m,p} from Ph), 7.10 (d, ³*J* = 8.1 Hz, 1H, H-8), 6.77 (t, ³*J* = 8.1 Hz, 1H, H-9), 6.33 (d, ³*J* = 8.1 Hz, 1H, H-10), 6.25 (dd, ³*J*_{5,6} = 9.8 Hz, ³*J*_{4a,5} = 4.7 Hz, 1H, H-5), 6.08 (s,

1H, H-2), 5.65 (d, ${}^{3}J$ = 4.7 Hz, 1H, H-4a), 5.61 (br. s, 1H, OH) ppm. ¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.1 (CF₃) ppm.

(3*R**,4a*R**)-5-Bromo-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]-oxazino[3,2*a*]quinolin-3-ol (3p). Obtained from quinoline 1g (0.099 g, 0.475 mmol) and acetylene

2a (0.099 g, 0.5 mmol). Light-yellow powder, m.p. 68-70 °C (heptane), yield 0.186 g (92%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.58-7.55 (m, 2H, H_o from Ph), 7.48-7.38 (m, 4H, H_m and H_p from Ph, H-6), 7.22 (dd, ³*J* = 7.2 Hz, ⁴*J* = 1.7 Hz, 1H, H-7), 6.96-6.86 (m, 2H, H-9, H-8), 6.32 (d, ³*J*_{9,10} = 8.1 Hz, 1H, H-10), 6.06 (s, 1H, H-2), 5.74 (s, 1H, H-4a), 5.67 (br. s, 1H, OH) ppm.

¹³C NMR (100.16 Hz, CD₃CN): δ 148.0 (C-2), 136.9 (C-11a), 135.1 (C_{*i*} from Ph), 132.6 (C-6), 131.1 (C_{*p*} from Ph), 130.1 (C_{*m*} from Ph), 130.0 (C-9), 128.4 (C-7), 127.4 (C_{*o*} from Ph), 123.3 (q, ¹J_{CF} = 282.9 Hz, CF₃), 122.1 (C-6a), 122.0 (C-8), 118.9 (C-10), 113.0 (C-5), 112.4 (C-2), 93.4 (q, ²J_{CF} = 33.2 Hz, C-3), 83.3 (C-4a) ppm.

¹⁹F NMR (376.5 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

(6aR*,8R*)-10-Phenyl-8-(trifluoromethyl)-6aH,8H-[1,3]oxazino[3,2-a][1,8]naphthyridin-8-ol (3q).

Obtained from 1,8-naphthyridine 1h (0.062 g, 0.475 mmol) and acetylene 2a (0.099 g,

0.5 mmol). Pale brown crystals, m.p. 145-147 °C (heptane), yield 0.155 g (94%).

Ph ${}^{\circ}CF_3$ ¹H NMR (400.1 MHz, CD₃CN): δ 7.73 (dd, ${}^{3}J$ = 4.8 Hz, ${}^{4}J$ = 1.6 Hz, 1H), 7.55 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.5 Hz, 1H), 7.49-7.45 (m, 2H, H_o from Ph), 7.37-7.32 (m, 3H, H_{m,p} from Ph), 7.00 (d, ${}^{3}J$ = 9.7 Hz, 1H), 6.82 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{3}J$ = 5.0 Hz, 1H), 6.16 (dd, ${}^{3}J$ = 9.7 Hz, ${}^{3}J$ = 4.7 Hz, 1H), 5.96 (s, 1H), 5.81 (d, ${}^{3}J$ = 4.6 Hz, 1H), 5.65 (s, 1H, OH) ppm.

¹⁹F NMR (376.5 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

Epimerization of (3*R**,4a*R*)-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2-*a*]quinolin-3-ol (3a).

Oxazine **3a** (0.050 g, 0.145 mmol) was dissolved in t-BuOH (1 mL) and H₂O (0.5 mL) was added. The solution formed was left overnight. The volatiles were evaporated in vacuo to give mixture of **3a** ((3R*,4aR)-isomer) and **3a'** ((3S*,4aR)-isomer) (0.050 g, ~100%) as light brown powder, m.p. 142-144 °C. (3R*, 4aR*):(3S*, 4aR*)-isomers ratio is 87:13.

¹H NMR (400.13 MHz, CDCl₃): δ 7.54-7.52 (m, 2H, H_o from Ph), 7.43-7.35 (m, 3H, H_{m,p} from Ph), 7.0 (d, ³J = 7.2 Hz, 1H, H-7), 6.97-6.81 (m, 3H, H-6, H-9, H-8), 6.33 (d, ³J = 7.8 Hz, 1H, H-10), 6.04 (dd, ³J_{5,6} = 9.3 Hz, ³J_{4a,5} = 4.4 Hz, 1H, H-5), 5.97 (s, 1H, H-2), 5.68 (br s, 1H, H-4a), 3.19 (s, 1H, OH) ppm.

