Supplementary Information

An Environmentally Responsible 3-pot, 5-step Synthesis of the Antitumor Agent Sonidegib using ppm Levels of Pd Catalysis

Balaram S. Takale, ${ }^{* a}$ Ruchita R. Thakore, ${ }^{a}$ Fan Yi Konga,b and Bruce H. Lipshutz*a
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
bupper Canada College, 220 Lonsdale Ave., Toronto, ON M2N 6X5, Canada
Table of Contents

1. General information	S2
2. Procedures for the synthesis of sonidegib via route 1: 2.1 $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction 2.1.1 Screening of base 2.1.2 Screening of surfactants 2.2 Reduction of nitro group 2.3Suzuki-Miyaura coupling 2.3.1 Screening of palladium catalysts 2.3.2 Screening of surfactants 2.4Amide coupling 2.5 Large scale one-pot reaction 2.5.1 Synthesis of intermediate 4 2.5.2 Synthesis of intermediate 8 2.5.3 Amide coupling: route 1	S3-S11
3 Procedures for the synthesis of sonidegib via route 2 3.1 Amide coupling 3.2 Late stage Suzuki-Miyaura coupling	S11-S12
4 E Factor calculations	S12
5 Dyanamic light scattering (DLS) charts of TPGS-750-M and Brij-30 in water	S13
6 Compound characterization data	S14-S15
7 NMR spectra	S16-S19

1. General information

Reagents were purchased from Sigma-Aldrich, Combi-Blocks, Alfa Aeser, or Acros Organics and used without further purification. Palladium acetate was supplied generously by Johnson Matthey. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either a Varian Unity Inova $400 \mathrm{MHz}\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), a Varian Unity Inova $500 \mathrm{MHz}\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or on a Varian Unity Inova 600 MHz spectrometer (600 MHz for ${ }^{1} \mathrm{H}$); DMSO- $\mathrm{d}_{6}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{CD}_{3} \mathrm{CN}$ and CDCl_{3} were used as solvent. Residual peaks for CHCl_{3} in $\mathrm{CDCl}_{3}\left(1 \mathrm{H}=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}=77.20 \mathrm{ppm}\right)$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\left(1 \mathrm{H}=2.50 \mathrm{ppm},{ }^{13} \mathrm{C}=39.52 \mathrm{ppm}\right), \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{CD}_{3} \mathrm{CN}\left({ }^{1} \mathrm{H}=\right.$ $1.98 \mathrm{ppm},{ }^{13} \mathrm{C}=0.49$ and 117.47 ppm) or MeOH in $\mathrm{MeOD}\left({ }^{1} \mathrm{H}=4.78 \mathrm{ppm},{ }^{13} \mathrm{C}=\right.$ $49.00 \mathrm{ppm})$ have been assigned. The chemical shifts are reported in ppm, the coupling constants J value are given in Hz . The peak patterns are indicated as follows: bs, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet. Thin layer chromatography (TLC) was performed using Silica Gel 60 F254 plates (Merck, 0.25 mm thick). Flash chromatography was done in glass columns using Silica Gel 60 (EMD, 40-63 $\mu \mathrm{m}$). GCMS data were recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies). Brij-30 is purchased from across organics (Catalog AC216725000). The desired 2 wt \% of Brij-30 solution in HPLC water (which was degassed with argon prior to use) was prepared by dissolving 2 g of Brij-30 solid to 98 g of HPLC water and stored under argon.

2. Procedures for the synthesis of sonidegib via Route 1

2.1 $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction

2.1.1 Screening of base

entry	base (1.5 equiv)	conversion to $\mathbf{3}(\%)^{\text {b }}$
1	$\mathrm{~K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	>99
2	$\mathrm{Et}_{3} \mathrm{~N}$	91
3	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	89
4^{c}	$\mathrm{K}_{3} \mathrm{PO}_{4} \mathrm{H}_{2} \mathrm{O}$	45

${ }^{\text {a }}$ Reaction conditions: 0.5 mmol of $\mathbf{1 , ~} 0.5 \mathrm{mmol}$ of $\mathbf{2}$, 0.75 mmol of base, stirred at $45{ }^{\circ} \mathrm{C}$ for 2.0 h ; ${ }^{\text {b }}$ Determined by GC-MS; ${ }^{\text {c reaction at room temperature }}$ for 24 h .

