Supplementary information

Selective hydrogenolysis of 2-furancarboxylic acid to 5-hydroxyvaleric acid

derivatives over supported platinum catalyst

Takehiro Asano,^a Hiroshi Takagi,^a Yoshinao Nakagawa,^{a,b,*} Masazumi Tamura^{a,b} and Keiichi Tomishige^{a,b,*}

^{*a*} Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan

^b Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki,

Aoba-ku, Sendai 980-0845, Japan

Substrate	Catalyst	Solvent	Substrate/catalyst	$P(H_2)$	Т	t	Conv.	Main product		Ref.
			/solvent	/MPa	/K	/h	/%	(Selectivity /%)		
			g/g/g							
FCA	Pt/Al ₂ O ₃	Methanol	1.1/0.05/29	4	373	4	>99	Methyl		This
								5-hydroxyvalerate (55)		work
FCA	Pt-MoO _x /TiO ₂	Water	1.1/0.1/19	1.5	413	4	97	Valeric acid (53)		S1
FCA	Pt/TiO ₂	Water	1.1/0.1/19	1.5	413	4	19	THFCA (<20)		S1
FCA	Rh-MoO _x /TiO ₂	Water	1.1/0.1/19	1.5	413	4	57	THFCA (47)		S1
FCA	$Pd-MoO_x/TiO_2$	Water	1.1/0.1/19	1.5	413	4	>99	THFCA (81)		S1
FCA	Ir-MoO _x /TiO ₂	Water	1.1/0.1/19	1.5	413	4	9	Mixture		S1
FCA	Ru-MoO _x /TiO ₂	Water	1.1/0.1/19	1.5	413	4	7	Mixture		S1
FCA	Au-MoO _x /TiO ₂	Water	1.1/0.1/19	1.5	413	4	8	Mixture		S1
FCA	Pt oxide	Alcohol	25/0.5/79	< 0.2	n.r.	4	n.r.	THFCA (40%**)		S2
FCA	Pt oxide	Acetic	n.r.	n.r.	n.r.	n.r.	n.r.	δ-Valerolactone (n.r.)		S3
		acid								
FCA	Pd(PPh ₃) ₄ +	THF	0.22/0.02 mmol+6	3	353	48	>99	Furfural (87*)		S4
	(^t BuCO) ₂ O		mmol/4.4							
FCA	Pd/Al_2O_3 +	Water	0.5/0.04 + 0.07	3	rt	1	100	THFCA		S5
	cinchonidine		mmol/20							
FCA	Pd/Al ₂ O ₃ +	iPrOH	0.05/0.04 + 0.034	3	Rt	4	37	THFCA		S6
	1-(1-naphthyl)-		mmol/7.9							
	ethanol									
Menthyl	PtO ₂	iPrOH	0.3 mmol/0.025/12	3	313	6	0	-		S7
ester										
Menthyl	Pt/C	iPrOH	0.3 mmol/0.025/12	3	298	6	0	-		S7
ester										
Menthyl	Rh/C	iPrOH	0.3 mmol/0.025/12	3	313	6	100	Menthyl ester o	of	S7
ester								THFCA		
Menthyl	Ru/C	iPrOH	0.3 mmol/0.025/12	3	313	6	76	Menthyl ester o	of	S7
ester								THFCA		
Menthyl	Pd/Al ₂ O ₃	iPrOH	0.3 mmol/0.025/12	3	313	6	0	-		S7
ester										
Menthyl	Pd(OH) ₂ /C	iPrOH	0.3 mmol/0.025/12	3	313	6	98	Menthyl ester o	of	S7
ester								THFCA		
MeFC	Ru PNP complex	THF	0.056/0.005 mmol/0.9	3	393	19	n.r.	Furfuryl alcohol (81*)		S 8
MeFC	Ir PNP complex +	Toluene	0.13/0.02 mmol + 0.1	5	403	18	n.r.	Furfuryl alcohol (89*)		S9
	NaOMe		mmol/1.8							
FCA	Co triphos complex	THF	0.15 M/0.0075 M	8	373	22	0	-		S10

Table S1. Literature survey of reduction of 2-furancarboxylic acid (FCA) and its ester with H₂.

