Electronic Supplementary Information (ESI)

Sustainable, cost-efficient manufacturing of therapeutic peptides using chemo-enzymatic peptide synthesis (CEPS)

Jan Pawlas,*^a Timo Nuijens,*^b Jonas Persson,^a Thomas Svensson,^a Marcel Schmidt,^b Ana Toplak,^b Mikael Nilsson,^a Jon H. Rasmussen^a

^aPolyPeptide Group, Limhamnsvägen 108, PO BOX 30089, 20061 Limhamn, Sweden. ^{*}Corresponding author jap@polypeptide.com.

^bEnzyPep B.V., Urmonderbaan 22, 6167 RD Geleen, The Netherlands. ^{*}Corresponding author timo@enzypep.com.

Table of Contents

1. LC-HRMS analysis of crude H-22-39-NH ₂ , the original methodS3
2. LC-HRMS analysis of crude H-22-39-NH ₂ , the revised method
3. Details of SPPS of H-22-39-RMG DEG AM resinS6
4. LC-HRMS analysis of loss of DKP during piperidine treatment of Fmoc-20-21-O-Cam-Leu-
RMG DEG AM resin
5. Assessment of kinetics of loss of DKP during piperidine treatment of Fmoc-20-21-O-Cam-Leu-
RMG DEG AM resin
6. Details of SPPS of Boc-1-21-O-Cam-Leu-RMG DEG AM resinS10
7. HPLC analysis of crude Fmoc-9-21-O-Cam-Leu-NH $_{\rm 2}$ obtained from TFA cleavage of
intermediate Fmoc-9-21-O-Cam-Leu-RMG DEG AM resin S13
8. LC-HRMS analysis of crude H-1-21-O-Cam-Leu-NH ₂ obtained from TFA cleavage of Boc-1-
21-O-Cam-Leu-RMG DEG AM resinS14
9. Proposed mechanism of formation of the add-on 4-21 impurity during Fmoc deprotection of
Fmoc-4-21-O-Cam-Leu-RMG DEG AM resinS19
10. Kinetics of the omniligase-1 catalyzed ligation of crude H-22-39-NH ₂ + crude H-1-21-O-Cam-
Leu-NH ₂ , original protocolS19
11. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of crude H-22-39-NH $_2$ +
crude H-1-21-O-Cam-Leu-NH ₂ S20
12. Structures of exenatide and its four possible deamidation impurities
13. HPLC analytical system for separating exenatide and its four deamidation impuritiesS22
14. Assessment of stability of exenatide API under different conditions
15. Kinetics of the omniligase-1 catalyzed ligation of crude H-22-39-NH ₂ + crude H-1-21-O-Cam-
Leu-NH ₂ , revised protocolS23

16. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of crude H-22-39-NH ₂ +
crudeH-1-21-O-Cam-Leu-NH ₂ S24
17. HPLC analysis of purified H-22-39-NH2 fragment
18. HPLC analysis of purified H-1-21-O-Cam-Leu-NH ₂ fragmentS30
19. Kinetics of the omniligase-1 catalyzed ligation of pure H-22-39-NH ₂ + pure H-1-21-O-Cam-
Leu-NH ₂ S31
20. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of pure H-22-39-NH ₂ +
pure H-1-21-O-Cam-Leu-NH ₂ S32
21. Assessment of kinetics of loss of DKP during piperidine treatment of Fmoc-20-21-linker-AA
resinsS35
22. Details of SPPS of Boc-1-21-HMBA-K peptide resin
23. LC-HRMS of crude H-1-21-HMBA-K from SPPS in Scheme S6, route AS40
24. LC-HRMS of crude H-1-21-HMBA-K from SPPS in Scheme S6, route BS42
25. Mechanism of formation of the des HMBA-Lys impurity during SPPS of Boc-1-21-HMBA-
Lys(Trt) MBH resin
26. Automated SPPS of Boc-1-21-HMBA-Lys(Trt) MBH resin. Synthesis of H-1-21-HMBA-K with
lower content of the des HMBA-K impurityS44
27. LC-HRMS of crude H-1-21-HMBA-K from ESI section 26 automated SPPS
28. Kinetics of the omniligase-1 catalyzed ligation of crude H-22-39-NH ₂ + crude H-1-21-HMBA-
KS46
29. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of crude H-22-39-NH ₂ +
crude H-1-21-HMBA-KS47
30. LC-HRMS of commercial exenatide reference standard
31. LC-HRMS of purified exenatide from H-1-21-O-Cam-Leu-NH $_2$ +H-22-39-NH $_2$ c+c ligationS51
32. LC-HRMS of purified exenatide from H-1-21-O-Cam-Leu-NH ₂ +H-22-39-NH ₂ p+p ligation S52
33. LC-HRMS of purified exenatide from H-1-21-HMBA-K+H-22-39-NH $_2$ c+c ligationS53
34. Lyophilization details
35. Sustainability and cost assessment S54

1. LC-HRMS analysis of crude H-22-39-NH₂, the original method.

Experimental conditions: column: Phenomenex Kinetex 2.6 µm 4.6 x 150 mm; column temperature: 30°C; injection volume: 5 uL; sampler temperature:10°C; MS mode: positive 50-3200; DAD: 220 nm; data rate: 5Hz; detector cell: standard cell 1µL; flow: 0.8 ml/min; jet weaver: v100 mixer; mobile phase A: 0.1%TFA in water, mobile phase B: 0.1 %TFA in 10% water/90 %MeCN. Gradient (Time(min), %B): 0, 10; 1, 10; 46, 40; 48, 90; 50, 90; 50.1, 10; 60,10.

Figure S1. UV chromatogram overview.

Figure S2. UV chromatogram zoom-in.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	3,68	33,310			0,0000	-1838,9315	0,163	0,10	
2	3,77	15,990			0,0000	-1838,9315	0,167	0,05	
3	17,59	938,980	746,8815	2	1491,7484	-347,1831	0,778	2,80	Ac-(25-39)-NH2
4	17,98	235,840	811,4024	2	1620,7902	-218,1413	0,795	0,70	Ac-(24-39)-NH2
5	19,95	102,640			0,0000	-1838,9315	0,882	0,31	
6	22,31	211,830				-1838,9315	0,986	0,63	
7	22,62	30675,060	920,5078	2	1839,0010	0,0695	1,000	91,57	Prod. H-(22-39)-NH2
8	23,40	266,020	876,9852	2	1751,9558	-86,9757	1,035	0,79	Des Ser
9	23,66	174,930			0,0000	-1838,9315	1,046	0,52	
10	24,37	28,060			0,0000	-1838,9315	1,077	0,08	
11	24,52	64,660			0,0000	-1838,9315	1,084	0,19	
12	24,64	113,690			0,0000	-1838,9315	1,089	0,34	
13	25,01	17,880			0,0000	-1838,9315	1,106	0,05	
14	26,34	322,270	867,9447	2	1733,8748	-105,0567	1,164	0,96	Ac-(23-39)-NH2
15	28,14	62,880			0,0000	-1838,9315	1,244	0,19	
16	28,74	11,690			0,0000	-1838,9315	1,270	0,03	
17	30,13	46,420			0,0000	-1838,9315	1,332	0,14	
18	33,44	17,120			0,0000	-1838,9315	1,478	0,05	
19	34,65	115,500			0,0000	-1838,9315	1,532	0,34	
20	35,04	16,560			0,0000	-1838,9315	1,549	0,05	
21	50,70	27,770			0,0000	-1838,9315	2,242	0,08	

Table S1. Area% for integrated peaks and MS identities for H-22-39-NH₂ and main byproducts.