In a 1-dram vial, (2S,6R)-2,6-dimethylmorpholine 1 (0.5 mmol), 2-chloro-5nitropyridine 2 (0.5 mmol), and base (0.75 mmol) were added. Aqueous $2 \mathrm{wt} \%$ TPGS-750-M solution (1.0 mL) was then added, and the vial was stirred at rt or 45 ${ }^{\circ} \mathrm{C}$ until completion (as monitored by TLC or GC-MS). The products were then separated by filtration, vacuum dried to give free flowing yellow powder in quantitative yield.

2.1.2 Screening of surfactants

surfactant

$$
\mathrm{C}_{11} \mathrm{H}_{23} \text { fo } \mathrm{r}_{4} \mathrm{OH}
$$

Brij-30

PTS-600

In a 1-dram vial, (2S,6R)-2,6-dimethylmorpholine 1 (0.5 mmol), 2-chloro-5nitropyridine 2 (0.5 mmol), and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.75 \mathrm{mmol})$ were added. Aqueous 2 wt \% surfactant solution or water or DMF (1.0 mL) was added, and the vial was stirred at stirred $45^{\circ} \mathrm{C}$ for 2 h . The products were then separated by filtration, vacuum dried to give free flowing yellow powder in quantitative yield.

2.2 Reduction of the nitro group

conversion to 4 (\%)

In a 1-dram vial, (2S,6R)-2,6-dimethyl-4-(5-nitropyridin-2-yl)morpholine 3 (0.5 mmol), and reducing system (1 wt \% Pd/C (1.0 mol\%)/ H_{2} balloon or $1 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(1.0 \mathrm{~mol}$ \%)/ $\mathrm{Et}_{3} \mathrm{SiH}$ (3.0 equiv) or CIP (5.0 equiv)/ $\mathrm{NH}_{4} \mathrm{Cl}$ (3.0 equiv) was added. Aqueous 2 wt \% Brij-30 solution (1.0 mL) was then added, and the vial was stirred at rt or $45{ }^{\circ} \mathrm{C}$ until completion (as monitored by TLC or GC-MS). The reaction mixture was then extracted with EtOAc ($3 \times 1 \mathrm{~mL}$), and the combined organic layers were evaporated to give crude product as a purple colored oil, which was analysed by GC-MS, and used subsequently without further purification.

2.3 Suzuki-Miyaura coupling

2.3.1 Screening of palladium catalysts

Preparation of a stock solution for a 0.5 mmol scale reaction. The stock solution was prepared by dissolving $5.0 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $15 \mathrm{~mol} \%$ of PPh_{3} in 1.0 mL of THF and stirred for 15 min at rt under an inert atmosphere. From this stock solution, $100 \mu \mathrm{~L}$ (corresponds to 5000 ppm) of solution was used for Suzuki-Miyaura couplings.

Coupling reaction. In a 1-dram vial, aryl bromide 7 (0.5 mmol), boronic acid 5, (0.55 $\mathrm{mmol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.75 \mathrm{mmol})$ were added. The vial was evacuated and backfilled with argon (this process was repeated 3 times). Catalyst stock solution as prepared above ($100 \mu \mathrm{~L}=5000 \mathrm{ppm}$ of Pd) was then added before addition of the
aqueous $2 \mathrm{wt} \%$ TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL})$ solution. The vial was quickly closed with a screw cap and stirred at $45^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was then extracted with EtOAc ($3 \times 1 \mathrm{~mL}$). The organic solvents were removed under vacuum to give a pale-yellow oil which was then analysed for conversion using GC-MS.

2.3.2 Screening of surfactants

A similar procedure mentioned in Section 2.3 .1 was followed by choosing a different surfactant system or solvent.

2.4 Amide coupling

4

${ }^{\text {a }}$ Reaction conditions: 0.6 mmol of $4,0.5 \mathrm{mmol}$ of $8,1.2$ equiv of coupling reagent (COMU/ HATU/ HOBt) or 2.0 equiv DCC, 2.0 equiv base (2,6 -lutidine, $i-\operatorname{Pr}_{2} \mathrm{EtN}$, or 10% DMAP; ${ }^{\mathrm{b}}$ Isolated yield.
Procedure (a): In a 1-dram vial, carboxylic acid 8 was added (0.5 mmol) followed by $2 \mathrm{wt} \%$ TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{ml})$ and base (2.0 equiv). The vial was screw capped and stirred for $\sim 5-10 \mathrm{~min}$, after which the amine 4 (1.2 equiv) was added followed by coupling reagent (1.2 equiv). The reaction was stirred at $45^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was then extracted with EtOAc ($3 \times 1 \mathrm{~mL}$). The organic solvents were then removed under vacuum to give crude material which was then purified by column chromatography to give pure product 11.

