Supporting Information

A novel bicomponent Co₃S₄/Co cocatalyst on CdS accelerating charge

separation for highly efficient photocatalytic hydrogen evolution

Yunpeng Liu^{a, b}, Bingxiong Wang^a, Qiao Zhang^a, Siyuan Yang^c, Yuhang Li^d, Zuo Jianliang^a,

Hongjuan Wang^b, Feng Peng^{a,*}

^a School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China

^b School of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510640, China

^c College of Materials and Energy, South China Agricultural University, Guangzhou, 510642,

China

^d School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China

*Corresponding author:

School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006,

China. E-mail: <u>fpeng@gzhu.edu.cn</u> (F. Peng)

Fig. S1 HAADF-STEM images and the corresponding elemental mapping images of Co@C.

Fig. S2 (a, b) TEM images of CdS. SEM images of (c) CdS and (d) SCS-5.

Fig. S3 (a) SEM, (b) TEM, and (c, d) HR-TEM images of SCS5 after cycling tests.

Fig. S4 (a) XRD patterns, (b) Cd 3d XPS spectra, and (c) S 2p XPS spectra of SCS5 sample

before and after cycling tests.

Fig. S5 Tauc plots of the samples.

Fig. S6 Mott–Schottky plots of CdS, SCS2, SCS5 and SCS8.

Fig. S7 S 2p XPS spectrum of Co₃S₄/Co@C.

Fig. S8 C 1s XPS spectra of (a) Co@C and (b) Co₃S₄/Co@C.

Fig. S9 Photocatalytic H₂ evolution of Pt-CdS with different Pt loadings.

Different amounts of H_2PtCl_6 aqueous solution were used to prepare the Pt-CdS with different loading content of Pt. The result shows that the most optimum loading content of Pt is 1%. The optimal sample Pt-CdS is used to compare with SCS5 for photocatalytic H_2 evolution.

Fig. S10 (a) XRD pattern and (b) SEM image of C.

Fig. S10a is the XRD pattern of C cocatalyst without metallic Co. Compared with those of Co@C and Co₃S₄/Co cocatalysts, the SEM image in Fig. S10b shows the different structural morphology of C cocatalyst. The C-CdS photocatalyst was prepared using this C cocatalyst as precursor.

Fig. S11 (a) XRD pattern of Co₃S₄@C and Co_@C, (b) TEM and HR-TEM of Co₃S₄@C.

Co₃S₄@C was also prepared by a method similar to Co@C, but the hydrothermal time was extended to 48 h when the metal Co was almost vulcanized into Co₃S₄. Fig. S11a is the XRD pattern of Co₃S₄@C and Co@C. Compared with the XRD pattern Co@C, the Co₃S₄@C shows no XRD peak of Co (111), which indicates that the metal Co is was almost vulcanized into Co₃S₄. Furthermore, the TEM images in Fig. S11b shows that the lattice spacing values of 0.24 and 0.28 nm are corresponded to (400) facet and (311) facet of Co₃S₄, further confirming that the existence of Co₃S₄ in Co₃S₄@C. The Co₃S₄-CdS photocatalyst was prepared using this Co₃S₄@C cocatalyst as precursor.

Fig. S12 XRD patterns of different samples.

Fig. S13 UV–vis diffuse reflectance spectra of different samples.

Fig. S14 (a) TEM, (b) HR-TEM, (c) HAADF-STEM images and EDX element mapping of

mechanically mixed (Co₃S₄/Co)-CdS.

Fig. S15 Comparison of photocatalytic H₂ evolution of Co-CdS, Co₃S₄-CdS, SCS5 and the

mechanically mixed (Co₃S₄/Co)-CdS.

Fig. S16 (a) UPS spectra of Co@C and Co₃S₄@C. (b) Band gap structures of CdS, Co and Co₃S₄.

The work function (ϕ) was determined by the difference between the photon energy of the Helium I light source at 21.2 eV and the binding energy of the secondary cutoff edge. Hence, the work function of Co@C and Co₃S₄@C are 3.72 and 4.31 eV, respectively.

Photocatalyst	Light source	Reactant solution	Activity (mmol h ⁻¹ g ⁻¹)	Ref. (year)
Co ₃ S ₄ /Co-CdS	$\lambda > 420 \text{ nm}$ (300 W Xe)	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	14.62	Our work
CdS-Co ₃ O ₄	$\lambda > 420 \text{ nm}$ (350 W Xe)	10 vol % of lactic acid	3.014	1 (2013)
Co-Pi-CdS	$\lambda > 420 \text{ nm}$ (300 W Xe)	10 vol % of lactic acid	13.3	2 (2016)
CdS/CoO _x	$\lambda > 420 \text{ nm}$ (350 W Xe)	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	3.50	3 (2018)
CdS-Co ₉ S ₈	AM 1.5 (300 W Xe)	Na ₂ S and Na ₂ SO ₃	1.06	4 (2017)
a-CoMoS _x /CdS	$\lambda > 420 \text{ nm}$ (300 W Xe)	Lactic acid	3.57	5 (2018)
Co Single Atomic Cocatalysts-CdS	$\lambda > 420 \text{ nm}$ (300 W Xe)	1.0 M (NH4)2SO3	7.27	6 (2017)
Co _x Mo _{1-x} S ₂ /CdS	$\lambda > 420 \text{ nm}$ (300 W Xe)	10 vol % of lactic acid	14.10	7 (2018)
MoS ₂ /G-CdS	$\lambda > 400 \text{ nm}$ (300 W Xe)	0.35 M Na ₂ S and Na ₂ SO ₃	6.00	8 (2014)
Co ₂ P-CdS	$\lambda > 400 \text{ nm}$ (300 W Xe)	10 vol % of lactic acid	6.06	9 (2018)
CdS/Co ₉ S ₈	$\lambda > 420 \text{ nm}$ (Xe)	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	5.15	10 (2018)

Table S1 The performance comparison of this work with other similar composites

References

- 1 D. Lang, F. Cheng and Q. Xiang, *Catal. Sci. Technol.*, 2016, **6**, 6207-6216.
- 2 T. Di, B. Zhu, J. Zhang, B. Cheng and J. Yu, *Appl. Surf. Sci.*, 2016, **389**, 775-782.
- Y. Liu, S. Ding, Y. Shi, X. Liu, Z. Wu, Q. Jiang, T. Zhou, N. Liu and J. Hu, *Appl. Catal. B: Environ.*, 2018, 234, 109-116.
- B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing and J. Zhang, *Angew. Chem. Int. Edit.*, 2017, 56, 2684-2688.
- 5 W. Liu, X. Wang, H. Yu and J. Yu, ACS Sustain. Chem. Eng., 2018, 6, 12436-12445.
- 6 Q. Zhao, W. Yao, C. Huang, Q. Wu and Q. Xu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 42734-42741.
- 7 J. Li, Y. Peng, X. Qian and J. Lin, *Appl. Surf. Sci.*, 2018, **452**, 437-442.
- K. Chang, Z. Me, T. Wang, Q. Kang, S. Ouyang and J. Ye, *ACS Nano*, 2014, 8, 7078-7087.
- 9 S. Li, L. Wang, S. Liu, B. Xu, N. Xiao, Y. Gao, W. Song, L. Ge and J. Liu, ACS Sustain. Chem. Eng. 2018, 6, 9940-9950.
- P. Tan, Y. Liu, A. Zhu, W. Zeng, H. Cui and J. Pan, ACS Sustain. Chem. Eng., 2018, 6, 10385-10394.