MeFC	Fe pincer complex	THF	0.13/0.02 mmol/0.9	3	373 18	>99	Furfuryl alcohol (95)	S11
MeFC	Mn Pincer complex	Dioxane	0.13/0.02 mmol + 0.1	3	383 24	n.r.	Furfuryl alcohol (87*)	S12
	+ tBuOK		mmol/2					
FCA	Ru-polyEPG-β-CD	Water+	0.22/0.04 mmol/12+5	1	303 1.5	67	THFCA (100)	S13
	colloid	EtOAc						
FCA	Re complex	THF	0.056/0.01 mmol/3.5	4	433 48	n.r.	Furfuryl alcohol (50*)	S14
MeFC	Ru NNS complex +	Toluene	1.9/0.0075 mmol +	5	353 10	n.r.	Furfuryl alcohol (80*)	S15
	^t BuOK		0.038 mmol/26					
FCA	Pd/Re/C + MS4A	EtOAc	0.11/0.11+0.2/4.5	2	403 18	n.r.	Tetrahydrofurfuryl	S16
							alcohol (69*)	
FCA	Pd/C	EtOH	0.2/0.005/4	1	373 6	100	EtTHFC (36), THFCA	S17
							(64)	
FCA	Pd/MIL-101-SO ₃ H	EtOH	0.2/0.005/4	1	373 6	91	EtTHFC (41), THFCA	S17
							(59)	

FCA: 2-Furancarboxylic acid; MeFC: Methyl 2-furancarboxylate; THFCA: Tetrahydrofuran-2-carboxylic acid; EtTHFC: Ethyl tetrahydrofuran-2-carboxylate; n.r.: not reported; *: yield; **: isolated yield.

[S1] T. Asano, M. Tamura, Y. Nakagawa and K. Tomishige, ACS Sustainable Chem. Eng., 2016, 4, 6253-6257.

[S2] W. E. Kaufmann and R. Adams, J. Am. Chem. Soc., 1923, 45, 3029-3044.

[S3] H. A. Smith and J. F. Fuzek, J. Am. Chem. Soc., 1949, 71, 415-419.

[S4] (a) K. Nagayama, I. Shimizu and A. Yamamoto, Chem. Lett., 1998, 1143-1144. (b) K. Nagayama, I. Shimizu and A.

Yamamoto, Bull. Chem. Soc. Jpn., 2001, 74, 1803-1815.

[S5] M. Maris, W.-R. Huck, T. Mallat and A. Baiker, J. Catal., 2003, 219, 52-58.

[S6] M. Maris, T. Mallat, E. Orglmeister and A. Baiker, J. Mol. Catal. A, 2004, 219, 371-376.

[S7] M. Sebek, J. Holz, A. Börner and K. Jähnisch, Synlett, 2009, 461-465.

[S8] S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou and M. Beller, Angew. Chem. Int. Ed., 2014, 53, 8722-8726.

[S9] K. Junge, B. Wendt, H. Jiao and M. Beller, ChemCatChem, 2014, 6, 2810-2814.

[S10] T. J. Korstanje, J. I. van der Vlugt, C. J. Elsevier and B. de Bruin, Science, 2015, 350-298-302.

[S11] S. Elangovan, B. Wendt, C. Topf, S. Bachmann, M. Scalone, A. Spannenberg, H. Jiao, W. Baumann, K. Junge and M. Beller, Adv. Synth. Catal., 2016, 358, 820-825.

[S12] S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg, K. Junge and M. Beller, Angew. Chem. Int. Ed., 2016, 55, 15364-15368.

[S13] S. Noël, D. Bourbiaux, N. Tabary, A. Ponchel, B. Martel, E. Monflier and B. Léger, Catal. Sci. Technol., 2017, 7, 5982-5992.

[S14] M. Naruto, S. Agrawal, K. Toda and S. Saito, Sci. Rep., 2017, 7, 3425.

[S15] B. M. Stadler, P. Puylaert, J. Diekamp, R. van Heck, Y. Fan, A. Spannenberg, S. Hinze and J. G. de Vries, Adv. Synth. Catal., 2018, 360, 1151-1158.

[S16] J. Ullrich and B. Breit, ACS Catal., 2018, 8, 785-789.

[S17] X. Zhang, L. Chen, Y. Li, H. Li, Z. Xie, Q. Kuang and L. Zheng, Dalton Trans., 2019, 48, 5515-5519.

