Supplementary information

Microalgae: A sustainable adsorbent with high potential for upconcentration of indium(III) from liquid process and waste streams

Nina Ricci Nicomel^{a,*}, Lila Otero-Gonzalez^a, Larissa Arashiro^{a,b}, Marianna Garfí^b, Ivet Ferrer^b, Pascal Van Der Voort^c, Kim Verbeken^d, Tom Hennebel^e, Gijs Du Laing^a

^a Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
^b Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain

^c Center for Ordered Materials, Organometallics and Catalysis, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium

^d Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark Zwijnaarde 46, 9052 Zwijnaarde, Belgium

^e Center for Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

* Corresponding author:

E-mail: NinaRicci.Nicomel@UGent.be

Tel.: +3292646131

Fax: +3292646232

Figure S1. Light microscope images of the microalgal biomass before grinding (top) and

after grinding (bottom).

Figure S2. Percentage of indium precipitation as a function of pH. Experimental conditions: initial In(III) concentration = 0.15 mM; contact time = 24 hours; room temperature.

Figure S3. SEM images of the microalgal biomass surface (A) before and (B) after In(III) biosorption.

ТŅ

15.0kV SEI

В

X 1,500

10 חבן WD 8.0 n

Figure S4. SEM images of the microalgal biomass particles before In(III) adsorption (top), after In(III) adsorption (middle), and after In(III) desorption (bottom).

Figure S5. Predicted indium speciation in aqueous solution using the Hydra-Medusa software (indium concentration = 0.15 mM; chloride concentration = 0.30 mM).

Figure S6. SEM image of the microalgal biomass after In(III) desorption using 0.1 M HCl. The highlighted part in red shows a portion of the surface that was possibly destroyed because of the desorption process.

Table S1. Constants and correlation coefficients of Langmuir isotherm model for Cu(II), Zn(II), Sn(II), Al(III), and Fe(III) biosorption using microalgal biomass at an initial pH of 2.

Langmuir Isotherm model	Parameter	Value
Cu(II)	$q_{\rm max}$ (mmol/g)	0.05
	b (L/mmol)	0.38
	R^2	0.99
Zn(II)	$q_{\rm max}$ (mmol/g)	0.05
	b (L/mmol)	0.18
	R^2	0.92
Sn(II)	$q_{\rm max}$ (mmol/g)	1.01
	b (L/mmol)	1.06
	R^2	0.95
Al(III)	$q_{\rm max} ({\rm mmol/g})$	0.11
	b (L/mmol)	2.92
	R^2	0.95
Fe(III)	$q_{\rm max}$ (mmol/g)	0.57
	b (L/mmol)	0.51
	R^2	0.95

Note: Sn(II) removal was most likely because of precipitation because of the white insoluble solids formed during the incubation of the samples. This suggests that the actual q_{max} for Sn(II) is lower than the obtained q_{max} .