2. LC-HRMS analysis of crude H-22-39-NH₂, the revised method.

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume:1 uL; sampler temperature:5°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v100 mixer; mobile phase A: 0.1%TFA in water, mobile phase B: 0.1 %TFA in MeCN. Gradient (Time(min), %B): 0, 5; 1, 5; 60, 30; 62, 90; 62.1, 5; 72, 5.

Figure S3. UV chromatogram overview.

Figure S4. UV chromatogram zoom-in.

Table S2. Area% for integ	rated peaks and MS	identities for H-22-39-N	NH2 and main byproducts.
-----------------------------------	--------------------	--------------------------	--------------------------

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	15,85	31,680			0,0000	-1838,9320	0,397	0,28	
2	18,26	14,990			0,0000	-1838,9320	0,457	0,13	
3	29,12	13,910			0,0000	-1838,9320	0,728	0,12	
4	31,79	23,800			0,0000	-1838,9320	0,795	0,21	
5	32,49	15,430			0,0000	-1838,9320	0,813	0,14	
6	33,33	111,600			0,0000	-1838,9320	0,834	1,00	
7	34,90	38,420			0,0000	-1838,9320	0,873	0,34	
8	36,74	36,890			0,0000	-1838,9320	0,919	0,33	
9	38,34	151,670	920,4810	2	1838,9474	0,0154	0,959	1,35	N to O acyl isomer
10	38,63	223,700	920,4840	2	1838,9534	0,0214	0,966	2,00	N to O acyl isomer
11	39,03	81,050			0,0000	-1838,9320	0,976	0,72	
12	39,30	29,090			0,0000	-1838,9320	0,983	0,26	
13	39,56	483,380	823,4210	2	1644,8274	-194,1046	0,990	4,31	des Pro-Pro
14	39,97	9178,530	920,5050	2	1838,9954	0,0634	1,000	81,89	Prod. H-(22-39)-NH2
15	40,52	65,380			0,0000	-1838,9320	1,014	0,58	
16	40,63	123,900			0,0000	-1838,9320	1,016	1,11	
17	40,85	79,480			0,0000	-1838,9320	1,022	0,71	
18	41,15	51,130			0,0000	-1838,9320	1,029	0,46	
19	41,45	42,940			0,0000	-1838,9320	1,037	0,38	
20	41,69	20,600			0,0000	-1838,9320	1,043	0,18	
21	42,61	27,500			0,0000	-1838,9320	1,066	0,25	
22	42,81	87,900			0,0000	-1838,9320	1,071	0,78	
23	47,08	12,420			0,0000	-1838,9320	1,178	0,11	
24	48,22	70,270			0,0000	-1838,9320	1,206	0,63	
25	49,11	18,000			0,0000	-1838,9320	1,229	0,16	
26	50,79	71,520			0,0000	-1838,9320	1,271	0,64	
27	55,08	40,850			0,0000	-1838,9320	1,378	0,36	
28	55,69	43,570			0,0000	-1838,9320	1,393	0,39	
20	50.00	19 380			0 0000	-1838 9320	1 473	0.17	
25	30,00	15,500			0,0000	1000,0020	1,175	0)=:	

3. Details of SPPS of H-22-39-RMG DEG AM resin (Scheme S1).

Piperidine (pip) was used as the base for all Fmoc removals and Oxyma + DIC¹ were used as coupling agents for all amino acid (AA) couplings. In the first step of the synthesis the Ramage (tricyclic amide) linker, known to provide better cleavage yields than the more common Knorr (Rink amide) linker,² was coupled to the base resin. To ensure suitable reaction kinetics throughout the SPPS the base resin was downloaded ~30% during the first two couplings (linker and Ser³⁹)³ and the entire synthesis was carried out under mild conventional heating.⁴ Furthermore, to mimimize the occurrence of cleavage related impurities encountered with Fmoc-Lys(Boc)-OH⁵⁻⁶ and Fmoc-Ser(*t*-Bu)-OH⁵⁻⁷ respectively, we used the trityl protected Fmoc-Lys(Trt)-OH and Fmoc-Ser(Trt)-OH counterparts instead. Pro³⁸, Pro³⁷ and Gly³⁰, Gly²⁹ couplings were carried out using the inexpensive Fmoc-Pro-Pro-OH and Fmoc-Gly-Gly-OH dipeptides, respectively. The progress of all couplings was followed by qualitative color tests⁸⁻⁹ according to which Trp²⁵ to Phe²² couplings were capped by addition of acetic acid. The synthesis afforded ~1100 g of H-22-39 peptide resin and the yield determined by test TFA cleavages followed by HPLC quantifications was 75%. To obtain sufficient amounts of the fragment needed for the ensuing ligations up to 300 g portions of the peptide resin were cleaved using a TFA/TIS/DTT/H₂O (92:4:3:1, v/v/w/v) cleavage cocktail for 2 h at rt, followed by precipitation of the crude material with cold ether.

Scheme S1 SPPS of H-22-39 resin, reagents and conditions: i) Fmoc deprotection: 12.5% pip in DMF, 40 - 45 °C, 25 min; ii) DMF resin wash; iii) coupling: R-COOH/Oxyma/DIC (1:1:3) in DMF, 40 - 45 °C, 30 min; iv) capping: AcOH/Oxyma/DIC (1:1:3) in DMF, 40 - 45 °C, 15 min; v) Fmoc deprotection: 12.5% pip in DMF, 40 - 45 °C, 2 x 15 min; vi) capping: AcOH, 5 min; vii) isopropanol (*i*-PrOH) wash and drying in vacuo.

It is worth noting that although the initial liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis revealed an excellent purity (~91%) of the crude amine fragment, upon conducting additional analytical development work a method was found in which the crude product was only ~82% pure. In fact, the new method disclosed a ~4% double Pro-Pro deletion (des PP) peak hidden underneath the main peak in the original LC spectrum (see Fig. S4), which illustrates the need for devoting adequate resources to the development of suitable analytical methods for fragments used in CEPS ligations. As the yield of the synthesis was deemed satisfactory and the des PP impurity, conceivably formed by piperidine induced diketopiperazine (DKP) formation during Fmoc removal steps, ¹⁰ does not constitute a critical impurity during downstream processing (DSP) of exenatide API, we used the amine fragment in the forthcoming ligations experiments without any attempts to further optimize the SPPS.

AA nr	AA used	Coupling time (min)	MW	mmol AA	equiv AA	g AA	g Oxyma	Total mL DIC
Pro ³⁸⁻³⁷	Fmoc-Pro-Pro-OH	31	434,49	200,00	1,00	86,90	28,42	78,29
Pro ³⁶	Fmoc-Pro-OH	32	337,37	400,00	2,00	134,95	56,84	156,58
Ala ³⁵	Fmoc-Ala-OHxH ₂ O	30	329,36	400,00	2,00	131,74	56,84	156,58
Gly ³⁴	Fmoc-Gly-OH	32	297,30	400,00	2,00	118,92	56,84	156,58
Ser ³³	Fmoc-Ser(Trt)-OH	35	569,66	400,00	2,00	239,86	56,84	156,58
Ser ³²	Fmoc-Ser(Trt)-OH	34	569,66	400,00	2,00	239,86	56,84	156,58
Pro ³¹	Fmoc-Pro-OH	30	337,37	400,00	2,00	142,05	56,84	156,58
Gly ³⁰⁻²⁹	Fmoc-Gly-Gly-OH	32	354,40	300,00	1,50	111,92	42,63	117,43
Asn ²⁸	Fmoc-Asn(Trt)-OH	32	596,67	400,00	2,00	251,23	56,84	156,58
Lys ²⁷	Fmoc-Lys(Trt)-OH	33	610,8	300,00	1,50	192,88	42,63	117,43
Leu ²⁶	Fmoc-Leu-OH	33	354,41	400,00	2,00	149,23	56,84	156,58
Trp ²⁵	Fmoc-Trp(Boc)-OH	33 + 21 ¹	526,59	400,00	2,00	221,72	56,84	156,58
Glu ²⁴	Fmoc-Glu(OtBu)-OHxH ₂ O	20 + 22 ¹	443,49	400,00	2,00	186,73	56,84	156,58
lle ²³	Fmoc-Ile-OH	20 + 22 ¹	354,41	400,00	2,00	149,23	56,84	156,58
Phe ²²	Fmoc-Phe-OH	20 + 23 ¹	387,45	400,00	2,00	163,14	56,84	156,58

Table S3. AA, coupling reagent amounts and couplings times for Pro³⁸ – Phe²² part of the SPPS

¹Recoupling. Same amounts of AAs and reagents as in the 1st couplings were used.