Entry	Catalyst	Conv.	v. Sel. /%						
		/%	Me-5-HV	5-HVA	DVL	MeTHFC	THFCA		
1	Pt/Al ₂ O ₃	91	51	< 0.1	6	12	10		
2 ^a	Pt/Al ₂ O ₃	>99	55	< 0.1	7	20	2		
3	Pt/ZrO ₂	58	46	< 0.1	4	13	6		
4	Pt/CeO ₂	91	37	< 0.1	7	10	24		
5	Pt/TiO ₂	25	38	< 0.1	5	8	8		
6	Pt/SiO ₂	34	34	< 0.1	6	5	23		
7 ^b	Pt/C	16	24	< 0.1	6	5	25		
8	Pt/Al ₂ O ₃ -sintered ^c	17	32	< 0.1	2	9	11		
9 ^b	Rh/C	>99	6	< 0.1	<1	26	60		
10 ^b	Ru/C	>99	6	< 0.1	<1	23	61		
11 ^b	Pd/C	93	< 0.1	< 0.1	< 0.1	8	89		
12	$Pt\text{-}MoO_x/TiO_2{}^d$	16	33	< 0.1	2	10	11		
(contin	ued)								
Entry	Catalyst	Sel. /%							

Table S2 Reduction of 2-furancarboxylic acid (FCA) over various catalysts in methanol solvent (detailed data of Table 1)

Entry	Catalyst	Sel. /%									
		MeV VA 1,5-PeD		Me-2-HV	MeFC	Methane	СО	CO_2	/%		
1	Pt/Al ₂ O ₃	< 0.1	<1	<1	<1	<1	<1	<1	<1	82	
2 ^a	Pt/Al ₂ O ₃	<1	< 0.1	< 0.1	1	<1	<1	<1	<1	86	
3	Pt/ZrO ₂	< 0.1	<1	< 0.1	2	<1	<1	<1	<1	84	
4	Pt/CeO ₂	< 0.1	<1	< 0.1	<1	< 0.1	<1	<1	<1	80	
5	Pt/TiO ₂	<1	<1	< 0.1	2	1	<1	<1	<1	90	
6	Pt/SiO ₂	< 0.1	<1	< 0.1	<1	<1	<1	<1	<1	90	
7 ^b	Pt/C	2	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	94	
8	Pt/Al ₂ O ₃ -sintered ^c	< 0.1	<1	<1	<1	2	<1	<1	<1	93	
9 ^b	Rh/C	<1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	93	
10 ^b	Ru/C	<1	<1	< 0.1	<1	< 0.1	<1	<1	<1	92	
11 ^b	Pd/C	<1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	97	
12	Pt-MoO _x /TiO ₂ ^d	<1	2	< 0.1	< 0.1	< 0.1	<1	<1	<1	93	

Reaction conditions: M/Al₂O₃(4 wt% M), W_{cat}=0.050 g, W_{FCA}=1.12 g, W_{MeOH}=29 g, P(H₂)=4 MPa at r.t., T=373 K, t=1 h. a: t= 4 h, b: W_{cat}= 0.040 g commercial M/C (5 wt% M) catalyst, c: catalyst calcined at 873 K to decrease Pt dispersion, d: Pt 4 wt%, Mo 0.5 wt% catalyst reported in ref. [S1,18].

Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ -valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

[S18] T. Asano, Y. Nakagawa, M. Tamura and K. Tomishige, ACS Sustainable Chem. Eng., 2019, 7, 9601-9612.

Entry	Solvent	Conv.	Sel. /	%								
		/%	R-5-H	ŦV	5-HVA	L L	DVL	AVA	RTHFC	TH	IFCA	
1	Methanol	91	51		< 0.1		6	-	12	10		
2	Ethanol	90	44		<1		13	-	3	19		
3	1-Propanol	96	27		3		24	-	1	23		
4	2-Propanol	97	4		5		42	-	<1	27		
5	<i>tert</i> -Butanol	81	< 0.1		7		37	-	< 0.1	28		
6	1,4-Dioxane	88	-		5		34	-	-	35		
7	THF	64	-		4		34	-	-	34		
8	Acetic acid	55	-		< 0.1		66	1	-	27		
9	Water	99	-		4		33	-	-	30		
(contin	ued)											
Entry	Solvent	Sel. /%)									
		RV	VA	1,5-]	PeD	R-	2-HV	RFC	Methan	e	CO	CO_2
1	Methanol	< 0.1	<1	<1		<1		< 0.1	<1		<1	<1
2	Ethanol	< 0.1	<1	< 0.1		<1		< 0.1	<1		<1	<1
3	1-Propanol	<1	<1	<1		<1		< 0.1	<1		<1	<1
4	2-Propanol	< 0.1	<1	< 0.1		<0).1	< 0.1	<1		<1	<1
5	tert-Butanol	< 0.1	<1	< 0.1		<0).1	< 0.1	<1		<1	<1
6	1,4-Dioxane	-	<1	<1		-		-	<1		<1	<1
7	THF	-	< 0.1	<0.1		-		-	<1		<1	<1
8	Acetic acid	-	<1	<1		-		-	<1		<1	<1
9	Water	-	<1	6		-		-	<1		<1	<1