¹⁹F NMR (376.50 Hz, CDCl₃): δ -84.3 (CF₃) ppm;

 $(4S^*, 5aR^*)$ -**3a'**: ¹H NMR (400.13 MHz, CDCl₃): 6.09 (dd, ³ $J_{5a,6} = 4.7$ Hz, ³ $J_{6,7} = 9.8$ Hz, 1H, H-6), 5.62 (d, ³ $J_{5a,6} = 4.7$ Hz, 1H, H-5a) ppm. The other signals are identical to those of major isomer. ¹⁹F NMR (376.50 Hz, CDCl₃): δ -81.1 (CF₃) ppm.

(3*R**,4a*R**)-3-Ethoxy-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2-*a*]quinoline (4).

Oxazine **3a** (0.100 g, 0.29 mmol) was dissolved in absolute EtOH (1 mL) and the solution formed was left for 1 day. The volatiles were evaporated in vacuo to give **4** (0.106 g, 98%) as light yellow powder, m.p. 130-132 °C.

¹H NMR (400.13 MHz, CD₃CN): δ 7.56-7.54 (m, 2H, H_o from Ph), 7.47-7.38 (m, 3H, H_{m,p} from Ph), 7.25 (dd, ³*J* = 7.1 Hz, ⁴*J* = 1.8 Hz, 1H, H-7), 7.01 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.91-6.83 (m, 2H, H-9, H-8), 6.32 (d, ³*J* = 7.8 Hz, 1H, H-10), 6.20 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.7 Hz, 1H, H-5), 6.07 (s, 1H, H-2), 5.69 (d, ³*J*_{4a,5} = 4.8 Hz, 1H, H-4a), 3.91-3.78 (m, 2H, CH₂), 1.24 (t, 3H, ³*J* = 7.0 Hz, CH₃) ppm.

¹⁹F NMR (376.50 MHz, CD₃CN): δ -80.1 (CF₃) ppm.

¹³C NMR (100.6 Hz, CD₃CN): δ 150.5, 138.1, 135.4, 131.1, 130.4, 130.1, 129.6, 128.9, 127.42, 127.36, 123.2 (q, ¹*J*_{CF} = 286.2 Hz, CF₃), 121.6, 119.0, 117.9, 112.8, 95.6 (q, ²*J*_{CF} = 31.7 Hz), 80.3, 60.0, 15.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₁H₁₈F₃NO₂⁺: 374.1362; found: 374.1369.

Reaction of oxazine (3a) with methyl 2-mercaptoacetate. A 4 mL vial with a screw cup was charged with

with oxazine **3a** (0.071 g, 0.2 mmol), solution of methyl 2-mercaptoacetate in MeOH (1 mL, 0.5 M, 0.5 mmol) and left at room temperature for 72 h. MeOH was evaporated to give 0.093 g of light brown oil, consisting of quinoline, methyl 2-((4,4,4-trifluoro-3-oxo-1-phenylbut-1-en-1-yl)thio)acetate **5** (85:15 mixture of isomers) and dimethyl 2,2'-disulfanediyldiacetate (MeCO₂-CH₂-S-S-CH₂CO₂Me

appeared due to oxidation of methyl 2-mercaptoacetate by oxygen) in molar ratio 1:1:0.22. Compound **5**, major isomer: ¹H NMR (400.13 MHz, CDCl₃): δ 7.40-7.42 (m, 2H, Ar), 7.21-7.25 (m, 3H, Ar), 6.57 (s, 1H, C=C<u>H</u>), 3.52 (s, 3H, OC<u>H</u>₃), 3.31 (s, 2H, SC<u>H</u>₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 177.3 (q, <u>C</u>-CF₃, *J* = 35.0), 171.3, 168.3, 136.7, 129.9, 128.8, 127.6, 116.1 (q, CF₃, *J* = 290.4), 114.8, 52.5, 35.0. ¹⁹F NMR (376.50 Hz, CDCl₃): δ -78.7. Minor isomer: ¹H NMR (400.13 MHz, CDCl₃): δ 7.41-7.44 (m, 2H, Ar), 7.30-7.32 (m, 3H, Ar), 6.47 (s, 1H, C=C<u>H</u>), 3.78 (s, 3H, OC<u>H</u>₃), 3.66 (s, 2H, SC<u>H</u>₂). ¹³C NMR (100.6 MHz, CDCl₃): δ 130.2, 128.4, 127.9, 109.3, 52.9, other signals are identical to those of major isomer. ¹⁹F NMR (376.50 Hz, CDCl₃): δ -79.6. Quinoline: ¹H NMR (400.13 MHz, CDCl₃): δ 8.88 (dd, ³*J* = 4.3 Hz, ⁴*J* = 1.7 Hz, 1H), 8.14 (dd, ³*J* = 8.3 Hz, ⁴*J* = 1.1 Hz, 1H), 8.09 (d, ³*J* = 8.5 Hz, 1H), 7.78 (dd, ³*J* = 8.1 Hz, ⁴*J* = 0.7 Hz, 1H), 7.70-7.66 (m, 1H), 7.53-7.49 (m, 1H), 7.38-7.34 (m, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 150.0, 147.7, 136.3, 129.5, 128.9, 128.2, 127.7, 126.6, 121.0. The NMR data of 2-((4,4,4-trifluoro-3-oxo-1-phenylbut-1-en-1-yl)thio)acetate **5**³ and quinoline⁴ are in agreement with those in the literature.