4. LC-HRMS analysis of loss of DKP during piperidine treatment of Fmoc-20-21-O-Cam-Leu-RMG DEG AM resin (Fig. 3).

100 mg of the resin was swollen in DMF, drained and exposed to 2 mL of mol sieves dried 20% (v/v) pip/DMF. The resulting slurry was shaken for 8 min at rt after which 50 μ L of the supernate was taken out, diluted with 1.0 mL MeCN and LC-HRMS analysis of the reaction mixture was carried out. Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 50°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 220 nm; data rate: 5Hz; detector cell: standard cell 1uL; flow: 0.2 ml/min; jet weaver: v100 mixer; mobile phase A: 0.1 % formic acid in water, mobile phase B: 0.10 % formic acid in 10% water/90 %MeCN. Gradient (Time(min), %B): 0, 10; 1, 10; 46, 40; 48, 90; 50, 90; 50.1, 10; 60,10.

Figure S5. UV chromatogram overview.

	Table S4.	Area%	MS	identities	for	integrated	peaks
--	-----------	-------	----	------------	-----	------------	-------

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	6,73	5648,050	264,2624	1	263,2551	-258,0149	0,725	42,83	pip-DBF adduct m/z(M+H) 264,1752
2	9,29	5511,280	522,2749	1	521,2676	-0,0024	1,000	41,79	DKP (m/z(M+H) 522,2705)
3	12,51	2028,770	179,0898	1	178,0825	-343,1875	1,347	15,38	DBF m/z(M+H) 179,0861

5. Assessment of kinetics of loss of DKP during piperidine treatment of Fmoc-20-21-O-Cam-Leu-RMG DEG AM resin.

100 mg of the resin was swollen in DMF, drained and exposed to 2 mL of mol sieves dried 20% (v/v) pip/DMF. The resulting slurry was shaken at rt and 50 μ L aliquots of the supernate were taken out over time, diluted with 1.0 mL MeCN and HPLC analyses of the reaction mixtures were carried out. The conversion of the DKP was determined by comparing the HPLC area of the DKP peak (mAu^xmin) at a given timepoint vs the area of the peak upon complete removal of DKP from the resin. The t_{1/2} for the loss of DKP was determined to be ~30 min (Fig. S7).

Figure S7. A schematic representation of removal of DKP from Fmoc-20-21-O-Cam Leu RMG DEG AM resin upon treatment with pip/DMF.

6. Details of SPPS of Boc-1-21-O-Cam-Leu-RMG DEG AM resin (Scheme 2).

First, ~108 mmol of the intermediate Fmoc-Leu²¹-O-Cam-Leu-RMG resin 2 was prepared coupling the RMG linker to the base resin (150 mmol) followed by Fmoc deprotection. Next, as the laboratory scale CEPS process for exenatide utilized O-Cam-L as the linker³⁶ Fmoc-Leu-OH was coupled, followed by Fmoc deprotection and a coupling with Fmoc-Leu-O-Cam-OH⁴³ to furnish the resin 2 (Scheme S2). The resin loading was reduced ~30% over the three couplings in order to improve the reaction kinetics for the remainder of the SPPS and the yield of the synthesis of resin 2 based on the amount of Fmoc-Leu-OCam-OH used was ~98%. With resin 2 in hand we completed the synthesis of H-1-21-O-Cam-L fragment and in order to minimize the risk of peptide loss due to presence of the O-Cam ester we carried out the this SPPS under very mild conditions. At the same time, to prevent the formation of difficult to remove impurities caused by incomplete couplings and/or Fmoc deprotections we followed the conversion of all steps of the synthesis by suitable in-process control (IPC) tests. Thus, starting with the resin 2 the synthesis was carried out at rt using O-benzotriazol-1-yl-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU)¹¹ in the presence of N-methylmorpholine (NMM) for AA couplings and pip for Fmoc deprotections (Scheme 2). Taking into the account the potential lability of the O-Cam moiety the Fmoc deprotection treatments were carried out under very mild conditions. Specifically, resin 3 was deprotected using 1% pip for 10 min + 11% pPip for 10 min, the DKP prone Fmoc-20-21-O-Cam resin was deprotected using 1.5% dry pip for 10 min + 11.5% dry pip for 5 min and the remaining deprotections up to Fmoc-9-21 resin 4 were done using 2 x (1% Pip for 10 min + 11% Pip for 5 min). According to IPC analyses carried out up to Asp⁹ the conversion on all Fmoc deprotections was > 99%. Furthermore, as evidenced by the HPLC purity (85%) and yield (83%) for the Fmoc-9-21-O-Cam-Leu-NH₂ crude peptide the synthesis of intermediate resin **3** proceeded satisfactorily.

Scheme S2 SPPS of Boc-1-21-O-Cam-Leu resin, reagents and conditions: i) Fmoc deprotection: 12.5% pip in DMF, 40 – 45 °C, 25 min; ii) DMF resin wash; iii) coupling: R-COOH/Oxyma/DIC (1:1:3) in DMF, 40 – 45 °C, 30 min; iv) capping: AcOH/Oxyma/DIC (1:1:3) in DMF, 40 – 45 °C, 15 min; v) Fmoc deprotection (rt): a) resin **2**: 1% pip/DMF for 10 min + 11% pip/DMF for 10 min, b) Fmoc-20-21-O-Cam resin: 1.5% dry pip/DMF for 10 min + 11.5% dry pip/DMF for 5 min c) remaining deprotections: 2 x 1% pip/DMF for 10 min + 11% pip/DMF for 5 min. vi) coupling (rt): R-COOH/TBTU/NMM (1:1:2), 15 min; vii) capping (from Met¹⁵ onwards): Ac₂O, 5 min; viii) Fmoc deprotection: 20% pip in DMF, 30 – 40 °C, (until >99% conversion per IPC tests); ix) R-COOH/TBTU/NMM (1:1:2), 10 – 20 min; Phe⁶ coupled 2 x, Thr⁵ coupled 3 x, Boc-His(Trt)-Gly-OH used in final coupling x) *i*-PrOH wash and drying in vacuo.