Table S3 Solvent effect on hydrogenolysis of FCA over Pt/Al₂O₃ (4 wt% Pt) catalyst (detailed data of Table 2)

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), *W*_{cat}=0.050 g, *W*_{FCA}=1.12 g, *W*_{solvent}=29 g, *P*(H₂)=4 MPa at r.t., *T*=373 K, *t*=1 h. Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; R-5-HV: alkyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ-valerolactone; AVA: 5-acetoxyvaleric acid; RTHFC: alkyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; RV: Alkyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; R-2-HV: alkyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; RFC: alkyl 2-furancarboxylate.

Entry	T/K	Conv.	Sel. /%							
		/%	Me-5-HV	5-HVA	DVL	MeTHFC	THFCA			
1	343	30	28	< 0.1	10	4	17			
2	353	46	41	< 0.1	9	6	16			
3	363	62	47	< 0.1	7	8	13			
4	373	91	51	< 0.1	6	12	10			
5	383	94	52	< 0.1	6	15	7			
6	393	97	53	< 0.1	6	16	6			
7	403	65	41	< 0.1	4	17	5			
8	413	49	40	< 0.1	2	18	3			
(contin	ued)									

Table S4 Effect of reaction temperature on hydrogenolysis of FCA in methanol solvent over Pt/Al_2O_3 catalyst (detailed data of Fig. 2)

Entry	T/K	Sel. /%										
		MeV	VA	1,5-PeD	Me-2-HV	MeFC	Methane	СО	$\rm CO_2$	/%		
1	343	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	88		
2	353	< 0.1	< 0.1	< 0.1	<1	<1	< 0.1	<1	<1	87		
3	363	< 0.1	< 0.1	< 0.1	<1	<1	<1	<1	<1	85		
4	373	< 0.1	<1	<1	<1	<1	< 0.1	<1	<1	82		
5	383	< 0.1	<1	< 0.1	<1	<1	<1	<1	<1	82		
6	393	< 0.1	<1	< 0.1	1	<1	<1	<1	<1	82		
7	403	< 0.1	1	< 0.1	2	2	1	<1	<1	82		
8	413	1	3	< 0.1	3	3	<1	<1	<1	87		

Reaction conditions: $Pt/Al_2O_3(4 \text{ wt\% Pt})$, $W_{cat}=0.050 \text{ g}$, $W_{FCA}=1.12 \text{ g}$, $W_{MeOH}=29 \text{ g}$, $P(H_2)=4 \text{ MPa at r.t.}$, t=1 h.

Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ-valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Entry	<i>t /</i> h	Conv.	Sel. /	%							_		
		/%	Me-5	-HV	5-HV	VA	DVL	MeTH	FC T	HFCA	_		
1	0	20	23		< 0.1		9	3	30)	_		
2	0.2	40	40		< 0.1		9	6	17	7			
3	0.5	64	46		< 0.1		7	9	13	3			
4	1	91	51		< 0.1		6	12	1()			
5	2	95	55		< 0.1		5	17	5				
6	4	>99	55		< 0.1		7	20	2		_		
(contin	nued)												
Entry	<i>t /</i> h	Sel. /%	ó										C.B.
_		MeV	VA	1,5-P	eD	Me-	2-HV	MeFC	Metha	ine (CO	$\rm CO_2$	/%
1	0	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1	<1	~	<1	<1	93
2	0.2	< 0.1	< 0.1	< 0.1		<1		<1	<1	~	<1	<1	89
3	0.5	< 0.1	< 0.1	< 0.1		<1		<1	<1	~	<1	<1	85
4	1	< 0.1	<1	<1		<1		< 0.1	<1	~	<1	<1	82
5	2	< 0.1	<1	< 0.1		1		< 0.1	<1	~	<1	<1	84
6	4	<1	< 0.1	< 0.1		1		<1	<1	~	<1	<1	86

