Continuous flow synthesis of menthol via tandem cyclizationhydrogenation of citronellal catalyzed by scrap catalytic converters

Alessio Zuliani,^a Camilla Maria Cova,^a Roberta Manno,^b Victor Sebastian,^{b,c,d} Antonio A. Romero^a and Rafael Luque^{*a,e}

^{a.} Departamento de Química Organica, Universidad de Cordoba, Edificio Marie-Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, Spain. E-mail: rafael.luque@uco.es

^{b.}Nanoscience Institute of Aragon and Chemical and Environmental Engineering Department, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.

^{c.} Networking Research Center CIBER-BBN, 28029, Madrid, Spain.

^d Aragón Materials Science Institute, ICMA, CSIC, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.

e. Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russia.

Set up of the Tandem apparatus

B)

The normal set up of the H-Cube® is illustrated in Fig. S1-C.

Fig. S1. (A) H-Cube[®] Mini Plus (Thalesnano Inc.) linked to an X-Cube[™] (Thalesnano Inc.). (B) Flow connections of the tandem apparatus. (C) Flow connections of H-Cube[®]

Experimental details

1. Elemental analysis of SCATs and Fe/SCATs

Elements detected through qualitative analysis (ICP-MS) of SCATs: Mg, Al, Si, Fe, Ce, Ti, Zn, Zr, Pt

Quantitative analysis of SCATs (MP-AES): $0.97\%_{wt}$ Fe, $<0.2\%_{wt}$ Pt

Quantitative analysis of Fe/SCATs (sample A) before and after reaction (MP-AES): ~7.5% wt Fe, <0.2% wt Pt

2. STEM-HAADF of SCATs and Fe/SCATs after reaction

Fig. S2 (A) and (B) STEM-HAADF images of SCATs after reaction. (C) EDS analysis of selected points (L1-L3) of SCATs after reaction. (D) and (E) STEM-HAADF images of Fe/SCATs after reaction. (H) EDS analysis of selected locations (L4-L6) of Fe/SCATs after reaction.

Results and discussion

1. Preliminary study

Entry	$H_2 p / bar$	Tª / K	Flow rate / mL min ⁻¹	Y _{ms} / % ^b
1	30	373-323	0.1	48.7
2	30	373-348	0.1	54.7
3	30	373-373	0.1	65.3
4	30	373-398	0.1	76.2
5	30	373-423	0.1	82.6
6	30	373-448	0.1	83.1
7	30	373-423	0.3	61.8
8	30	373-423	0.5	43.6

 $^{\rm a}$ Temperature of Cartridge 1 and Cartridge 2. $^{\rm b}$ Yield % to menthols at stationary state

 Table S1. Performances of the tandem reaction carried out using 30 mm-long Cartridge 1 and 70 mm-long Cartridge 2. Reaction parameters: (±)-citronellal 20 mM in toluene.

2. Influence of the flow rate

Entry	Flow rate / mL min ⁻¹	$Y_{ms} / \%^{a}$	$S_{(\pm)-m} / \%^{b}$	Y _{(±)-m} / % ^c
1	0.1	91.8	84.2	77.3
2	0.3	68.6	77.7	53.3
3	0.5	41.6	73.1	30.4

 $^{\rm a}$ Yield % to menthols at stationary state. $^{\rm b}$ Selectivity to (±)-menthol. $^{\rm c}$ Yield to (±)-menthol.

Table S2. Tandem cyclisation-hydrogenation of (\pm)-citronellal to (\pm)-menthol. Reaction parameters: (\pm)-citronellal 20 mM in toluene, Cartridge 1 fixed at 373 K; Cartridge 2 fixed at 413 K, 5 bar H₂ pressure.