Supplementary Information

An Environmentally Responsible 3-pot, 5-step Synthesis of the Antitumor Agent Sonidegib using ppm Levels of Pd Catalysis

Balaram S. Takale,* Ruchita R. Thakore, Fan Yi Kong^{a,b} and Bruce H. Lipshutz*

^aDepartment of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA

^bUpper Canada College, 220 Lonsdale Ave., Toronto, ON M2N 6X5, Canada

Table of Contents

1. General information				
2. Procedures for the synthesis of sonidegib <i>via</i> route 1:				
	2.1S _N Ar reaction			
	2.1.1 Screening of base			
	2.1.2 Screening of surfactants			
	2.2 Reduction of nitro group			
	2.3 Suzuki-Miyaura coupling			
	2.3.1 Screening of palladium catalysts			
	2.3.2 Screening of surfactants			
	2.4Amide coupling			
	2.5Large scale one-pot reaction			
	2.5.1 Synthesis of intermediate 4			
	2.5.2 Synthesis of intermediate 8			
	2.5.3 Amide coupling: route 1			
3	Procedures for the synthesis of sonidegib <i>via</i> route 2 S11-S12			
	3.1 Amide coupling			
	3.2Late stage Suzuki-Miyaura coupling			
4	E Factor calculations	S12		
5	Dyanamic light scattering (DLS) charts of TPGS-750-M and	S13		
	Brij-30 in water			
6	Compound characterization data	S14-S15		
7	NMR spectra	S16-S19		

1. General information

Reagents were purchased from Sigma-Aldrich, Combi-Blocks, Alfa Aeser, or Acros Organics and used without further purification. Palladium acetate was supplied generously by Johnson Matthey. ¹H and ¹³C NMR spectra were recorded on either a Varian Unity Inova 400 MHz (400 MHz for ¹H, 100 MHz for ¹³C), a Varian Unity Inova 500 MHz (500 MHz for ¹H, 125 MHz for ¹³C) or on a Varian Unity Inova 600 MHz spectrometer (600 MHz for ¹H); DMSO-*d*₆, CD₃OD, CD₃CN and CDCl₃ were used as solvent. Residual peaks for CHCl₃ in CDCl₃ (1 H = 7.26 ppm, 13 C = 77.20 ppm), $(CH_3)_2SO$ in $(CD_3)_2SO$ (1 H = 2.50 ppm, ¹³C = 39.52 ppm), CH₃CN in CD₃CN (¹H = 1.98 ppm, ${}^{13}C = 0.49$ and 117.47 ppm) or MeOH in MeOD (${}^{1}H = 4.78$ ppm, ${}^{13}C =$ 49.00 ppm) have been assigned. The chemical shifts are reported in ppm, the coupling constants J value are given in Hz. The peak patterns are indicated as follows: bs, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet. Thin layer chromatography (TLC) was performed using Silica Gel 60 F254 plates (Merck, 0.25 mm thick). Flash chromatography was done in glass columns using Silica Gel 60 (EMD, 40-63 µm). GCMS data were recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies). Brij-30 is purchased from across organics (Catalog AC216725000). The desired 2 wt % of Brij-30 solution in HPLC water (which was degassed with argon prior to use) was prepared by dissolving 2 g of Brij-30 solid to 98 g of HPLC water and stored under argon.

2. Procedures for the synthesis of sonidegib via Route 1

2.1 S_NAr reaction

2.1.1 Screening of base

entry	base (1.5 equiv)	conversion to 3 (%) ^b
1	K ₃ PO _{4.} H ₂ O	>99
2	Et ₃ N	91
3	K ₂ CO ₃	89
4 ^c	K ₃ PO _{4.} H ₂ O	45

^aReaction conditions: 0.5 mmol of **1**, 0.5 mmol of **2**, 0.75 mmol of base, stirred at 45 °C for 2.0 h; ^bDetermined by GC-MS; ^creaction at room temperature for 24 h.