Upon continuing the synthesis from resin **3** onwards we found that at rt the Fmoc deprotections did not go to completion despite increasing the pip concentration and/or prolonging the base treatments. In fact, several 20 min treatments with 20% pip at 30 - 40 °C were necessary to attain >99% conversion in these Fmoc deprotections (Scheme 3). Furthermore, Phe⁶ and Thr⁵ couplings had to be coupled twice and three times respectively in order to achieve a high conversion (negative ninhydrin⁵⁷ color test). The synthesis furnished 630 g of Boc-1-21 peptide resin and TFA cleavages of this material were carried out on up to 250 g scale using TFA/TIS/DTT/H₂O/NH₄I (90:4:3:1:2, v,v,w,v,w) for 2 h which was essentially the same cleavage cocktail as was used for the amine fragment resin with the exception of ammonium iodide which was added to suppress Met¹⁴ oxidation.¹²

Table S5. Conditions for Fmoc deprotections during SPPS of Boc-1-21-O-Cam-RMG DEG AM

resin

Deprotected resin	Fmoc deprotection	Fmoc deprotection time (min)	Pip concentration (% v/v)	Temperature (°C)	Fmoc deprotection conversion (%) ¹
Fmoc-Leu ²¹ -O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Emoc-Leu ²¹ -O-Cam-RMG DEG AM	1 st	20	11	22	>99,8
Fmoc-Arg ²⁰ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1,5	22	n.d.
Fmoc-Arg ²⁰ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11,5	22	>99,8
Fmoc-Val ¹⁹ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Val ¹⁹ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Val ¹⁹ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Val ¹⁹ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Ala ¹⁸ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Ala ¹⁸ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Ala ¹⁸ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Ala ¹⁸ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Glu ¹⁷ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Glu ¹⁷ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Glu ¹⁷ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Glu ¹⁷ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Glu ¹⁶ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Glu ¹⁶ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Glu ¹⁶ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Glu ¹⁶ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Glu ¹⁵ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Glu ¹⁵ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Glu ¹⁵ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Glu ¹⁵ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Met ¹⁴ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Met ¹⁴ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Met ¹⁴ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Met ¹⁴ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Gln ¹³ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Gln ¹³ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Gln ¹³ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Gln ¹³ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Lys ¹² -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Lys ¹² -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Lys ¹² -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Lys ¹² -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Ser ¹¹ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Ser ¹¹ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Ser ¹¹ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Ser ¹¹ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Leu ¹⁰ -Leu ²¹ O-Cam-RMG DEG AM	1 st	10	1	22	n.d.
Fmoc-Leu ¹⁰ -Leu ²¹ O-Cam-RMG DEG AM	1 st	5	11	22	n.d.
Fmoc-Leu ¹⁰ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	10	1	22	n.d.
Fmoc-Leu ¹⁰ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	5	11	22	>99,8
Fmoc-Asp ⁹ -Leu ²¹ O-Cam-RMG DEG AM	1 st	20	20	30 - 35	n.d.
Fmoc-Asp ⁹ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	20	20	30 - 35	99,9
Fmoc-Ser ⁸ -Leu ²¹ O-Cam-RMG DEG AM	1 st	20	20	30 - 35	n.d.
Fmoc-Ser ⁸ -Leu ²¹ O-Cam-RMG DEG AM	2 nd	20	20	30 - 35	99,2
Fmoc-Thr ⁷ -Leu ²¹ O-Cam-RMG DEG AM	1 st	20	20	30 - 35	n.d.
Fmoc-Thr'-Leu ²¹ O-Cam-RMG DEG AM	2 nd	20	20	30 - 35	78,6
Fmoc-Thr'-Leu ²¹ O-Cam-RMG DEG AM	3 rd	20	20	30 - 35	86,9
Fmoc-Thr'-Leu ⁴¹ O-Cam-RMG DEG AM	4 th	20	20	35 - 40	94,6
Fmoc-Thr'-Leu ⁴¹ O-Cam-RMG DEG AM	5 th	20	20	35 - 40	98,8
Fmoc-Phe ⁶ -Leu ²¹ O-Cam-RMG DEG AM	1 st	20	20	35 - 40	n.d.
Fmoc-Phe [®] -Leu ²¹ O-Cam-RMG DEG AM	2 ^{na}	20	20	35 - 40	99,2
Fmoc-Thr ² -Leu ⁺⁺ O-Cam-RMG DEG AM	1 st	20	20	35 - 40	96,7
Fmoc-Thr ³ -Leu ⁺⁺ O-Cam-RMG DEG AM	2 ^{""}	20	20	35 - 40	99,3
Fmoc-Gly [*] -Leu ⁺⁺ O-Cam-RMG DEG AM	1 st	20	20	35 - 40	n.d.
Fmoc-Gly [*] -Leu ⁺⁺ O-Cam-RMG DEG AM	2 ^{""}	20	20	35 - 40	99,2
+moc-Glu ⁻ -Leu O-Cam-RMG DEG AM	1°'	20	20	35 - 40	n.d.
Fmoc-Glu [™] -Leu [™] O-Cam-RMG DEG AM	2"	20	20	35 - 40	99,4

¹Determined by quantifying the Fmoc content on resin at the end of deprotection.

AA nr	AA used	Coupling time (min)	Coupling temperature (°C)	MW	mmol AA	equiv AA	g AA	g TBTU	mLNMM
Arg ²⁰	Fmoc-Arg(Pbf)-OH	15	22	648,77	200,00	1,9	129,75	64,22	44,00
Val ¹⁹	Fmoc-Val-OH	15	22	339,39	200,00	1,9	67,88	64,22	44,00
Ala ¹⁸	Fmoc-Ala-OHxH ₂ O	15	22	329,36	200,00	1,9	65,87	64,22	44,00
Glu ¹⁷	Fmoc-Glu-OHxH₂O	15	22	425,50	200,00	1,9	85,10	64,22	44,00
Glu ¹⁶	Fmoc-Glu-OHxH ₂ O	15	22	425,50	200,00	1,9	89,58	64,22	44,00
Glu ¹⁵	Fmoc-Glu-OHxH₂O	15	22	425,50	200,00	1,9	89,58	64,22	44,00
Met ¹⁴	Fmoc-Met-OH	15	22	371,45	200,00	1,9	78,20	64,22	44,00
Gln ¹³	Fmoc-Gln(Trt)-OH	15	22	610,70	200,00	1,9	128,57	64,22	44,00
Lys ¹²	Fmoc-Lys(Trt)-OH	15	22	610,74	200,00	1,9	128,58	64,22	44,00
Ser ¹¹	Fmoc-Ser(<i>t</i> -Bu)-OH	15	22	569,65	200,00	1,9	119,93	64,22	44,00
Leu ¹⁰	Fmoc-Leu-OH	15	22	354,41	200,00	1,9	74,61	64,22	44,00
Asp ⁹	Fmoc-Asp(Ot Bu)-OH	15	22	411,45	200,00	1,9	86,62	64,22	44,00
Ser ⁸	Fmoc-Ser(<i>t</i> -Bu)-OH	13	30 - 40	569,65	200,00	1,9	119,93	64,22	44,00
Thr ⁷	Fmoc-Thr(<i>t-</i> Bu)-OH	19	30 - 40	397,48	200,00	1,9	83,68	64,22	44,00
Phe ⁶	Fmoc-Phe-OH	15 + 12 ¹	30 - 40	387,45	200,00	1,9	81,57	64,22	44,00
Thr⁵	Fmoc-Thr(<i>t-</i> Bu)-OH	$15 + 15^1 + 11^1$	30 - 40	397,48	200,00	1,9	83,68	64,22	44,00
Gly ⁴	Fmoc-Gly-OH	11	30 - 40	297,31	200,00	1,9	62,59	64,22	44,00
Glu ³	Fmoc-Glu-OHxH ₂ O	14	30 - 40	425,50	200,00	1,9	89,58	64,22	44,00
His ¹ -Gly ²	Boc-His(Trt)-Gly-OH	20	30 - 40	554,65	200,00	1,9	116,77	64,22	44,00

Table S6. Raw material amounts and coupling conditions during SPPS of Boc-1-21-O-Cam-RMGDEG AM resin

¹Recoupling. Same amounts of AAs and reagents as in the 1st couplings were used.

7. HPLC analysis of crude Fmoc-9-21-O-Cam-Leu-NH₂ obtained from TFA cleavage of intermediate Fmoc-9-21-O-Cam-Leu-RMG DEG AM resin (Scheme S2).

Experimental conditions: column: Waters XSelect CSH130 C18 2.5 µm 4.6x150mm; column temperature: 30°C; injection volume: 5 uL; sampler temperature:10°C; flow: 0.8 ml/min; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.08 % TFA in 90% MeCN/10 % water. Gradient (Time(min), %B): 0, 0; 40, 100; 54, 100; 55, 0; 62, 0.

