Supporting Information

Catalyst-free Synthesis of Biodiesel Precursors from Biomass-based Furfuryl Alcohols in the Presence of H₂O and Air

Shengxiang Qin,[†],^b Teng Li,[†],^a Man Zhang,^a Hongyu Liu,^a Xin Yang,^a Nianxin Rong,^a Jun Jiang,^a Yalin Wang,^a Hua Zhang,^{*},^b and Weiran Yang,^{*},^a

^a Key Laboratory of Poyang lake Environment and Resource Utilization (Nanchang University), Ministry of Education, No. 999 Xuefu Avenue, Jiangxi 330031, R.P. China. E-mail: wyang16@ncu.edu.cn

^a School of Resource Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Jiangxi 330031, R.P. China.

^b School of Chemistry, Nanchang University, No. 999 Xuefu Avenue, Jiangxi 330031, R.P. China.

[†] S. Qin and T. Li contributed equally to this work.

Table of Contents

1. Methods for preparing 5-methylfurfural (5-MF)1
2. Calibration curves for the product2
3. ICP-AES analysis and control experiments
3.1 Inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis3
3.2 Control experiments
4. Kinetic study5
5. CO ₂ detection experiments
6. Ultra Performance Liquid Chromatography Quadrupole Time-of-flight Mass Spectrometry
(UPLC-QTOF-MS) analysis
7. Synthesis of substrates
8. Mechanism verification experiments11
9. Application for C ₁₁ biodiesel synthesis from 5-MF12
10. Analytical data and NMR spectra of compounds13

1. Methods for preparing 5-methylfurfural (5-MF)

Scheme S-1. 5-MF preparation methods

(a). Industrial process for 5-MF production

$$(CH_3)_2NCHO, POCl_3$$

$$Yield: 76\%$$
2-methylfuran
$$5-MF$$

2-methylfuran

J. Org. Chem. 1957, 22, 1268 - 1269.

(b). Direct catalytic synthesis of 5-MF from fructose

ChemSusChem., 2011, 4, 349 - 352.

(c). Conversion of 5-HMF into 5-MF by using a PVP-assisted Pd catalyst

(d). One step preparation of 5-MF from starch by iodide mediated hydrogenolysis

Green Chem., 2019, 21, 4169 - 4177.

2. Calibration curves for the product

Make a series of cyclohexane solutions with different product concentrations by using a 25 ml volumetric flask, and then perform the GC-FID measurement to draw the standard curve.

3. ICP-AES analysis and control experiments

3.1 Inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis

After the typical reaction, cyclohexane was removed from the reaction mixture by vacuum distillation. 0.5 mL the resulting solution was digested by using plasma-pure nitric acid and then diluted to 25.0 mL with double distilled H_2O . ICP-AES analysis was performed on thermo scientific 7000 series.

The concentration of metals in reaction liquid was listed in the following Table S-1:

Elem.	Conc. (ppm)	
Al	0.004313	
Bi	0.04755	
Cd	0.003818	
Со	0.0005510	
Cr	0.05767	
Cu	0.003466	
Fe	0.1001	
Mg	0.03485	
Mn	0.003081	
Ni	0.004018	
Ir	-0.005900	
Pd	-0.001308	

Pt	-0.0002870
Rh	-0.05071
Ru	0.04197
Sn	0.04795
Sr	0.005078
Zn	0.005782

3.2 Control experiments

Table S-2. Different brands of 5-methylfurfuryl alcohol (5-MFA) and purified 5-MFA experiments^a

	OH OH	1.0 mL H ₂ O, <u>1.0 mL cyclohexane</u> 100°C, 2 h		
	5-MFA		BMFM	
Entry		5-MFA brand		Yield (%)
1		Ark		74
2		9-dingchem		68
3		Energy Chemical		71
4 ^b		Energy Chemical		75

^a 5-MFA (0.2 mmol), ^b 5-MFA is purified by vacuum distillation.