Transformation of oxazine (3a) into 2-phenylquinoline (6). A 4 mL vial with a screw cap was charged with oxazine **3a** (0.030 g, 0.087 mmol), water (0.5 mL) and NaOH (0.0104 g, 0.261 mmol). The reaction mixture was heated at 80 °C at stirring for 2 h. After cooling down to room temperature, the reaction mixture was extracted with EtOAc (2x0.5 mL), combined organic phase was passed through a short silica gel pad

³ V. M. Muzalevskiy, A. A. Iskandarov, V. G. Nenajdenko, J. Fluorine Chem. 2018, 214, 13-16.

⁴ T. Kaiya, N. Shiraiy, Y. Kawazoe, *Chem. Pharm. Bull.*, 1986, **34**, 881-885.

using heptane followed by heptane-EtOAc (15:1) as an eluents. Evaporation of volatiles afforded **6** as light brown powder, m.p. 81-83 °C (Lit. data: 82-84 °C⁵), yield 0.016 g (90%).

¹H NMR (400.1 MHz, CDCl₃): δ 8.22 (d, ³*J* = 8.6 Hz, 1H), 8.19-8.15 (m, 3H), 7.87 (d, ³*J* = 8.6 Hz, 1H), 7.83 (dd, ³*J* = 8.1 Hz, ⁴*J* = 0.7 Hz, 1H), 7.75-7.70 (m, 1H), 7.54-7.51 (m, 3H), 7.48-7.44 (m, 1H) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 157.3, 148.2, 139.6, 136.7, 129.63, 129.61, 129.3, 128.8, 127.5, 127.4, 127.1, 126.2, 119.0 ppm. The NMR data are in agreement with those in the literature⁴.

Transformation of oxazine (3a) into 2,2,2-trifluoro-1-(2-phenylquinolin-3-yl)ethanone (7). A 4 mL vial

with a screw cap was charged with oxazine 3a (0.030 g, 0.087 mmol), MeCN (0.5 mL) and morpholine (0.0075 g, 0.087 mmol). The reaction mixture was heated at 80 °C for 6 h and then volatiles were evaporated in vacuo. The residue was passed through a short silica gel pad using heptane followed by heptane-EtOAc (10:1) as an eluents. Evaporation of volatiles afforded 7 as a pale yellow powder, m.p. 86-87 °C,

yield 0.023 g (88%).

¹H NMR (400.1 MHz, CD₃CN): δ 8.77 (s, 1H, H-4), 8.09 (m, 1H, H-8), 8.07 (m, 1H, H-5), 7.91 (m, 1H, H-7), 7.68 (m, 1H, H-6), 7.56 (m, 2H, H_o from Ph), 7.49 (m, 3H, H_{m,p} from Ph) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 185.4 (q, ²*J*_{CF} = 36.0 Hz, C=O), 158.4 (C-2), 149.6 (C-8a), 140.8 (C_{*i*} from Ph), 140.7 (q, ⁴*J*_{CF} = 3.0 Hz, C-4), 134.3 (C-8), 130.3 (C-6), 130.2 (C_{*p*} from Ph, C-7), 130.1 (C_{*o*} from Ph), 129.6 (C_{*m*} from Ph), 129.1 (C-5), 126.4 (C-4a), 126.0 (C-3), 117.1 (q, ¹*J*_{CF} = 291.7 Hz, CF₃) ppm.

¹⁹F NMR (376.5 MHz, CD₃CN): δ -72.4 (CF₃) ppm.