Figure S9. UV chromatogram zoom-in.

No	Ret. Time (min)	Area (mAu ^x min)	Height (mAU)	Rel.Area (%)
1	16,500	0,0846	0,565	0,17
2	16,933	2,0054	11,741	3,99
3	17,500	0,1701	2,148	0,34
4	17,800	0,2876	3,180	0,57
5	18,250	0,1160	1,311	0,23
6	18,533	0,9139	5,010	1,82
7	19,000	1,6690	9,383	3,32
8	19,333	1,0785	8,635	2,15
9	19,633	0,8864	4,547	1,76
10	20,183	41,5324	465,324	82,69
11	20,583	0,0400	0,625	0,08
12	20,850	0,3876	1,827	0,77
13	21,400	0,1621	1,782	0,32
14	21,683	0,2625	3,103	0,52
15	22,083	0,2965	3,637	0,59
16	22,267	0,0286	0,405	0,06
17	22,983	0,0675	0,746	0,13
18	23,300	0,0308	0,355	0,06
19	23,833	0,1706	2,105	0,34
20	24,283	0,0381	0,511	0,08
Total:		50,2281	526,940	100,00

Table S	57. Area%	5 for integrated	l peaks
---------	------------------	------------------	---------

8. LC-HRMS analysis of crude H-1-21-O-Cam-Leu-NH₂ obtained from TFA cleavage of Boc-1-21-O-Cam-Leu-RMG DEG AM resin (Scheme S2).

Experimental conditions: column: Waters CSH 2.6 µm 4.6 x 150 mm; column temperature: 40°C; injection volume: 1 µL; sampler temperature: 5°C; MS mode: positive 50-3200; DAD: 220 nm; data rate: 2.5Hz; detector cell: standard cell 1uL; flow: 0.8 ml/min; jet weaver: v100 mixer; mobile

phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 5; 1, 5; 41, 95; 41.1, 5; 47, 5.

Figure S10. UV chromatogram overview.

Figure S11. UV chromatogram zoom-in.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	4,89	5,290			0,0000	-2533,2120	0,317	0,15	
2	5,51	4,230			0,0000	-2533,2120	0,358	0,12	
3	5,89	179,300	383,2114	1	382,2041	-2151,0079	0,382	5,19	H-(1-2)-O-Cam-Leu- NH2
4	5,99	47,770	512,2471	1	511,2398	-2021,9722	0,389	1,38	H-(1-3)-Cam-Leu-NH2
5	6,07	9,850			0,0000	-2533,2120	0,394	0,29	
6	6,71	34,770			0,0000	-2533,2120	0,435	1,01	
7	6,75	8,740			0,0000	-2533,2120	0,438	0,25	
8	7,13	5,780			0,0000	-2533,2120	0,463	0,17	
9	7,66	15,150			0,0000	-2533,2120	0,497	0,44	
10	9,86	6,110			0,0000	-2533,2120	0,640	0,18	
11	10,15	6,270			0,0000	-2533,2120	0,659	0,18	
12	10,27	7,830			0,0000	-2533,2120	0,667	0,23	
13	10,37	3,210			0,0000	-2533,2120	0,673	0,09	
14	10,64	19,350			0,0000	-2533,2120	0,691	0,56	
15	10,87	2,010			0,0000	-2533,2120	0,705	0,06	
16	11,06	11,420			0,0000	-2533,2120	0,718	0,33	
17	11,62	10,200			0,0000	-2533,2120	0,754	0,30	
18	11,90	3,290			0,0000	-2533,2120	0,772	0,10	
19	12,19	65,800			0,0000	-2533,2120	0,791	1,90	
20	12,38	24,400			0,0000	-2533,2120	0,804	0,71	
21	12,51	41,420	1047,9691	2	2093,9236	-439,2884	0,812	1,20	H-(1-19)-OH
22	12,75	5,420			0,0000	-2533,2120	0,828	0,16	
23	12,87	20,780			0,0000	-2533,2120	0,835	0,60	
24	12,90	7,920			0,0000	-2533,2120	0,837	0,23	
25	13,10	1,970			0,0000	-2533,2120	0,850	0,06	
26	13,24	4,250			0,0000	-2533,2120	0,859	0,12	
27	13,38	13,130			0,0000	-2533,2120	0,868	0,38	
28	13,53	69,990	788,7102	3	2363,1088	-170,1032	0,878	2,03	(H-(1-21)-OH
29	13,70	9,080			0,0000	-2533,2120	0,889	0,26	

Table S8. Area% for integrated peaks and MS identities for H-1-21-O-Cam-Leu-NH₂ and main byproducts.

30	13,79	15,220			0,0000	-2533,2120	0,895	0,44	
31	13,91	28,440			0,0000	-2533,2120	0,903	0,82	
32	13,97	26,450			0,0000	-2533,2120	0,907	0,77	
33	14,02	11,020			0,0000	-2533,2120	0,910	0,32	
34	14,13	27,920			0,0000	-2533,2120	0,917	0,81	
35	14,32	6,010			0,0000	-2533,2120	0,929	0,17	
36	14,47	23,570			0,0000	-2533,2120	0,939	0,68	
37	14,54	15,110			0,0000	-2533,2120	0,944	0,44	
38	14,69	20,920			0,0000	-2533,2120	0,953	0,61	
39	14,84	17,950			0,0000	-2533,2120	0,963	0,52	
40	14,92	14,500			0,0000	-2533,2120	0,968	0,42	
41	15,06	9,400			0,0000	-2533,2120	0,977	0,27	
42	15,21	7,040			0,0000	-2533,2120	0,987	0,20	
43	15,41	1534,560	845,4161	3	2533,2265	0,0145	1,000	44,41	Prod. H-(1-21)-O-Cam- Leu-NH2
44	15,49	23,140			0,0000	-2533,2120	1,006	0,67	
45	15,65	5,600			0,0000	-2533,2120	1,016	0,16	
46	15,75	17,520			0,0000	-2533,2120	1,022	0,51	
47	15,87	1,670			0,0000	-2533,2120	1,030	0,05	
48	15,99	22,320			0,0000	-2533,2120	1,038	0,65	
49	16,19	4,820			0,0000	-2533,2120	1,051	0,14	
50	16,35	7,630			0,0000	-2533,2120	1,061	0,22	
51	16,49	1,710			0,0000	-2533,2120	1,070	0,05	
52	16,61	5,400			0,0000	-2533,2120	1,078	0,16	
53	16,84	3,730			0,0000	-2533,2120	1,093	0,11	
54	16,95	1,910			0,0000	-2533,2120	1,100	0,06	
55	17,02	2,680			0,0000	-2533,2120	1,105	0,08	
56	17,22	2,960			0,0000	-2533,2120	1,118	0,09	
57	17,35	170,400	1048,0244	2	2094,0342	-439,1778	1,126	4,93	Ac-(6-21)-O-Cam-Leu- NH2
58	17,51	1,700			0,0000	-2533,2120	1,136	0,05	
59	17,58	1,790			0,0000	-2533,2120	1,141	0,05	
60	17,79	2,050			0,0000	-2533,2120	1,155	0,06	
61	17,91	4,520			0,0000	-2533,2120	1,162	0,13	