Procedure (b): In a 1-dram vial, carboxylic acid 8, amine 4 (1.2 equiv), and 10\% DMAP were added followed by 2 wt \% TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}$ (1.0 mL). The vial was screw capped and stirred for at $45^{\circ} \mathrm{C}$ for 10 min . At this stage, 0.5 equiv of DCC was added and the stirring was continued for 1 h (this process was repeated 3 times for an additional 1.5 equiv DCC). Finally, the reaction mixture was stirred for another $15-$ 16 h . The reaction mixture was then extracted with EtOAc ($3 \times 1 \mathrm{~mL}$). The organic solvents were removed under vacuum to give crude material which was then purified by column chromatography to give pure product 11.

2.5 Large scale one-pot reaction

2.5.1 Synthesis of intermediate 4

In a 100.0 mL round bottom flask, (2S,6R)-2,6-dimethylmorpholine 1 (10.0 mmol), 2-chloro-5-nitropyridine 2 (10.0 mmol), and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.5 equiv) were added. Aqueous 2 wt \% Brij-30/ $\mathrm{H}_{2} \mathrm{O}$ solution (20 mL) was added, and the round bottom flask was capped with a rubber septum and the reaction was stirred at stirred $45^{\circ} \mathrm{C}$ for 2 h allowing the formation of $S_{N} A r$ product 3 (yellow solid). Later in the same pot, CIP (50.0 mmol) and $\mathrm{NH}_{4} \mathrm{Cl}(30.0 \mathrm{mmol})$ were added and the reaction was stirred at 45 ${ }^{\circ} \mathrm{C}$ for 20 h . The product was then separated through filtration followed by extraction using EtOAc ($4 \times 15 \mathrm{~mL}$). The extracts were combined and then evaporated to give pure amine 4 as a purple colored oil in 90% yield which was analysed by GC-MS.

2.5.2 Synthesis of intermediate 8

8, 92% yield
acid-base extraction

Preparation of stock solution for a $\mathbf{1 0 . 0} \mathbf{~ m m o l}$ scale reaction. The stock solution was prepared by dissolving 5000 ppm of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 15000 of PPh_{3} in 2.0 mL of THF and then stirred for 15 min at rt under inert atmosphere. This stock solution was used for large scale Suzuki-Miyaura couplings.

In a 150 mL Schlenk tube, aryl bromide 7 (10.0 mmol), boronic acid 5, (11.0 mmol), and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.5 equiv) were added. The flask was evacuated and backfilled with argon (this process was repeated 3 times). Catalyst stock solution as prepared above ($2.0 \mathrm{~mL}=5000 \mathrm{ppm}$ of Pd) was then added before addition of aqueous $2 \mathrm{wt} \%$ Brij$30 / \mathrm{H}_{2} \mathrm{O}(18.0 \mathrm{~mL})$ solution. The reaction was allowed to stir at $45^{\circ} \mathrm{C}$ for 20 h under argon (monitored by TLC). Later in the same reaction pot, 30.0 mmol of NaOH was added and the reaction was stirred at $75^{\circ} \mathrm{C}$ for 5.0 h (monitored by TLC). The reaction mixture was then acidified using $2 \mathrm{M} \mathrm{HCl}(\mathrm{pH}=2)$ in an ice bath to get crude product, which was recrystallized from ethanol ($\sim 50 \mathrm{~mL}$) to provide a white solid (92\% yield).

2.5.3 Amide coupling: Route 1

 10\% DMAP were added followed by 2 wt \% TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}$ (2.0 ml). The vial was screw capped and stirred for at $45^{\circ} \mathrm{C}$ for 10 min . At this stage 0.5 equiv of DCC was added and the stirring was continued for 1 h (this process was repeated 3 times for an additional 1.5 equiv DCC). Finally, the reaction mixture was stirred for another 1516 h (monitored by TLC). The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic solvents were removed under vacuum to give crude material which was then purified by column chromatography to give pure product 11 in 80% yield.

3. Procedures for the synthesis of sonidegib via Route 2:

3.1 Amide coupling

In a 1-dram screw cap glass vial, carboxylic acid 6 (1.0 mmol), amine 4 (1.2 mmol), and 10% DMAP were added followed by $2 \mathrm{wt} \%$ TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}$ (2.0 ml). The vial was screw capped and stirred for at $45^{\circ} \mathrm{C}$ for 10 min . At this stage 0.5 equiv of DCC was added and the stirring was continued for 1 h (this process was repeated 3 times for an additional 1.5 equiv DCC). Finally, the reaction mixture was stirred for another

15-16 h (monitored by TLC). The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic solvent was removed under vacuum to give crude material which was then purified by column chromatography to give pure product 10 in 81% yield.