¹H NMR (400.1 MHz, CDCl₃): δ 8.59 (s, 1H, H-4), 8.21 (d, ³*J* = 8.5 Hz, 1H, H-8), 7.97 (d, ³*J* = 8.1 Hz, 1H, H-5), 7.91 (ptd, ³*J* ~ 8 Hz, ⁴*J* ~ 1 Hz, 1H, H-7), 7.68 (ptd, ³*J* ~ 8 Hz, ⁴*J* ~ 1 Hz, 1H, H-6), 7.59-7.57 (m, 2H, H_o from Ph), 7.52-7.48 (m, 3H, H_{m,p} from Ph) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 184.6 (q, ²*J*_{CF} = 36.0 Hz, C=O), 157.7 (C-2), 148.7 (C-8a), 139.3 (C_{*i*} from Ph), 139.0 (q, ⁴*J*_{CF} = 3.0 Hz, C-4), 133.0 (C-8), 129.3 (C-6), 128.9 (C_{*o*} from Ph), 128.8 (C_{*m*} from Ph), 128.7 (C_{*p*} from Ph, C-7), 127.9 (C-5), 125.9 (C-4a), 124.9 (C-3), 115.9 (q, ¹*J*_{CF} = 292.1 Hz, CF₃) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.7 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₁F₃NO⁺: 302.0793; found: 302.0790.

⁵ N. Sudhapriya, A. Nandakumar, P. T. Perumal, *RSC Advances*, 2014, 4, 58476-58480.

Hydrogenation of (3R*,4aR)-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3a)

to form 8 and 9. Three-necked round bottomed flask was charged with oxazine 3a (0.105 g, 0.304 mmol), 10% Pd on carbon (0.032 g, 0.03 mmol, 10 mol%) and THF (5 mL). The flask was evacuated and flushed with H_2 from a balloon. The solution formed was stirred 36 h and filtered off. The filter cake was washed with EtOAc (3*3 mL), the volatiles were evaporated in vacuo. The residue was passed through a

short silica gel pad using heptane followed by heptane-EtOAc (10:1) as an eluents. Evaporation of the volatiles afforded a mixture **8** and **9** (75:25) as a colorless oil, yield 0.077 g (72%).

(3R*,4aR*)-1-Phenyl-3-(trifluoromethyl)-2,3,4a,5-tetrahydro-1H,6H-[1,3]oxazino[3,2-a]quinolin-3-ol

(8). ¹H NMR (400.13 MHz, CDCl₃): δ 7.44-7.29 (m, 5H, Ph), 7.08 (d, ³*J* = 7.3 Hz, 1H, H-7), 7.01 (pseudo-t, ³*J* ~ 8 Hz, 1H, H-9), 6.76 (pseudo-t, ³*J* ~ 7 Hz, 1H, H-8), 6.40 (d, ³*J* = 8.1 Hz, 1H, H-10), 5.53 (br s, 1H, H-4a), 4.98 (dd, ³*J* = 11.8 Hz, ³*J* = 7.0 Hz, 1H, H-1), 3.10-2.93 (m, 1H), 2.79-2.67 (m, 3H), 2.37-2.30 (m, 1H), 2.33 (dd, ³*J* = 14.4 Hz, ³*J* = 11.8 Hz, 1H, H-2), 2.11-2.02 (m, 1H) ppm.

¹⁹F NMR (376.50 Hz, CDCl₃): δ -88.0 (CF₃) ppm;

¹³C NMR (100.16 Hz, CDCl₃): δ 143.4 (C_q), 142.2 (C_q), 129.1 (C_m from Ph), 128.5, 128.3, 127.5, 127.4, 127.0, 125.1 (C_o from Ph), 123.2 (C_q), 122.3 (q, ¹*J*_{CF} = 285.5 Hz, CF₃), 118.5, 112.9, 94.4 (q, ²*J*_{CF} = 31.5 Hz, C-3), 79.2 (C-4a), 55.5 (C-1), 33.4 (CH₂), 25.9 (CH₂), 21.6 (CH₂) ppm.

HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₉H₁₈F₃NO₂⁺: 350.1362; found: 350.1351.

4-(3,4-diHydroquinolin-1(2H)-yl)-1,1,1-trifluoro-4-phenylbutan-2-ol (9). ¹H NMR (400.13 MHz, CDCl₃):

δ 7.44-7.29 (m, 5H, Ph), 6.64 (pseudo-t, ${}^{3}J \sim$ 7 Hz, 1H, H-8), 6.47 (d, ${}^{3}J =$ 8.1 Hz, 1H, H-10), 5.61-5.37 (m, 1H), 4.14-4.10 (m, 1H), 3.10-2.93 (m, 2H), 2.79-2.67 (m, 1H), 2.50-2.43 (m, 1H), 2.37-2.30 (m, 2H), 2.29-2.22 (m, 1H), 1.87-1.84 (m, 2H) ppm.

¹⁹F NMR (376.50 Hz, CDCl₃): δ -80.8 (d, ³*J*_{HF} = 6.8 Hz CF₃) ppm;

¹³C NMR (100.16 Hz, CDCl₃): δ 145.8 (C_q), 140.0 (C_q), 129.7 (C_m from Ph), 129.0, 127.4, 127.3, 125.5 (C_o from Ph), 122.8 (C_q), 125.4 (q, ¹J_{CF} = 281.7 Hz, CF₃), 116.2, 111.0, 67.7 (q, ²J_{CF} = 31.5 Hz, C-3), 54.3 (C-1), 42.1, 29.9 (CH₂), 28.5 (CH₂), 21.7 (CH₂) ppm.

HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₉H₂₀F₃NO⁺: 336.1570; found: 336.1560.

Hydrogenation of (3R*,4aR)-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3a)

to form 11. Three-necked round bottomed flask was charged with oxazine 3a (0.105 g, 0.304 mmol), 10% Pd on carbon (0.034 g, 0.03 mmol, 10 mol%) and MeOH (5 mL). The flask was evacuated and flushed with H₂ from a balloon. The solution formed was stirred 36 h and filtered off. The filter cake was washed with EtOAc (3*3 mL), the volatiles were evaporated in vacuo. The residue was passed

through a short silica gel pad using heptane followed by heptane-EtOAc (10:1) as an eluents. Compounds **10** and **11** were isolated as a separate fractions.

3-Methoxy-1-phenyl-3-(trifluoromethyl)-4a,5-dihydro-3H,6H-[1,3]oxazino[3,2-a]quinoline (10). Colorless oil, yield 0.011 g (10%).

¹H NMR (400.13 MHz, CDCl₃): δ 7.39-7.27 (m, 5H, Ph), 7.11-7.09 (m, 1H), 6.84-6.78 (m, 2H), 6.22-6.20 (m, 1H), 5.60 (br s, 1H, H-4a), 5.33 (t, ³*J* = 7.7 Hz, 1H), 3.52 (s, 1H, MeO), 2.81-2.63 (m, 3H), 1.92-1.82 (m, 1H) ppm.

¹⁹F NMR (376.50 Hz, CDCl₃): δ -81.5 (CF₃) ppm;

¹³C NMR (100.16 Hz, CDCl₃): δ 149.3, 138.8, 134.7, 130.3, 129.6 128.6, 127.1, 126.8, 122.4 (q, ${}^{1}J_{CF}$ = 286.9 Hz, CF₃), 121.5, 120.2, 105.6, 95.7 (q, ${}^{2}J_{CF}$ = 31.8 Hz, C-3), 83.0 (C-4a), 50.8 (MeO), 29.4(CH₂), 24.7 (CH₂) ppm.

HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₀H₁₉F₃NO₂⁺: 362.1362; found: 362.1357.

3-Methoxy-1-phenyl-3-(trifluoromethyl)-2,3,4a,5-tetrahydro-1H,6H-[1,3]oxazino[3,2-a]quinoline (11). A colorless oil solidifies at standing, m.p. 142-143 °C, yield 0.093 g (84%). ¹H NMR (400.13 MHz, CDCl₃): δ 7.41-7.29 (m, 5H, Ph), 7.05 (d, ³*J* = 7.3 Hz, 1H, H-7), 6.99 (pseudo-t, ³*J* ~ 8 Hz, 1H, H-9), 6.73 (pseudo-t, ³*J* ~ 7 Hz, 1H, H-8), 6.39 (d, ³*J* = 8.1 Hz, 1H, H-10), 5.52 (br s, 1H, H-4a), 4.90 (dd, ³*J* = 11.9 Hz, ³*J* = 7.0 Hz, 1H, H-1), 3.29 (s, 1H, MeO), 3.14-3.06 (m, 1H), 2.78-2.68 (m, 1H), 2.59 (dd, ³*J* = 14.3 Hz, ³*J* = 7.0 Hz, 1H, H-2), 2.45-2.39 (m, 1H), 2.33 (dd, ³*J* = 14.3 Hz, ³*J* = 11.9 Hz, 1H, H-2), 2.12-2.03 (m, 1H) ppm. ¹⁹F NMR (376.50 Hz, CDCl₃): δ -83.1 (CF₃) ppm;

¹³C NMR (100.16 Hz, CDCl₃): δ 143.5 (C_q), 142.3 (C_q), 129.1 (C_m from Ph), 128.3, 127.5, 127.4, 125.2 (C_o from Ph), 122.8 (C_q), 122.7 (q, ¹J_{CF} = 289.3 Hz, CF₃), 118.3, 112.8, 95.8 (q, ²J_{CF} = 31.5 Hz, C-3), 79.0 (C-4a), 55.8 (MeO), 50.5 (C-1), 34.6 (CH₂), 26.3(CH₂), 22.3 (CH₂) ppm.

HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₀H₂₁F₃NO₂⁺: 364.1519; found: 364.1522.