Table S5 Time-course of selective hydrogenolysis of FCA in methanol solvent over Pt/Al₂O₃ (4 wt% Pt) catalyst at 373 K (detailed data of Fig. 2 (I))

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), W_{cat} =0.050 g, W_{FCA} =1.12 g, W_{MeOH} =29 g, $P(H_2)$ =4 MPa at r.t., T= 373 K. Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ -valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Entry	<i>t /</i> h	Conv.	Sel. /	%							
_		/%	Me-5	-HV	5-HVA	DVL	MeTH	FC THFC	A		
1	0	27	43		<0.1	3	8	11			
2	1	49	40		<0.1	2	18	3			
3	2	54	36		< 0.1	2	19	1			
4	4	53	34		<0.1	2	19	<1			
(contir	nued)										
Entry	<i>t /</i> h	Sel. /%	ó								C.B. /%
_		MeV	VA	1,5-PeI	D M	e-2-HV	MeFC	Methane	CO	CO_2	_
1	0	< 0.1	<1	< 0.1	<]	l	1	<1	<1	<1	91
2	1	1	3	< 0.1	3		3	<1	<1	<1	87
3	2	<1	2	< 0.1	5		3	<1	<1	<1	83
4	4	3	1	< 0.1	7		6	<1	<1	<1	85

Table S6 Time-course of hydrogenolysis of FCA in methanol solvent over Pt/Al₂O₃ (4 wt% Pt) catalyst at 413 K (detailed data of Fig. 2 (II))

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), W_{cat} =0.050 g, W_{FCA} =1.12 g, W_{MeOH} =29 g, $P(H_2)$ =4 MPa at r.t., T= 413 K. Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ -valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Entry	$P(H_2)$ at r.t.	Conv.	Sel. /	%							
	/MPa	/%	Me-5	-HV 5-	-HVA	DVL	MeTH	FC THFC	A		
1	1	33	35	<	0.1	6	12	9			
2	2	52	45	<	0.1	5	13	8			
3	3	80	52	<	0.1	6	11	9			
4	4	91	51	<	0.1	6	12	10			
5	6	80	49	<	0.1	5	13	9			
6	8	64	43	<	0.1	5	15	10			
(contir	nued)										
Entry	$P(H_2)$ at r.t.	Sel. /%	<u></u> 0								C.B.
	/MPa	MeV	VA	1,5-PeD	Me	-2-HV	MeFC	Methane	CO	CO_2	/%
1	1	< 0.1	<1	< 0.1	1		1	<1	<1	<1	89
2	2	< 0.1	<1	< 0.1	<1		<1	<1	<1	<1	86
3	3	< 0.1	<1	< 0.1	<1		< 0.1	<1	<1	<1	83
4	4	< 0.1	<1	<1	<1		< 0.1	<1	<1	<1	82
5	6	< 0.1	< 0.1	< 0.1	<1		<1	<1	<1	<1	82
6	8	< 0.1	< 0.1	< 0.1	<1		<1	<1	<1	<1	84

Table S7 Effect of hydrogen pressure on hydrogenolysis of FCA in methanol solvent over Pt/Al₂O₃ (4 wt% Pt) catalyst (detailed data of Fig. 3)

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), W_{cat}=0.050 g, W_{FCA}=1.12 g, W_{MeOH}=29 g, T=373 K, t=1 h.

Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ-valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Entry	$P(H_2)$	t	Conv.	Yield /%				
	/MPa	/h	/%	Me-5-HV	5-HVA	DVL	MeTHFC	THFCA
1	1	0	1	<1	<0.1	<1	< 0.1	<1
2		0.5	8	2	<1	<1	<1	1
3		1	14	5	<1	<1	<1	2
4		1.5	18	7	< 0.1	<1	1	2
5	2	0	3	<1	< 0.1	<1	< 0.1	<1
6		0.5	12	4	<1	<1	<1	2
7		1	21	8	< 0.1	1	1	3
8		1.5	31	15	< 0.1	1	2	3
9	4	0	1	<1	< 0.1	<1	< 0.1	<1
10		0.5	16	6	<1	1	<1	3
11		1	24	10	<1	1	1	3
12		1.5	37	18	<1	1	3	4
13	6	0	2	<1	< 0.1	<1	< 0.1	<1
14		0.5	12	5	<1	<1	<1	2
15		1	21	9	<1	<1	1	3
16		1.5	28	13	<1	1	2	3
17	8	0	1	<1	<0.1	<1	<0.1	<1
18		0.5	10	4	<1	<1	<1	2
19		1	20	8	<1	<1	1	3
20		1.5	23	10	<1	<1	2	2