	$\underbrace{O}_{\text{OH}} \underbrace{\begin{array}{c} 1.0 \text{ mL} \\ 1.0 \text{ mL cyc} \\ 100^{\circ}\text{C} \end{array}}_{100^{\circ}\text{C}}$	$H_2O,$ <u>lohexane</u> 2 h	-
	5-MFA	BMFM	
Entry	Cyclohexane brand	Different sources of H ₂ O	Yield (%)
1	Inno-chem	Running H ₂ O	64
2	Inno-chem	Distilled H ₂ O	68
3	Inno-chem	Ultra-pure H ₂ O	70
4	Xilong scientific	Ultra-pure H ₂ O	71
5	Tokyo chemical industry	Ultra-pure H ₂ O	73

Table S-3. Different sources of cyclohexane and H₂O experiments^a

^a 5-MFA obtained from Energy chemical (0.2 mmol).

4. Kinetic study

The kinetic curves were drawn in **Figure S-1** to study the reaction process. In just 10 minutes, both the conversion and the yield are more than half, showing that this reaction occurs very quickly. As the increase of time, the yield gradually increases with the conversion rate, and 92% of 5-MFA was converted and 79% yield of BMFM were obtained in 2 h. Some intermediates might existence in this process, but they were not detected by NMR, GC-MS and UPLC-MS.

Figure S-1. Kinetic study on the BMFM production from 5-MFA

5. CO₂ detection experiments

A typical reaction in 10 mL stainless reactor was carried out and the gaseous products were analyzed by HS-GC.

Scheme S-2. CO₂ detection experiments

raw material 0.4 mmol	2.0 mL H ₂ O, 2.0 mL cyclohexane 100°C, 2 h, 50 psi air	CO ₂
None		N. D.
5-MFA		D.
НСНО		N. D.

6. Ultra Performance Liquid Chromatography Quadrupole Time-of-

flight Mass Spectrometry (UPLC-QTOF-MS) analysis

A typical reaction with TEMPO (3.0 equivalents) was performed for free radical trapping experiments. After this reaction, cyclohexane phase was concentrated and tested with UPLC-QTOF-MS equipment. The result is as follows

7. Synthesis of substrates

Synthesis of 2-methyl-1-(5-methylfuran-2-yl)propan-1-ol (MFPL)

A solution of 5-MF (0.536 mL, 5.4 mmol) in dry THF (5.0 mL) was added to a solution of isopropylmagnesium chloride in Et₂O (2.0 M, 3.0 mL, 6.0 mmol). The mixture was stirred at 0°C for 1 hour. After the reaction, saturated aqueous NH₄Cl (10.0 mL) was added, and the mixture was extracted with diethyl ether (3 \times 10 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. 2-methyl-1-(5-methylfuran-2-yl)propan-1-ol (MFPL) was isolated as a yellow oil (0.8081 g, 97%) and used without further purification.

Synthesis of (5-methylfuran-2-yl)methyl 5-methylfuran-2-carboxylate (MMMC)

A solution of MFCA (0.378 g, 3.0 mmol) and SOCl₂ (1.1 mL, 15.0 mmol) in benzene (15.0 mL) was refluxed for 1 h. Removal of the solvent under reduced pressure afforded crude 5-methylfuran-2-carbonyl chloride in a quantitative yield. After added pyridine (10.0 mL), 5-methylfurfuryl alcohol (5-MFA) (0.336 g, 3.0 mmol), the mixture was stirred at 60°C for 3 h under N₂. The reaction liquid was cooled down and extracted with ethyl acetate and the extractive liquid was dried with anhydrous Na₂SO₄, and then concentrated under reduced pressure. The residue was separated by flash column chromatography over silica gel eluting with petroleum

ether and ethyl acetate to obtain the product (5-methylfuran-2-yl)methyl 5-methylfuran-2-carboxylate (MMMC) as light yellow liquid.

8. Mechanism verification experiments

Scheme S-3. Mechanism verification experiments

(a). Study on the effect of H_2O on the system

0.1 mL CH₃COOH

with 1.0 mL $\rm H_2O,\,10\%$ without 1.0 mL H₂O, trace

(b). The effect of acid-base environment on the reaction

9. Application for C₁₁ biodiesel synthesis from 5-MF

Scheme S-4. Synthetic of biodiesel application from 5-MF

Synthesis of 5-MFA by hydrogenation of 5-MF

5-MF (1.0 g, 9.08 mmol) was dissolved in anhydrous CH₃OH (10.0 mL) in a 50 mL round bottom flask under nitrogen. NaBH₄ (0.678 g, 18.2 mmol) was added, and the mixture was stirred for 16 h at room temperature. H₂O was added, and the aqueous phase was extracted with dichloromethane. The organic layer was dried with Na₂SO₄ and filtered. Evaporation of the solvent afforded a 98% yield 5-MFA as orange liquid.