FW Formula C10H14F3NO2 345.3152

¹H NMR spectrum of **3a** (400.1 MHz, CD₃CN)

FW 345.3152 **Formula** C₁₉H₁₄F₃NO₂

Acquisition Time (sec	;) 1.9000	Date	Oct 1 2018	File Name	C:\DOCS\OUTP	PUT_301\F19\2018.10.01\BM-1371_20181001_01\FLUORINE_01	
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 169643	
Points Count	262144	Pulse Sequence	s2pul	Solvent	DMSO-D6	Sweep Width (Hz) 89285.71	

Temperature (degree C) 22.000

Imported from UXNMR 24 Jul 2019 17:34:04 Date C:\DOCS\OUTPUT 301\2019\07.èb eu\190724\BM-1659-1 001001r Frequency (MHz) 400.13 Number of Transients 8 Original Points Count 32768 Points Count 131072 CHLOROFORM-D Sweep Width (Hz) 8012.82 97 5 Q 32,34 (O

24 Aug 2019

Acquisition Time (sec) 4.0894

Temperature (degree C) 27.000

1H

zg30

File Name

Nucleus

Pulse Sequence

Comment

Solvent

Chloroform-d

25 ~

¹H NMR spectrum of **3b** (400.1 MHz, CD_3CN)

Acquisition Time (sec)	1.0000	Date	Sep 28 2018	File Name	C:\DOCS\OUTPU	T_301\F19\2018.09.28\BM-1372_20180928_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 89286
Points Count	131072	Pulse Sequence	s2pul	Solvent	ACETONITRILE-	03
Sweep Width (Hz)	89285.71	Temperature (degree C)	22.000			

FW 373.3684 **Formula** C₂₄H₁₀F₂NO₂

FW 373.3684	Formula CatHasFaNOa
-------------	---------------------

Acquisition Time (sec)	2.3069	Date	Oct 18 2018	File Name	C:\DOCS\OUTPU	T_301\F19\2018.10.18\BM-1397d-F_20181018_01\FLUORINE_01
Frequency (MHz)	376.32	Nucleus	19F	Number of Transients	8	Original Points Count 262144
Points Count	262144	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D	03
Sween Width (U=)	112626.27	Tomporatura (domroo C	1 22 000			

FW 401.4215 **Formula** C₂₃H₂₂F₃NO₂

FW	401.4215	Formula CasHasFaNOa
----	----------	---------------------

Acquisition Time (sec)	2.3069	Date	Oct 4 2018	File Name	C:\DOCS\OUTPU	T_301\F19\2018.10.04\BM-1377-F_20181004_01\FLUORINE_01
Frequency (MHz)	376.32	Nucleus	19F	Number of Transients	8	Original Points Count 262144
Points Count	262144	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D	03
Sweep Width (Hz)	113636.37	Temperature (degree C	22.000			

Acquisition Time (sec)	1.9000	Date	Oct 1 2018	File Name	C:\DOCS\OUTP	PUT_301\F19\2018.10.01\BM-1373_20181001_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 169643
Points Count	262144	Pulse Sequence	s2pul	Solvent	DMSO-D6	Sweep Width (Hz) 89285.71
				•		•

Temperature (degree C) 22.000

FW	391.4078	Formula C ₂₀ H ₁₆ F ₂ NO ₂ S
		20 10 3 2

Acquisition Time (sec)	2.3069	Date	Oct 4 2018	File Name	C:\DOCS\OUTPU	T_301\F19\2018.10.04\BM-1378-F_20181004_01\FLUORINE_01
Frequency (MHz)	376.32	Nucleus	19F	Number of Transients	8	Original Points Count 262144
Points Count	262144	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D)3
Sweep Width (Hz)	113636.37	Temperature (degree C)	22.000			

S26

FW 379.7600	Formula C ₁₉ H ₁₃ CIF ₃ NO ₂
--------------------	--

Acquisition Time (sec)	1.9000	Comment STANDARD FLUORINE PARAMETERS			Date	Oct 1 2018	
File Name	C:\DOCS\OUTPUT	UTPUT_301\F19\2018.10.01\BM1375_20181001_01\FLUORINE_01					376.31
Nucleus	19F	Number of Transients	16	Original Points Count	169643	Points Count	262144
Pulse Sequence	s2pul	Solvent	DMSO-D6	Sweep Width (Hz)	89285.71	Temperature (degree C	22.000

¹⁹F NMR spectrum of **3g** (376.5 MHz, CD₃CN)

S28

FW 424.2113 **Formula** C₁₉H₁₃BrF₃NO₂

Acquisition Time (sec)	1.9000	Date	Oct 1 2018	File Name	C:\DOCS\OUTP	UT_301\F19\2018.10.01\BM1376_20181001_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 169643
Points Count	262144	Pulse Sequence	s2pul	Solvent	DMSO-D6	Sweep Width (Hz) 89285.71