Table S8 Dependence of initial reaction rate of FCA hydrogenolysis on H₂ pressure (detailed data of Fig. 4)

(continued to next page)

Table S8 (continued)

Entry	$P(H_2)$	t	Yield /%								
	/MPa	/h	MeV	VA	1,5-PeD	Me-2-HV	MeFC	Methane	СО	CO ₂	/%
1	1	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	100
2		0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	97
3		1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	95
4		1.5	< 0.1	<1	< 0.1	<1	<1	<1	<1	<1	94
5	2	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1	<1	99
6		0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1	<1	96
7		1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1	<1	92
8		1.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1	<1	91
9	4	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	100
10		0.5	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	<1	94
11		1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	<1	91
12		1.5	< 0.1	< 0.1	< 0.1	<1	<1	<1	<1	<1	90
13	6	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1	<1	100
14		0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	<1	97
15		1	< 0.1	< 0.1	< 0.1	<1	<1	<1	<1	<1	94
16		1.5	< 0.1	< 0.1	< 0.1	<1	<1	<1	<1	<1	92
17	8	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1	< 0.1	101
18		0.5	< 0.1	< 0.1	< 0.1	< 0.1	<1	<1	< 0.1	< 0.1	97
19		1	< 0.1	< 0.1	< 0.1	<1	<1	<1	< 0.1	<1	94
20		1.5	< 0.1	< 0.1	< 0.1	<1	<1	<0.1	<1	<1	92

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), *W*_{cat}=0.010 g, *W*_{FCA}=1.12 g, *W*_{MeOH}=29 g, *T*=373 K.

Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ-valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Entry	W _{MeOH}	Conv.	Sel. /%									
	/g	/%	Me-5-HV		5-HVA		DVL	MeTH	FC THFO	CA		
1	29	91	51		< 0.1		6	12	10			
2 ^a	29	>99	55		< 0.1		7	20	2			
3	19	95	54		< 0.1		4	18	5			
4	9	>99	55		< 0.1		3	18	5			
5	4	>99	53		<1		4	16	7			
(continued)												
Entry	$W_{\rm MeOH}$	Sel. /%										
	/g	MeV	VA	1,5-Pe	eD	Me-2	2-HV	MeFC	Methane	СО	$\rm CO_2$	/%
1	29	< 0.1	<1	<1		<1		< 0.1	<1	<1	<1	82
2 ^a	29	<1	< 0.1	< 0.1		1		<1	<1	<1	<1	86
3	19	<1	<1	< 0.1		1		<1	<1	<1	<1	83
4	9	<1	<1	< 0.1		1		<1	<1	<1	<1	84
5	4	<1	<1	< 0.1		2		<1	<1	<1	<1	82

Table S9 Effect of FCA concentration (methanol solvent amount) on hydrogenolysis of FCA over Pt/Al₂O₃ catalyst (detailed data of Table 3)

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), $W_{catalyst}$ =0.050 g, W_{FCA} =1.12 g, $P(H_2)$ =4 MPa at r.t., T=373 K, t=1 h, a:t=4 h. Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ -valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Entry	Used time	Conv.	Sel. /	%								
_		/%	Me-5	-HV 5	-HVA	DVL	MeTH	FC THFC	A			
1	1 st (fresh)	95	55	<	0.1	5	17	5				
2	2 nd	79	35	<	0.1	13	12	13				
3	3 rd	67	36	<	0.1	13	9 15					
4	4 th	29	29	<	0.1	14	9 14					
(continued)												
Entry	Used time	Sel. /%										
_		MeV	VA	1,5-PeD	Me-	2-HV	MeFC	Methane	CO	CO ₂	_	
1	1st (fresh)	< 0.1	<1	< 0.1	1		< 0.1	<1	<1	<1	84	
2	2 nd	< 0.1	<1	< 0.1	1		<1	<1	<1	<1	81	
3	3 rd	< 0.1	<1	< 0.1	<1		<1	<1	<1	<1	83	
4	4 th	< 0.1	<1	< 0.1	1		<1	<1	<1	<1	88	