62	18,06	1,830			0,0000	-2533,2120	1,172	0,05	
63	18,29	2,710			0,0000	-2533,2120	1,187	0,08	
64	18,58	9,560			0,0000	-2533,2120	1,206	0,28	
65	18,86	11,500			0,0000	-2533,2120	1,224	0,33	
66	18,927	32,78			0,0000	-2533,2120	1,228	0,95	
67	19,087	3,32			0,0000	-2533,2120	1,239	0,1	
68	19,547	4,36			0,0000	-2533,2120	1,269	0,13	
69	19,853	325,17	1519,4002	3	4555,1788	2021,9668	1,289	9,41	add-on 4-21
70	20,14	7,95			0,0000	-2533,2120	1,307	0,23	
71	20,38	21,46			0,0000	-2533,2120	1,323	0,62	
72	20,627	9,14			0,0000	-2533,2120	1,339	0,26	
73	20,92	1,72			0,0000	-2533,2120	1,358	0,05	
74	21,02	2,79			0,0000	-2533,2120	1,364	0,08	
75	21,32	77,33	1373,0104	3	4116,0094	1582,7974	1,384	2,24	Ac-(6-21)-O-Cam-Leu- NH2 - add-on 4-21
76	21,467	4,39			0,0000	-2533,2120	1,393	0,13	
77	21,64	5,09			0,0000	-2533,2120	1,405	0,15	
78	21,773	5,67			0,0000	-2533,2120	1,413	0,16	
79	22,153	8,95			0,0000	-2533,2120	1,438	0,26	
80	22,427	91,2	1645,2968	4	6577,1581	4043,9461	1,456	2,64	2 x add-on 4-21
81	22,98	5,36			0,0000	-2533,2120	1,492	0,15	
82	23,227	1,99			0,0000	-2533,2120	1,508	0,06	
83	23,62	43,03			0,0000	-2533,2120	1,533	1,25	
84	24,047	13,94			0,0000	-2533,2120	1,561	0,4	
85	24,807	1,9			0,0000	-2533,2120	1,610	0,06	
86	25,033	2,48			0,0000	-2533,2120	1,625	0,07	
87	26,553	2,09			0,0000	-2533,2120	1,723	0,06	
88	27,953	2,14			0,0000	-2533,2120	1,814	0,06	
89	30,927	5,81			0,0000	-2533,2120	2,007	0,17	
90	32,42	3,64			0,0000	-2533,2120	2,104	0,11	
91	32,973	4,38			0,0000	-2533,2120	2,140	0,13	
92	33,247	16,5			0,0000	-2533,2120	2,158	0,48	
93	34,767	41,2			0,0000	-2533,2120	2,257	1,19	

9. Proposed mechanism of formation of the add-on 4-21 impurity during Fmoc deprotection of Fmoc-4-21-O-Cam-Leu-RMG DEG AM resin.

Scheme S3. A schematic representation of the formation of add on 4-21 resin by an intermolecular attack of H-4-21-O-Cam-Leu-RMG DEG AM on the O-Cam moiety of another peptide strain.

10. Kinetics of the omniligase-1 catalyzed ligation of crude H-22-39-NH₂ + crude H-1-21-O-Cam-Leu-NH₂, original protocol (Fig. 4).

Throughout the ligation 50 μ L aliquots of the reaction mixture were taken out, quenched with 10% AcOH (1.0 mL) and analyzed by HPLC. When all H-1-21-O-Cam-Leu-NH₂ was consumed and no further conversion to the product could be observed the reaction was quenched with 10% AcOH. The S/H ratio was calculated by integrating the peak of H-1-39-NH₂ together with byproduct peaks formed by reactions between H-1-21-O-Cam-Leu-NH₂ and byproducts in the crude H-2-39-NH₂ (S) vs the peak of H-1-21-OH (hydrolyzed H-1-21-O-Cam-Leu-NH₂, H).

Experimental conditions: column: Waters XSelect CSH130 C18 2.5µm 4.6x150mm; column temperature: 45°C; injection volume: 5 µL; sampler temperature:10°C; flow: 1.0 ml/min; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.08 % TFA in 90% MeCN/10 % water. Gradient (Time(min), %B): 0, 1; 10, 100; 13, 100; 14, 100; 19, 1; 20, 1.

Figure S12. A schematic representation of the progress of Fig. 4 crude H-22-39-NH₂ + crude H-1-21-O-Cam-Leu-NH₂ ligation.

11. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of crude H-22-39-NH₂ + crude H-1-21-O-Cam-Leu-NH₂ (Fig. 4).

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v100 mixer; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 11; 1, 11; 5, 33; 50, 37; 54, 60; 56, 90; 58, 90; 58.1, 11; 70, 11.

Figure S13. UV chromatogram overview.

Figure S14. UV chromatogram zoom-in.

Table S9. Area% for integrated peaks and MS identities for H-1-39-NH₂ and main byproducts.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	6,99	461,590	1182,5655	2	2363,1164	-1820,9109	0,341	8,28	H-(1-21)-OH
2	20,52	2761,210	1395,6854	3	4184,0344	0,0071	1,000	49,52	Prod. H-(1-39)-NH2
3	21,40	398,780	1396,0116	3	4185,0130	0,9857	1,043	7,15	Deamidation
4	23,26	1142,760	1396,0128	3	4185,0166	0,9893	1,134	20,49	Deamidation
5	31,45	48,560	1200,5953	3	3598,7641	-585,2632	1,533	0,87	n.d.
6	37,29	137,950	1409,6986	3	4226,0740	42,0467	1,818	2,47	Met to hCys(tBu)
7	42,91	40,440	1410,0258	3	4227,0556	43,0283	2,091	0,73	Deamidation + (Met to hCys(tBu)
8	46,18	391,060	1249,2898	3	3744,8476	-439,1797	2,251	7,01	Ac-(6-39)-NH2
9	47,76	51,140	1249,6167	3	3745,8283	-438,1990	2,328	0,92	Deamidation + Ac-(6-39)-NH2
10	51,73	142,510	1249,6178	3	3745,8316	-438,1957	2,521	2,56	Deamidation + Ac-(6-39)-NH2

12. Structures of exenatide and its four possible deamidation impurities. Exenatide:

H-HGEGTFTSDLSKQ¹³MEEEAVRLFIEWLKN²⁸GGPSSGAPPPS³⁹-NH₂ Glu¹³ Exenatide:

H-HGEGTFTSDLSKE¹³MEEEAVRLFIEWLKN²⁸GGPSSGAPPPS³⁹-NH₂ Asp²⁸ Exenatide:

H-HGEGTFTSDLSKQ¹³MEEEAVRLFIEWLKD²⁸GGPSSGAPPPS³⁹-NH₂ β-Asp²⁸ Exenatide:

H-HGEGTFTSDLSKQ¹³MEEEAVRLFIEWLKβD²⁸GGPSSGAPPPS³⁹-NH₂ Ser-OH³⁹ Exenatide:

H-HGEGTFTSDLSKQ¹³MEEEAVRLFIEWLKN²⁸GGPSSGAPPPS³⁹-OH

13. HPLC analytical system for separating exenatide and its four deamidation impurities.

Experimental conditions: column: Waters XBridge 130 C18 3.5 μ m, 4.6 x 150 mm; column temperature: 60°C; injection volume: 10 μ L; sampler temperature:10°C; flow: 0.8 ml/min; mobile phase A: 10 mM NH₄HCO₃ pH 9.5, mobile phase B: 10/90 10 mM NH₄HCO₃ pH 9.5/MeCN. Gradient (Time(min), %B): 0, 26; 0.5, 26; 33, 37; 35, 90; 36, 90; 36.1, 26; 42, 26.

14. Assessment of stability of exenatide API under different conditions.

exenatide API was dissolved in a buffer solution (5 mg/mL) and the resulting reaction mixture was kept at a given temperature with stirring. 50 µL aliquots were taken out over time, quenched (1.0 mL 10% AcOH) and analyzed by HPLC using the method described above (section 13 of this ESI). The rate of breakdown of exenatide under given conditions was calculated by integrating the areas of peaks of the formed exenatide degradants vs the area of the peak of the remaining exenatide. Figure S16 shows an example of the assessment of exenatide stability whereas Figure S17 summarizes the effect of temperature and pH on stability of exenatide in 1M phosphate buffer.