Synthesis of BMFM from 5-MFA through our method

5-MFA (0.5606 g, 5.0 mmol), 20.0 mL H₂O and 20.0 mL cyclohexane were added to a 50 mL round bottom flask, under 100°C heating for 2 h with the condenser tube reflux. The the reaction was cooled to room temperature and the aqueous phase was extracted with EA. The combined organic layer was dried over Na_2SO_4 and filtered. Evaporation of the solvent afforded a 79% yield BMFM as light yellow oil.

Synthesis of C₁₁ biodiesel via the hydrodeoxygenation of BMFM

BMFM (0.5 mmol, 88.0 mg), Pd/C (5.0 wt%, 25 mg), H-beta zeolite (25.0 mg) and 4.0 mL cyclohexane were added to a 10 mL high pressure reactor. The reactor was purged three times with nitrogen and then charged with 3.5 MPa H₂. Then the reactor was heated to 240°C under vigorous stirring for 10 h. After the system cooled down to room temperature, the catalyst was

removed by filter and the liquid solution was analyzed by GC-MS, 76% yield C_{11} biodiesel was obtained by GC.

10. Analytical data and NMR spectra of compounds

2-methyl-1-(5-methylfuran-2-yl)propan-1-ol (MFPL)

Yellow liquid,

¹ H NMR (400 MHz; CD₃OD): δ = 6.08-6.07 (d, 1H), 5.91-5.90 (d, 1H), 4.19-4.17 (d, 1H), 2.25 (s, 3H), 2.10-2.00 (t, 1H), 1.01-0.99 (d, 3H), 0.82-0.81 (d, 3H);

¹³ C NMR (100 MHz; CD₃OD): δ = 154.70, 150.74, 106.85, 105.41, 72.88, 32.90, 17.98, 17.71, 12.09.

(5-methylfuran-2-yl)methyl 5-methylfuran-2-carboxylate (MMMC)

Light yellow liquid,

¹ H NMR (400 MHz; DMSO-D₆): δ = 7.22-7.21 (d, 1H), 6.46-6.45 (d, 1H), 6.32-6.31 (d, 1H), 6.08-6.07 (d, 1H), 5.18 (s, 2H), 2.34 (s, 3H), 2.26 (s, 3H);

¹³ C NMR (100 MHz; DMSO-D₆): δ = 157.91, 157.88, 153.18, 147.81, 142.42, 120.70, 112.83, 109.42, 107.33, 58.20, 13.97, 13.74.

bis(5-methylfuran-2-yl)methane (BMFM)

Light yellow liquid,

¹ H NMR (600 MHz; CD₃OD): δ = 5.91-5.90 (dd, 2H), 5.87-5.86 (dd, 2H), 3.83 (s, 2H), 2.21 (s, 6H);

¹³ C NMR (100 MHz; CD₃OD): δ = 150.55, 150.03, 106.44, 105.69, 26.71, 12.00.

HRMS (ESI-TOF) (m/z): Calcd for $C_{11}H_{12}O_2$, [M+H]⁺: 177.0910, Found : 177.0914.

Mass spectrogram of the component of BFM with retention time of 15.60 min. Inset shows the suggested molecular formula.

Mass spectrogram of the component of BMFM with retention time of 20.46 min. Inset shows the suggested molecular formula.

Mass spectrogram of the component of MDBF with retention time of 22.42 min. Inset shows the suggested molecular formula.

Mass spectrogram of the component of (5-(2-methyl-1-(5-methylfuran-2-yl)propyl)furan-2-yl)methanol (MPFM) with retention time of 23.38 min. Inset shows the suggested molecular formula.

Mass spectrogram of the component of FMMF with retention time of 18.39 min. Inset shows the suggested molecular formula.

Mass spectrogram of the component of undecane with retention time of 16.32 min. Inset shows the suggested molecular formula.