Temperature (degree C) 22.000

⁴ Apr 2019

Acquisition Time (sec)	0.7340	Date	Mar 19 2019	File Name	C:\DOCS\OUTPUT_301\F19\2019.03.19\bm1521-2-f_20190319_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	1000 Original Points Count 65536
Points Count	65536	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D3
Sweep Width (Hz)	89285.71	Temperature (degree C)	22.000		
Sweep Width (Hz)	89285.71	Temperature (degree C)	22.000		<image/>
30 20 4	10 0 1		-50 -60	-70 _80 00	
30 20 -	IU U -1	J -2U -3U -4U	¹⁹ F NMR	Chemical Shift (pp spectrum of 3j (376	-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 m) 6.5 MHz, CD ₃ CN)

4 Apr 2019

4 Apr 2019

Acquisition Time (sec)	0.7340	Date	Mar 12 2019	File Name	C:\DOCS\OUTPUT_301\F19\2019.03.12\bm1512-f_20190312_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	100 Original Points Count 65536
Points Count	65536	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D3
Sweep Width (Hz)	89285.71	Temperature (degree C)	22.000		
				œ	
				0.12	H
				Ψ	
					Cl N O
					^{OH} F
					F F
					-
					C6F6
				k k.l.	
۲۰۰۰۰۱۰۰۰۲۰۰۰۲۰۰۰۲۰۰۰۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	10 0 _1		····· 0 _50 _60	-70 -80 -00	

FW 379.7600 Formula C₁₉H₁₃CIF₃NO₂ Acquisition Time (sec) 1.0000 Date Oct 19 2018 File Name C:\DOCS\OUTPUT_301\F19\2018.10.19\BM-1404_20181019_01\FLUORINE_01 Original Points Count 89286 Frequency (MHz) 376.31 Nucleus 19F Number of Transients 32 CHLOROFORM-D Points Count 131072 Pulse Sequence s2pul Solvent Sweep Width (Hz) Temperature (degree C) 22.000 89285.71 -84.16 `O .OH C6F6

13 Feb 2019

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 Chemical Shift (ppm)

¹⁹F NMR spectrum of **3I** (376.5 MHz, CDCl₃)

S41

FW 370.3247	Formula C ₂₀ H ₁₃ F ₃ N ₂ O ₂	
-------------	--	--

Acquisition Time (sec)	2.3069	Date	Oct 4 2018	File Name C:\DOCS\OUTPUT_301\F19\2018.10.04\BM-1380-F_20181004_01\FLUORINE_01				
Frequency (MHz)	376.32	Nucleus	19F	Number of Transients	ts 8 Original Points Count 262144			
Points Count	262144	Pulse Sequence	s2pul	Solvent	ent ACETONITRILE-D3			
Sweep Width (Hz)	113636.37	Temperature (degree C)	22.000					

FW	424.2113	Formula C10H13BrF3NO3

Acquisition Time (sec)	2.3069	Date	Oct 18 2018	File Name	C:\DOCS\OUTPUT	T_301\F19\2018.10.18\BM-1402-2-F_20181018_01\FLUORINE_01
Frequency (MHz)	376.32	Nucleus	19F	Number of Transients	8	Original Points Count 262144
Points Count	262144	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D	03
Sweep Width (Hz)	113636.37	Temperature (degree C)	22.000			

FW 424.2113	Formula C ₁₉ H ₁₃	BrF ₃ NO ₂					
Acquisition Time (sec)	1.0000	Date	Oct 5 2018	File Name	C:\DOCS\OUTPU	T_301\F19\2018.10.05\BN	I-1381_20181005_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	32	Original Points Count	89286
Points Count	131072	Pulse Sequence	s2pul	Solvent	ACETONITRILE-I	03	
• • • • • • • •							

Sweep Width (Hz) 89285.71 Temperature (degree C) 22.000

S48

▲^{OH} F

112.99

-112.42

-10

¹³C NMR spectrum of **3p** (100.6 MHz, CD₃CN)

FW 424.2113	Formula C ₁₉ H ₁₃ E	BrF ₃ NO ₂				
Acquisition Time (sec)	2.0000	Date	Oct 29 2018	File Name	C:\DOCS\OUTPU	T_301\F19\2018.10.29\BM-1392-2f_20181029_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 178571
Points Count	262144	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D)3
Sweep Width (Hz)	89285.71	Temperature (degree C)	22.000			

FW 346.3033	346.3033 Formula C ₁₈ H ₁₃ F ₃ N ₂ O ₂						
Acquisition Time (sec)	2.3069	Date	Oct 18 2018	File Name	C:\DOCS\OUTPU	T_301\F19\2018.10.18\BM-1394-F_20181018_01\FLUORINE_01	
Frequency (MHz)	376.32	Nucleus	19F	Number of Transients	8	Original Points Count 262144	
Points Count	262144	Pulse Sequence	s2pul	Solvent	ACETONITRILE-D	03	
Sweep Width (Hz)	113636.37	Temperature (degree C)	22.000				