Figure S16. HPLC overlay of exenatide API in 1M phosphate buffer pH 9.2 at 37 °C over 70 h.

Figure S17. A schematic representation of effect of pH and temperature on stability of exenatide API in 1M phosphate buffer.

15. Kinetics of the omniligase-1 catalyzed ligation of crude H-22-39-NH₂ + crude H-1-21-O-Cam-Leu-NH₂, revised protocol (Fig. 6).

Throughout the ligation 50 μ L aliquots of the reaction mixture were taken out, quenched with 10% AcOH (1.0 mL) and analyzed by HPLC. When all H-1-21-O-Cam-Leu-NH₂ was consumed and no further conversion to the product could be observed the reaction was quenched with 10% AcOH. The S/H ratio was calculated by integrating the peak of H-1-39-NH₂ together with byproduct peaks

formed by reactions between H-1-21-O-Cam-Leu-NH₂ and byproducts in the crude H-22-39-NH₂ (S) vs the peak of H-1-21-OH (hydrolyzed H-1-21-O-Cam-Leu-NH₂, H).

Experimental conditions: column: Waters XSelect CSH130 C18 2.5µm 4.6x150mm; column temperature: 45°C; injection volume: 5 µL; sampler temperature:10°C; flow: 1.0 ml/min; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.08 % TFA in 90% MeCN/10 %water. Gradient (Time(min), %B): 0, 1; 10, 100; 13, 100; 14, 100; 19, 1; 20, 1.

16. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of crude H-22-39-NH₂ + crude H-1-21-O-Cam-Leu-NH₂ (Fig. 6).

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v100 mixer; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 11; 1, 11; 5, 33; 50, 37; 54, 60; 56, 90; 58, 90; 58.1, 11; 70, 11.

Figure S19. UV chromatogram overview.

Figure S20. UV chromatogram zoom-in.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	1,71	1327,970			0,0000	-4184,0273	0,084	1,44	
2	1,80	11129,600	920,5050	2	1841,0100	-2343,0173	0,088	12,07	H-(22-39)-NH2
3	2,69	2670,780			0,0000	-4184,0273	0,131	2,90	
4	3,14	41,700			0,0000	-4184,0273	0,153	0,05	
5	3,44	69,790			0,0000	-4184,0273	0,168	0,08	
6	3,66	32,560			0,0000	-4184,0273	0,178	0,04	
7	4,17	20,260			0,0000	-4184,0273	0,203	0,02	
8	4,33	1117,110			0,0000	-4184,0273	0,211	1,21	
9	4,47	82,460			0,0000	-4184,0273	0,218	0,09	
10	4,73	100,390			0,0000	-4184,0273	0,231	0,11	
11	4,97	172,320			0,0000	-4184,0273	0,242	0,19	
12	5,11	113,250			0,0000	-4184,0273	0,249	0,12	
13	5,24	165,620			0,0000	-4184,0273	0,255	0,18	
14	5,34	119,980			0,0000	-4184,0273	0,261	0,13	
15	5,67	18,360			0,0000	-4184,0273	0,277	0,02	
16	5,84	93,350			0,0000	-4184,0273	0,285	0,10	
17	5,88	129,310			0,0000	-4184,0273	0,287	0,14	
18	5,95	133,480			0,0000	-4184,0273	0,290	0,14	
19	5,99	213,400			0,0000	-4184,0273	0,292	0,23	
20	6,12	280,830			0,0000	-4184,0273	0,299	0,30	
21	6,28	214,360			0,0000	-4184,0273	0,306	0,23	
22	6,34	1199,080			0,0000	-4184,0273	0,309	1,30	
23	6,56	904,220			0,0000	-4184,0273	0,320	0,98	
24	6,67	12619,470			0,0000	-4184,0273	0,326	13,68	
25	6,78	718,570			0,0000	-4184,0273	0,331	0,78	
26	6,93	448,430			0,0000	-4184,0273	0,338	0,49	
27	7,05	1406,750	788,7140	3	2363,1202	-1820,9071	0,344	1,53	H-(1-21)-OH
28	7,24	263,910			0,0000	-4184,0273	0,353	0,29	
29	7,34	435,570			0,0000	-4184,0273	0,358	0,47	
30	7,44	390,090			0,0000	-4184,0273	0,363	0,42	
31	7,50	533,460			0,0000	-4184,0273	0,366	0,58	
32	7,66	31,330			0,0000	-4184,0273	0,374	0,03	
33	7,72	299,070			0,0000	-4184,0273	0,376	0,32	

Table S10. Area% for integrated peaks and MS identities for $H-1-39-NH_2$ and main byproducts.

34	7,80	174,490			0,0000	-4184,0273	0,380	0,19	
35	7,90	31,520			0,0000	-4184,0273	0,386	0,03	
36	7,93	127,810			0,0000	-4184,0273	0,387	0,14	
37	8,01	151,820			0,0000	-4184,0273	0,391	0,16	
38	8,05	645,110			0,0000	-4184,0273	0,393	0,70	
39	8,13	165,410			0,0000	-4184,0273	0,396	0,18	
40	8,27	23,470			0,0000	-4184,0273	0,403	0,03	
41	8,47	381,270			0,0000	-4184,0273	0,413	0,41	
42	8,85	315,480			0,0000	-4184,0273	0,432	0,34	
43	9,08	329,550			0,0000	-4184,0273	0,443	0,36	
44	9,22	117,650			0,0000	-4184,0273	0,450	0,13	
45	9,947	28,09			0,0000	-4184,0273	0,485	0,03	
46	10,137	294,32			0,0000	-4184,0273	0,494	0,32	
47	10,35	88,48			0,0000	-4184,0273	0,505	0,1	
48	10,433	7,29			0,0000	-4184,0273	0,509	0,01	
49	10,66	23,53			0,0000	-4184,0273	0,520	0,03	
50	10,9	84,75			0,0000	-4184,0273	0,532	0,09	
51	11,08	14,63			0,0000	-4184,0273	0,540	0,02	
52	11,503	172,92			0,0000	-4184,0273	0,561	0,19	
53	11,923	81,4			0,0000	-4184,0273	0,582	0,09	
54	12,487	231,02			0,0000	-4184,0273	0,609	0,25	
55	13,143	312,09			0,0000	-4184,0273	0,641	0,34	
56	13,713	324,57			0,0000	-4184,0273	0,669	0,35	
57	14,457	332,41			0,0000	-4184,0273	0,705	0,36	
58	14,857	31,73			0,0000	-4184,0273	0,725	0,03	
59	15,65	59,8			0,0000	-4184,0273	0,763	0,06	
60	16,24	288,02			0,0000	-4184,0273	0,792	0,31	
61	16,88	160			0,0000	-4184,0273	0,823	0,17	
62	17,243	338,09			0,0000	-4184,0273	0,841	0,37	
63	17,58	368,45			0,0000	-4184,0273	0,858	0,4	
64	18,27	576,7			0,0000	-4184,0273	0,891	0,63	
65	19,107	600,4			0,0000	-4184,0273	0,932	0,65	
66	20,147	346,78			0,0000	-4184,0273	0,983	0,38	
67	20,457	26124,46	1395,684	3	4184,0302	0,0029	0,998	28,33	Prod. H-(1-39)- NH2
68	22,16	999,15			0,0000	-4184,0273	1,081	1,08	
69	23,407	353,69			0,0000	-4184,0273	1,142	0,38	