In a 1-dram vial, (2*S*,6*R*)-2,6-dimethylmorpholine **1** (0.5 mmol), 2-chloro-5nitropyridine **2** (0.5 mmol), and base (0.75 mmol) were added. Aqueous 2 wt % TPGS-750-M solution (1.0 mL) was then added, and the vial was stirred at rt or 45 °C until completion (as monitored by TLC or GC-MS). The products were then separated by filtration, vacuum dried to give free flowing yellow powder in quantitative yield.

2.1.2 Screening of surfactants

In a 1-dram vial, (2S,6R)-2,6-dimethylmorpholine **1** (0.5 mmol), 2-chloro-5nitropyridine **2** (0.5 mmol), and K₃PO₄•H₂O (0.75 mmol) were added. Aqueous 2 wt % surfactant solution or water or DMF (1.0 mL) was added, and the vial was stirred at stirred 45 °C for 2 h. The products were then separated by filtration, vacuum dried to give free flowing yellow powder in quantitative yield.

2.2 Reduction of the nitro group

In a 1-dram vial, (2S,6R)-2,6-dimethyl-4-(5-nitropyridin-2-yl)morpholine **3** (0.5 mmol), and reducing system (1 wt % Pd/C (1.0 mol%)/ H₂ balloon or 1 wt % Pd/C (1.0 mol %)/ Et₃SiH (3.0 equiv) or CIP (5.0 equiv)/NH₄Cl (3.0 equiv) was added. Aqueous 2 wt % Brij-30 solution (1.0 mL) was then added, and the vial was stirred at rt or 45 °C until completion (as monitored by TLC or GC-MS). The reaction mixture was then extracted with EtOAc (3 x 1 mL), and the combined organic layers were evaporated to give crude product as a purple colored oil, which was analysed by GC-MS, and used subsequently without further purification.

2.3 Suzuki-Miyaura coupling

2.3.1 Screening of palladium catalysts

Preparation of a stock solution for a 0.5 mmol scale reaction. The stock solution was prepared by dissolving 5.0 mol % of Pd(OAc)₂ and 15 mol % of PPh₃ in 1.0 mL of THF and stirred for 15 min at rt under an inert atmosphere. From this stock solution, 100 μ L (corresponds to 5000 ppm) of solution was used for Suzuki-Miyaura couplings.

Coupling reaction. In a 1-dram vial, aryl bromide **7** (0.5 mmol), boronic acid **5**, (0.55 mmol), and $K_3PO_4 \cdot H_2O$ (0.75 mmol) were added. The vial was evacuated and backfilled with argon (this process was repeated 3 times). Catalyst stock solution as prepared above (100 μ L = 5000 ppm of Pd) was then added before addition of the

aqueous 2 wt % TPGS-750-M/H₂O (0.9 mL) solution. The vial was quickly closed with a screw cap and stirred at 45 °C for 10 h. The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic solvents were removed under vacuum to give a pale-yellow oil which was then analysed for conversion using GC-MS.

2.3.2 Screening of surfactants

A similar procedure mentioned in **Section 2.3.1** was followed by choosing a different surfactant system or solvent.

2.4 Amide coupling

^aReaction conditions: 0.6 mmol of **4**, 0.5 mmol of **8**, 1.2 equiv of coupling reagent (COMU/ HATU/ HOBt) or 2.0 equiv DCC, 2.0 equiv base (2,6-lutidine, *i*-Pr₂EtN, or 10% DMAP; ^bIsolated yield.

Procedure (a): In a 1-dram vial, carboxylic acid **8** was added (0.5 mmol) followed by 2 wt % TPGS-750-M/H₂O (1.0 ml) and base (2.0 equiv). The vial was screw capped and stirred for \sim 5 - 10 min, after which the amine **4** (1.2 equiv) was added followed by coupling reagent (1.2 equiv). The reaction was stirred at 45 °C for 20 h. The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic solvents were then removed under vacuum to give crude material which was then purified by column chromatography to give pure product **11**.

Procedure (b): In a 1-dram vial, carboxylic acid **8**, amine **4** (1.2 equiv), and 10% DMAP were added followed by 2 wt % TPGS-750-M/H₂O (1.0 mL). The vial was screw capped and stirred for at 45 °C for 10 min. At this stage, 0.5 equiv of DCC was added and the stirring was continued for 1 h (this process was repeated 3 times for an additional 1.5 equiv DCC). Finally, the reaction mixture was stirred for another 15-16 h. The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic solvents were removed under vacuum to give crude material which was then purified by column chromatography to give pure product **11**.

