Supporting information for

Graphitic Carbon Embedded with Fe/Ni Nano-Catalysts Derived from Bacterial Precursor for Efficient Toluene Cracking

Shifei Kang ^a, Maofen He ^a, Chaochuang Yin ^{a,b}, Haiyang Xu ^b,Qing Cai ^a, Yangang Wang ^{b*}, Lifeng Cui ^{a*}

a. Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China

b. College of Biological Chemical Science and Engineering, Jiaxing University, Zhejiang 314001, China

*Corresponding authors.

E-mail addresses: ygwang8136@mail.zjxu.edu.cn (Y. Wang), lifeng.cui@gmail.com (L. Cui).

Figure S1. a, b The HR-TEM images of Fe/Ni alloy nanoparticles with typical (1 1 1) lattice in BC-FeNi sample.

Fig. S2 The enlarged TEM image of BC-FeNi sample showing the typical graphitic carbon rings.

Fig. S3 a. The contrastive XRD patterns of 5 wt% Ni loaded active carbon (5 wt% Ni/AC) control catalyst before and after 24h reuse. b,c The TEM images of fresh AC-FeNi and d,e The TEM images of used AC-FeNi.

Fig. S4 a. The contrastive XRD patterns of BC-FeNi before and after 24h reuse. b. The TEM images of fresh BC-FeNi and c. used BC-FeNi. The graphitic carbon layer protected FeNi alloy structure decreased slightly, but no obvious aggregation and coking can be observed.

No.	metal/carrier	Metal	Toluene		Stability	Ref.
		content	cracking			
			conversion rate			
1	Ni/Activated Carbon	15%	600°	74%	decrease from	1
			700°	92%	92% to 81%	
			800°	95%	after 48 h under	
					700°	
2	Ni/biomass-derived	5.1%	700°	52%	NA	2
	activated carbon		750°	82%		
			800°	93%		
3	3Fe8Ni/PG-H700-2	3%Fe,8%Ni	700°	80%	NA	3
4	Ni/PG (palygorskite)	9.9%	700°	61%	NA	4
5	Ni-	9.8%	700°	66%	NA	4
	Fe/PG (palygorskite)					
6	Ni-Fe/MgO-Al ₂ O ₃	10.1%	700°	87%	NA	4
7	Ni/Hematite	6.0%	500°	56%	decrease from	5
			600°	70%	96% to 86%	
			700°	83%	after 10 h under	
			750°	91%	800°	
			800°	96%		
8	Fe3Ni8/Palygorskite	3%Fe,8%Ni	550°	78%	stable under	6
			600°	81%	700° for 48 h	
			650°	85%		
			700°	98%		
9	FeNi/bacterial carbon	1.01%	600°	58%	slightly	This
			700°	82.6%	decrease from	work
			800°	95.8%	95.8% to 94.4%	
					after 24 h under	
					800°	

Table S1 The comparison between the as-developed BC-FeNi catalyst and other supported Fe/Ni catalysts reported for tar cracking.

Ref:

1. Y. Wang, G. Sun, J. Dai, G. Chen, J. Morgenstern, Y. Wang, S. Kang, M. Zhu, S. Das, L. Cui and L. Hu, Adv. Mater. 2017, **29**, 1604257.

2. L. Arteaga-Pérez, A. Delgado, M. Flores, P. Olivera, K. Matschuk, C. Hamel, T. Schulzke and R. Jiménez, Catalysts 2018, **8**, 119.

3. X. Zou, T. Chen, H. Liu, P. Zhang, Z. Ma, J. Xie and D. Chen, Fuel 2017, 190, 47-57.

4. N. Laosiripojana, W. Sutthisripok, S. Charojrochkul and S. Assabumrungrat, Fuel Process. Technol. 2014, **127**, 26-32.

5. X. Zou, Z. Ma, H. Liu, D. Chen, C. Wang, P. Zhang and T. Chen, Fuel 2018, 217, 343-351.

6. X. Zou, T. Chen, P. Zhang, D. Chen, J. He, Y. Dang, Z. Ma, Y. Chen, P. Toloueinia, C. Zhu, J. Xie, H. Liu and S. L. Suib, Appl. Energy 2018, 226, 827-837.