Table S10 Reusability test of Pt/Al₂O₃ without any treatment for hydrogenolysis of FCA

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), W_{cat} =0.050 g, W_{FCA} =1.12 g, W_{MeOH} =29 g, $P(H_2)$ =4 MPa at r.t., T=373 K, t=2 h. Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ -valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Entry	Used time	Conv.	Sel. /%										
		/%	Me-5-HV		5-HVA		DVL	MeTHFC		ΓHFCA	A		
1	1st (fresh)	95	55		< 0.1		5	17		5			
2	2 nd	77	41		< 0.1		8	11		14			
3	3 rd	76	38		< 0.1		9	8		14			
4	4 th	78	36		< 0.1		11	7		16			
(continued)													
Entry	Used time	Sel. /% C										C.B. /%	
		MeV	VA	1,5-Pe	eD	Me-2	2-HV	MeFC	Met	nane	CO	CO ₂	_
1	1st (fresh)	< 0.1	<1	< 0.1		1		< 0.1	<1		<1	<1	84
2	2 nd	< 0.1	<1	< 0.1		1		< 0.1	<1		<1	<1	80
3	3 rd	< 0.1	<1	< 0.1		1		< 0.1	<1		<1	<1	78
4	4 th	< 0.1	<1	< 0.1		1		< 0.1	<1		<1	<1	77

Table S11 Reusability test of Pt/Al_2O_3 with regeneration by calcination at 573 K for hydrogenolysis of FCA (detailed data of Fig. 6)

Reaction conditions: Pt/Al₂O₃(4 wt% Pt), W_{cat} =0.050 g, W_{FCA} =1.12 g, W_{MeOH} =29 g, $P(H_2)$ =4 MPa at r.t., T=373 K, t=2 h. Conv.: conversion; Sel.: selectivity; C.B.: carbon balance; FCA: 2-furancarboxylic acid; Me-5-HV: methyl 5-hydroxyvalerate; 5-HVA: 5-hydroxyvaleric acid; DVL: δ -valerolactone; MeTHFC: methyl tetrahydrofuran-2-carboxylate; THFCA: tetrahydrofuran-2-carboxylic acid; MeV: methyl valerate; VA: valeric acid; 1,5-PeD: 1,5-pentanediol; Me-2-HV: methyl 2-hydroxyvalerate; 2-HVA: 2-hydroxyvaleric acid; MeFC: methyl 2-furancarboxylate.

Fig. S1 XRD patterns of reduced Pt/support catalysts (reduced with 4 MPa H₂ (at r.t.) in methanol at 373 K). (I) Raw patterns, (II) difference patterns ([Pt/support]-[support]). For Pt/SiO₂, the signal for Pt metal can be deconvoluted into two signals with different linewidths.

Fig. S2 TG-DTA profile of Pt/Al_2O_3 catalyst after reaction at 413 K.

Measurement conditions: 10 mg Pt/Al₂O₃ (4 wt%, after reaction) and washing with methanol, under air, 308 K \rightarrow 1073 K, 10 K/min.

Reaction conditions: Pt/Al₂O₃ (4 wt% Pt), W_{cat} =0.050 g, W_{FCA} =1.12 g, W_{MeOH} =29 g, $P(H_2)$ =4 MPa at r.t., T= 413 K, t= 4 h.

Fig. S3 Determination of FCA conversion rate from the data in Table S8. (a) $P(H_2)$ at r.t. =1 MPa, (b) $P(H_2)$ at r.t. =2 MPa, (c) $P(H_2)$ at r.t. =4 MPa, (d) $P(H_2)$ at r.t. =6 MPa, (e) $P(H_2)$ at r.t. =8 MPa,

Fig. S4 Determination of 5-HVA derivatives formation rate from the data in Table S8. (a) $P(H_2)$ at r.t. =1 MPa, (b) $P(H_2)$ at r.t. =2 MPa, (c) $P(H_2)$ at r.t. =4 MPa, (d) $P(H_2)$ at r.t. =6 MPa, (e) $P(H_2)$ at r.t. =8 MPa,