Acquisition Time (sec)	1.0000	Date	Jun 7 2019	File Name	C:\DOCS\OUTPUT_301\F19\2019.06.07\BM-1604-a_20190607_01\FLUORINE_01		
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 89286	
Points Count	131072	Pulse Sequence	s2pul	Solvent	CHLOROFORM-D)	
Sweep Width (Hz)	89285.71	Temperature (degree C)	21.000				

¹H NMR spectrum of **4** (400.1 MHz, CD₃CN). Signals of **3a** are the result of hydrolysis of **4** during preparation and storing of the NMR sample.

Acquisition Time (sec)	1.0000	Date	Jun 3 2019	File Name	ile Name I:\SPEC_F_2019\2019.06.03\BM-1588_20190603_01\FLUORINE_01			
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 89	9286	
Points Count	131072	Pulse Sequence	s2pul	Solvent	CHLOROFORM	-D		
Sweep Width (Hz)	89285.71	Temperature (degree C) 21.000					

¹³C NMR spectrum of **4** (100.6 MHz, CD₃CN). Signals of **3a** are the result of hydrolysis of **4** during preparation and storing of the NMR sample.

¹H NMR spectrum of mixture of quinoline and methyl 2-((4,4,4-trifluoro-3-oxo-1-phenylbut-1-en-1-yl)thio)acetate **5** (400.1 MHz, CDCl₃). The region with signals of compound **5** are highlighted.

¹H NMR spectrum of mixture of quinoline and methyl 2-((4,4,4-trifluoro-3-oxo-1-phenylbut-1-en-1-yl)thio)acetate **5** (400.1 MHz, CDCl₃). The region with signals of quinoline are highlighted.

are highlighted.

Acquisition Time (sec)	4.0894	Comment	Imported from UX	XNMR.		Date	20 Jun 2019 19:27:10
File Name	C:\Users\BM-1\E	Downloads\BM-1607\BM-16	07_001001r	Frequency (MHz)	400.13	Nucleus	1H
Number of Transients	8	Original Points Count	32768	Points Count	131072	Pulse Sequence	zg30
Solvent	CHLOROFORM	I-D		Sweep Width (Hz)	8012.82	Temperature (degree C)	27.000

26 Aug 2019

Acquisition Time (sec)	0.7340	Date	Jul 5 2019	File Name	C:\DOCS\OUTPL	JT_301\F19\2019.07.05\BN	A-1623-R_20190705_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count	65536
Points Count	65536	Pulse Sequence	s2pul	Solvent	CHLOROFORM-	D	
Sweep Width (Hz)	89285.71	Temperature (degree C)	25.000				
							Q
				.72			F
				-13			\land \land \checkmark /
							F F
							$\sim N$
							-
							C6F6
							1
				h.1			

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 Chemical Shift (ppm) 30 20 10 -30 Ó -10 -20 -40 -50

¹⁹F NMR spectrum of **7** (376.5 MHz CDCl₃)

S68

19F_.1.fid F19

- -72.47

3 Oct 2019

Acquisition Time (sec)	2.0000	Date	Sep 30 2019	File Name	C:\DOCS\OUTPUT	_301\F19\2019.09.30\BM-1716-2_20190930_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 178571
Points Count	262144	Pulse Sequence	s2pul	Solvent	CHLOROFORM-D	
Sweep Width (Hz)	89285.71	Temperature (degree C)	20.000			
						HOFF
						N OH F
						F F
				62		
						C6F6
$\begin{array}{c} 29.26\ 75.00 \\ \rule{0pt}{1pt} \rule{0pt}{1$						
30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 Chemical Shift (ppm) 19E NIMP spectrum of 9 and 9 (376 5 MHz CDCL)						

Acquisition Time (sec)	1.0000	Date	Sep 20 2019	File Name	C:\DOCS\OUTPU	T_301\F19\2019.09.20\BM-1709-R_20190920_01\FLUORINE_01
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	8	Original Points Count 89286
Points Count	131072	Pulse Sequence	s2pul	Solvent	CHLOROFORM-D)
Sweep Width (Hz)	89285.71	Temperature (degree C)	20.000			

Acquisition Time (sec)	2.0000	Date	Sep 30 2019	File Name	C:\DOCS\OUTPUT_301\F19\2019.09.30\BM-1709-F_20190930_01\FLUORINE_01				
Frequency (MHz)	376.31	Nucleus	19F	Number of Transients	16	Original Points Count 178571			
Points Count	262144	Pulse Sequence	s2pul	Solvent	CHLOROFORM-D				
Sweep Width (Hz)	89285.71	Temperature (degree C) 20.000							

83.05