3.2 Late stage Suzuki-Miyaura coupling

In a 1-dram vial, aryl bromide 10 (0.5 mmol), boronic acid 5, (0.55 mmol), and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.5 equiv) were added. The vial was evacuated and backfilled with argon (this process was repeated 3 times). Catalyst stock solution as prepared above (100 $\mu \mathrm{L}=5000 \mathrm{ppm}$ of Pd) was then added before addition of aqueous $2 \mathrm{wt} \% \mathrm{Brij}-30 / \mathrm{H}_{2} \mathrm{O}$ $(1.0 \mathrm{~mL})$ solution. The vial was quickly closed with a screw cap, and stirred at $55^{\circ} \mathrm{C}$ for 24 h (monitored by TLC). The reaction mixture was then extracted with EtOAc (4 $x 1 \mathrm{~mL}$). The organic solvents were combined and then removed under vacuum and the crude material was purified by column chromatography to give pure product 11 in 89% yield.

4. E Factor calculations

E Factor $=\frac{(\mathrm{g}) \text { of waste }}{(\mathrm{g}) \text { of product }}=\frac{0.988}{0.216}=4.57$

Micellar conditions

E Factor $=\frac{(\mathrm{g}) \text { of waste }}{(\mathrm{g}) \text { of product }}=\frac{5.100}{0.183}=27.9$ literature conditions

5. Dyanamic light scattering (DLS) charts of TPGS-750-M and Brij-30 in water

6. Compound characterization data

3
(2S,6R)-2,6-Dimethyl-4-(5-nitropyridin-2-yl)morpholine: yellow solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz , chloroform-d) $\delta 9.03$ (s, 1H), 8.21 (d, J = $\left.9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28$ (s, 0H),
6.57 (d, J = $9.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.30 (d, J = $11.8 \mathrm{~Hz}, 5 \mathrm{H}$), 3.68 (s, 1H), $2.86-2.51$ (m, 3H), 1.28 (s, 5H).
${ }^{13} \mathrm{C}$ NMR (126 MHz , chloroform-d) $\delta 160.14,146.36,135.16,133.03,104.58,71.51$, 50.16, 18.85.

8
2-Methyl-4'-(trifluoromethoxy)-[1,1'-biphenyl]-3-carboxylic acid: white solid, ${ }^{1} \mathrm{H}$ NMR (500 MHz , chloroform-d) $\delta 8.06$ (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55-7.02$ (m, 7H), 3.68 (s, OH), 2.51 (s, 2H), 1.27 (s, OH).
${ }^{13} \mathrm{C}$ NMR (126 MHz , chloroform-d) δ 173.48, 148.46, 142.62, 140.04, 137.94, 134.25, 130.77, 130.74, 129.97, 125.50, 18.73.

10

3-Bromo-N-(6-((2R,6S)-2,6-dimethylmorpholino)pyridin-3-yl)-2methylbenzamide: white solid

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, chloroform-d) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (d, J = $12.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.44(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , chloroform-d) $\delta 167.51,156.86,140.11,138.41,135.81,134.34$, 131.30, 127.21, 126.86, 125.65, 125.40, 106.92, 71.55, 51.15, 20.13, 19.01.

11

N-(6-((2R,6S)-2,6-Dimethylmorpholino)pyridin-3-yl)-2-methyl-4'-(trifluoromethoxy)-[1,1'-biphenyl]-3-carboxamide: light pink solid ${ }^{1} \mathrm{H}$ NMR (500 MHz , chloroform-d) $\delta 8.22$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.03 (dd, $J=9.1,2.7 \mathrm{~Hz}$, 1H), $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.99 (d, J = $12.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.73 (ddt, $J=10.0,6.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.55-2.46$ (m, 2H), 2.31 (s, 3H), 1.27 (d, J = 6.2 Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, chloroform-d) $\delta 168.72,156.80,148.46,142.20,140.18,139.85$, 137.57, 133.41, 131.62, 131.38, 130.60, 126.05, 125.84, 125.68, 120.72, 106.97, 71.55, 51.19, 18.98, 17.62.

HRMS: $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ ESI-MS [M+Na] calcd: 508.1824; found: 508.1810.
7. NMR spectra's

11