2.5 Large scale one-pot reaction

2.5.1 Synthesis of intermediate 4

In a 100.0 mL round bottom flask, (2S,6R)-2,6-dimethylmorpholine **1** (10.0 mmol), 2chloro-5-nitropyridine **2** (10.0 mmol), and K₃PO₄•H₂O (1.5 equiv) were added. Aqueous 2 wt % Brij-30/H₂O solution (20 mL) was added, and the round bottom flask was capped with a rubber septum and the reaction was stirred at stirred 45 °C for 2 h allowing the formation of S_NAr product **3** (yellow solid). Later in the same pot, CIP (50.0 mmol) and NH₄CI (30.0 mmol) were added and the reaction was stirred at 45 °C for 20 h. The product was then separated through filtration followed by extraction using EtOAc (4 x 15 mL). The extracts were combined and then evaporated to give pure amine **4** as a purple colored oil in 90% yield which was analysed by GC-MS.

Preparation of stock solution for a 10.0 mmol scale reaction. The stock solution was prepared by dissolving 5000 ppm of $Pd(OAc)_2$ and 15000 of PPh_3 in 2.0 mL of THF and then stirred for 15 min at rt under inert atmosphere. This stock solution was used for large scale Suzuki-Miyaura couplings.

In a 150 mL Schlenk tube, aryl bromide **7** (10.0 mmol), boronic acid **5**, (11.0 mmol), and $K_3PO_4 \cdot H_2O$ (1.5 equiv) were added. The flask was evacuated and backfilled with argon (this process was repeated 3 times). Catalyst stock solution as prepared above (2.0 mL = 5000 ppm of Pd) was then added before addition of aqueous 2 wt % Brij-30/H₂O (18.0 mL) solution. The reaction was allowed to stir at 45 °C for 20 h under argon (monitored by TLC). Later in the same reaction pot, 30.0 mmol of NaOH was added and the reaction was stirred at 75 °C for 5.0 h (monitored by TLC). The reaction mixture was then acidified using 2 M HCl (pH = 2) in an ice bath to get crude product, which was recrystallized from ethanol (~50 mL) to provide a white solid (92% yield).

2.5.3 Amide coupling: Route 1

In a 10 mL round bottom flask, carboxylic acid **8** (1.0 mmol), amine **4** (1.0 mmol), and 10% DMAP were added followed by 2 wt % TPGS-750-M/H₂O (2.0 ml). The vial was screw capped and stirred for at 45 °C for 10 min. At this stage 0.5 equiv of DCC was added and the stirring was continued for 1 h (this process was repeated 3 times for an additional 1.5 equiv DCC). Finally, the reaction mixture was stirred for another 15-16 h (monitored by TLC). The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic solvents were removed under vacuum to give crude material which was then purified by column chromatography to give pure product **11** in 80% yield.

3. Procedures for the synthesis of sonidegib via Route 2:

3.1 Amide coupling

In a 1-dram screw cap glass vial, carboxylic acid **6** (1.0 mmol), amine **4** (1.2 mmol), and 10% DMAP were added followed by 2 wt % TPGS-750-M/H₂O (2.0 ml). The vial was screw capped and stirred for at 45 °C for 10 min. At this stage 0.5 equiv of DCC was added and the stirring was continued for 1 h (this process was repeated 3 times for an additional 1.5 equiv DCC). Finally, the reaction mixture was stirred for another

15-16 h (monitored by TLC). The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic solvent was removed under vacuum to give crude material which was then purified by column chromatography to give pure product **10** in 81% yield.

