Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Direct Extraction of Copper from Copper Sulfide Minerals using Deep Eutectic Solvents

Syahrie Anggara,^a Francesca Bevan,^a Robert C. Harris,^a Jennifer M. Hartley,^{a,b} Gero Frisch,^b Gawen R. T. Jenkin,^c Andrew P. Abbott^{a*}

^a Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK

^b Institut für Anorganische Chemie, TU Bergakademie Freiberg, 09599 Freiberg, Germany

^c School of Geography, Geology and the Environment, University of Leicester, Leicester,

LE1 7RH, UK

E-mail: apa1@le.ac.uk;

Supplementary Information:

Figure S1: UV-vis comparisons of Cu-species in 1ChCl:2EG (left), identification of species in leached chalcopyrite (middle), and Cu-species in 1ChCl:2U (right).

Figure S2: Graph showing the formal electrode potentials for copper and iron in 1ChCl:2EG and 1ChCl:2U.

Figure S3: EXAFS, Fourier transforms, and XANES of CuCl₂, CuCl, and CuS in 1ChCl:2U. In 1ChCl:2U the CuS is more closely related to CuCl than CuCl₂.

Figure S4: EXAFS, Fourier transforms, and XANES of Fe chlorides in 1ChCl:2EG (top) and 1ChCl:2U (bottom). In 1ChCl:2EG both species are tetrachloride, with different oxidation states. In 1ChCl:2U both species are urea-complexed, with the same oxidation states.

Figure S5: Normalised UV-vis spectra of $CuCl_2$ (left) and $FeCl_3$ (right) in the three different DESs, showing that speciation remains similar for copper but changes substantially for iron.