Ga/ZSM-5 Catalyst Improves Hydrocarbon Yields and Increases Alkene Selectivity during Catalytic Fast Pyrolysis of Biomass with Co-fed Hydrogen

Kristiina Iisa^a, Yeonjoon Kim^a, Kellene A. Orton^a, David J. Robichaud^a, Rui Katahira^a, Michael J. Watson^b, Evan C. Wegener^c, Mark R. Nimlos, Joshua A. Schaidle^a, Calvin Mukarakate^{*a}, and Seonah Kim^{*a}

^aNational Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, CO 80401-3393, USA

^bJohnson Matthey Technology Centre, PO Box 1, Belasis Avenue, Billingham, Cleveland TS23 1LB, UK

^c Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, USA

Fig. S1 K edge XANES of 5wt% Ga/ZSM-5 heated in flowing hydrogen and He from RT to 580 and 550 °C, respectively.

Table S1 XANES K edge energies for 5wt% Ga/ZSM-5 measured at different temperatures in H2 or He

Treatment Conditions	Edge Energy (keV)
550 °C He	10.3730
550 °C H ₂	10.3695
580 °C H ₂	10.3695
240 °C H ₂	10.3695
150 °C H ₂	10.3730

Table S2 Acid site densities for the parent ZSM-5 and Ga/ZSM-5 catalysts with SAR 30.

	Total acidity,	Brønsted acidity,	Lewis acidity,
	mmol/g	mmol/g	mmol/g
ZSM-5 (SAR30)	0.71	0.50	0.21
0.5% Ga/ZSM-5	0.69	0.44	0.25
1% Ga/ZSM-5	0.76	0.47	0.29
5% Ga/ZSM-5	0.74	0.42	0.32

Fig. S2 The impact of Ga loading on the Lewis acid-to-Brønsted acid ratio.

Fig. S3 Reaction mechanism of isopropanol dehydration on [GaH(OH)]⁺ with corresponding free energy surface. For clear representation of reactions, only the key part in QM region is shown. All energy values are in kcal/mol.

Fig. S4 Phase diagram of Ga species at a H_2O partial pressure of 10^{-6} bar. The blue and red squares indicate the range of temperatures and H_2 partial pressures in our biomass (blue) and isopropanol (red) upgrading experiments, respectively.

Fig. S5 Phase diagram of Ga species at a H_2O partial pressure of 0.01 bar. The red square indicates the range of temperatures and H_2 partial pressures in our isopropanol upgrading experiments.

Fig. S6 Reaction mechanisms of propene oligomerization into hexene on a) $[Ga(OH)_2]^+$, and b) $[GaH(OH)]^+$, with relative Gibbs free energies of each reaction state. The calculations were conducted using the ONIOM (M06-2X/6-311G(d,p):PM6) model at 250 °C. All the Gibbs free energy values are in kcal mol⁻¹.