$H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{H_{3}} H_{3}C \xrightarrow{H_$

In a 1-dram vial, aryl bromide **10** (0.5 mmol), boronic acid **5**, (0.55 mmol), and $K_3PO_4 \cdot H_2O$ (1.5 equiv) were added. The vial was evacuated and backfilled with argon (this process was repeated 3 times). Catalyst stock solution as prepared above (100 μ L = 5000 ppm of Pd) was then added before addition of aqueous 2 wt % Brij-30/H₂O (1.0 mL) solution. The vial was quickly closed with a screw cap, and stirred at 55 °C for 24 h (monitored by TLC). The reaction mixture was then extracted with EtOAc (4 x 1 mL). The organic solvents were combined and then removed under vacuum and the crude material was purified by column chromatography to give pure product **11** in 89% yield.

4. E Factor calculations

3.2 Late stage Suzuki-Miyaura coupling

6. Compound characterization data

$$H_3C$$
 N N N_2 NO_2

(2S,6R)-2,6-Dimethyl-4-(5-nitropyridin-2-yl)morpholine: yellow solid.

¹**H NMR** (500 MHz, chloroform-*d*) δ 9.03 (s, 1H), 8.21 (d, *J* = 9.5 Hz, 1H), 7.28 (s, 0H), 6.57 (d, *J* = 9.5 Hz, 2H), 4.30 (d, *J* = 11.8 Hz, 5H), 3.68 (s, 1H), 2.86 – 2.51 (m, 3H), 1.28 (s, 5H).

¹³**C NMR** (126 MHz, chloroform-d) δ 160.14, 146.36, 135.16, 133.03, 104.58, 71.51, 50.16, 18.85.

2-Methyl-4'-(trifluoromethoxy)-[1,1'-biphenyl]-3-carboxylic acid: white solid, ¹**H NMR** (500 MHz, chloroform-*d*) δ 8.06 (d, *J* = 7.8 Hz, 1H), 7.55 – 7.02 (m, 7H), 3.68 (s, 0H), 2.51 (s, 2H), 1.27 (s, 0H).

¹³**C NMR** (126 MHz, chloroform-*d*) δ 173.48, 148.46, 142.62, 140.04, 137.94, 134.25, 130.77, 130.74, 129.97, 125.50, 18.73.

3-Bromo-N-(6-((2R,6S)-2,6-dimethylmorpholino)pyridin-3-yl)-2methylbenzamide: white solid

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.20 (s, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.46 – 7.32 (m, 2H), 7.12 (t, J = 7.7 Hz, 1H), 6.67 (d, J = 9.0 Hz, 1H), 4.01 (d, J = 12.3 Hz, 2H), 3.81 – 3.64 (m, 2H), 2.61 – 2.44 (m, 5H), 1.35 – 1.21 (m, 6H). ¹³**C NMR** (126 MHz, chloroform-*d*) δ 167.51, 156.86, 140.11, 138.41, 135.81, 134.34, 131.30, 127.21, 126.86, 125.65, 125.40, 106.92, 71.55, 51.15, 20.13, 19.01.

N-(6-((2*R*,6*S*)-2,6-Dimethylmorpholino)pyridin-3-yl)-2-methyl-4'-(trifluoromethoxy)-[1,1'-biphenyl]-3-carboxamide: light pink solid

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.22 (d, *J* = 2.7 Hz, 1H), 8.03 (dd, *J* = 9.1, 2.7 Hz, 1H), 7.69 (s, 1H), 7.47 – 7.42 (m, 1H), 7.33 – 7.24 (m, 6H), 6.66 (d, *J* = 9.1 Hz, 1H), 3.99 (d, *J* = 12.2 Hz, 2H), 3.73 (ddt, *J* = 10.0, 6.2, 3.2 Hz, 2H), 2.55 – 2.46 (m, 2H), 2.31 (s, 3H), 1.27 (d, *J* = 6.2 Hz, 6H).

¹³**C NMR** (126 MHz, chloroform-*d*) δ 168.72, 156.80, 148.46, 142.20, 140.18, 139.85, 137.57, 133.41, 131.62, 131.38, 130.60, 126.05, 125.84, 125.68, 120.72, 106.97, 71.55, 51.19, 18.98, 17.62.

HRMS: C₂₆H₂₆F₃N₃O₃Na ESI-MS [M+Na] calcd: 508.1824; found: 508.1810.

S16

S17

S19