70	24,003	1591,57			0,0000	-4184,0273	1,171	1,73	
71	24,55	590,12			0,0000	-4184,0273	1,198	0,64	
72	25	496,24			0,0000	-4184,0273	1,220	0,54	
73	26,077	56,47			0,0000	-4184,0273	1,272	0,06	
74	26,717	498,78			0,0000	-4184,0273	1,303	0,54	
75	28,39	1071,09			0,0000	-4184,0273	1,385	1,16	
76	29,29	114,11			0,0000	-4184,0273	1,429	0,12	
77	30,483	227,76			0,0000	-4184,0273	1,487	0,25	
78	32,133	811,6			0,0000	-4184,0273	1,567	0,88	
79	32,897	17,13			0,0000	-4184,0273	1,605	0,02	
80	33,68	419,6			0,0000	-4184,0273	1,643	0,45	
81	34,347	129,51			0,0000	-4184,0273	1,675	0,14	
82	35,167	190,89			0,0000	-4184,0273	1,715	0,21	
83	36,353	21,22			0,0000	-4184,0273	1,773	0,02	
84	36,953	19,64			0,0000	-4184,0273	1,803	0,02	
85	38,037	1437,89			0,0000	-4184,0273	1,855	1,56	
86	39,377	228,6			0,0000	-4184,0273	1,921	0,25	
87	42,053	21,79			0,0000	-4184,0273	2,051	0,02	
88	42,733	129,86			0,0000	-4184,0273	2,085	0,14	
89	43,327	146,06			0,0000	-4184,0273	2,114	0,16	
90	44,76	30,76			0,0000	-4184,0273	2,183	0,03	
91	45,55	113,95			0,0000	-4184,0273	2,222	0,12	
92	46,583	3797,45	1249,2898	3	3747,8694	-436,1579	2,272	4,12	Ac-(6-39)-NH2
93	47,493	240,26			0,0000	-4184,0273	2,317	0,26	
94	52,183	216,56			0,0000	-4184,0273	2,546	0,23	
95	52,873	45,19			0,0000	-4184,0273	2,579	0,05	
96	53,267	20,09			0,0000	-4184,0273	2,598	0,02	
97	53,563	142,83			0,0000	-4184,0273	2,613	0,15	
98	53,763	203,82			0,0000	-4184,0273	2,623	0,22	
99	53,89	170			0,0000	-4184,0273	2,629	0,18	
100	54,023	188,76			0,0000	-4184,0273	2,635	0,2	
101	54,21	242,16			0,0000	-4184,0273	2,644	0,26	
102	54,313	333,3			0,0000	-4184,0273	2,649	0,36	
103	54,5	2690,51			0,0000	-4184,0273	2,659	2,92	
104	54,61	299,98			0,0000	-4184,0273	2,664	0,33	
105	54,79	242,81			0,0000	-4184,0273	2,673	0,26	
106	54,927	307,46			0,0000	-4184,0273	2,679	0,33	

107	55,087	724,95	0,0000	-4184,0273	2,687	0,79
108	55,21	60,44	0,0000	-4184,0273	2,693	0,07
109	55,313	420,49	0,0000	-4184,0273	2,698	0,46
110	55,387	33,97	0,0000	-4184,0273	2,702	0,04
111	55,56	112,18	0,0000	-4184,0273	2,710	0,12
112	55,693	34,3	0,0000	-4184,0273	2,717	0,04
113	55,77	214,07	0,0000	-4184,0273	2,720	0,23
114	56,043	71,08	0,0000	-4184,0273	2,734	0,08
115	56,56	170,2	0,0000	-4184,0273	2,759	0,18
116	56,753	12,56	0,0000	-4184,0273	2,768	0,01
117	57,103	282,88	0,0000	-4184,0273	2,786	0,31
118	58,133	6,34	0,0000	-4184,0273	2,836	0,01
119	58,253	51,83	0,0000	-4184,0273	2,842	0,06
120	58,39	23,83	0,0000	-4184,0273	2,848	0,03
121	58,647	118,62	0,0000	-4184,0273	2,861	0,13
122	58,893	119,92	0,0000	-4184,0273	2,873	0,13
123	59,067	3,88	0,0000	-4184,0273	2,881	0
124	59,307	11,4	0,0000	-4184,0273	2,893	0,01
125	59,45	1,95	0,0000	-4184,0273	2,900	0
126	60,343	41,72	0,0000	-4184,0273	2,944	0,05

17. HPLC analysis of purified H-22-39-NH₂ fragment.

For the details of the purification of the fragment see the Materials & Methods section of the paper. Experimental conditions: column: Phenomenex Kinetex C18 2.6µm 4.6x50mm; column temperature: 50°C; injection volume: 1 µL; sampler temperature:10°C; flow: 2 ml/min; mobile phase A: 50 mM KH₂PO₄ pH 3.0, mobile phase B: MeCN. Gradient (Time(min), %B): 0, 15; 0.3, 15; 10, 20; 10.1, 60; 10.5, 60; 10.6, 15; 12, 15.

Figure S21. UV chromatogram overview.

Figure S22.	UV	chromatogram	zoom-in.
-------------	----	--------------	----------

No	Pot Time (min)	Area	Height	Rel.Area					
INO	Ret. fille (filli)	(mAu ^x min)	(mAU)	(%)					
1	4,066	0,4949	4,096	1,41					
2	4,691	34,0573	146,574	97,13					
3	5,226	0,5086	1,998	1,45					
4	5,923	0,0035	0,030	0,01					
Total:		35,0643	152,698	100,00					

Table S11. Area% for integrated peaks.

18. HPLC analysis of purified H-1-21-O-Cam-Leu-NH₂ fragment.

For the details of the purification of the fragment see the Materials & Methods section of the paper. Experimental conditions: column: Phenomenex Kinetex C18 2.6µm 4.6x50mm; column temperature: 30°C; injection volume: 5 µL; sampler temperature:10°C; flow: 1.5 ml/min; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.08 % TFA in 90% MeCN/10 % water. Gradient (Time(min), %B): 0, 5; 0.3, 5; 21, 95; 22, 95; 22.1, 5; 25, 5.

Figure S23. UV chromatogram overview.

Figure S24. UV chromatogram zoom-in.

No	Ret. Time (min)	Area (mAu ^x min)	Height (mAU)	Rel.Area (%)
1	7,269	0,3254	6,418	0,59
2	7,558	0,0524	1,239	0,09
3	7,972	0,0169	0,081	0,03
4	8,354	0,1533	6,689	0,28
5	8,418	52,2867	673,055	94,00
6	8,660	1,4573	8,864	2,62
7	9,267	0,0419	0,692	0,08
8	9,703	0,0638	0,575	0,11
9	10,726	0,0117	0,218	0,02
10	10,973	0,0184	0,302	0,03
11	11,924	0,0490	0,804	0,09
12	12,095	0,0265	0,541	0,05
13	12,597	0,0399	0,667	0,07
14	13,480	0,0519	0,872	0,09
15	13,886	0,9762	12,093	1,76
16	15,738	0,0497	0,559	0,09
Total:		55,6212	713,669	100,00

 Table S12.
 Area% for integrated peaks.

19. Kinetics of the omniligase-1 catalyzed ligation of pure H-22-39-NH₂ + pure H-1-21-O-Cam-Leu-NH₂ (Fig. 7).

Throughout the ligation 50 μ L aliquots of the reaction mixture were taken out, quenched with 10% AcOH (1.0 mL) and analyzed by HPLC. When all H-1-21-O-Cam-Leu-NH₂ was consumed and no further conversion to the product could be observed the reaction was quenched with 10% AcOH. The S/H ratio was calculated by integrating the peak of H-1-39-NH₂ together with byproducts peaks formed by reactions between H-1-21-O-Cam-Leu-NH₂ and byproducts in the crude H-22-39-NH₂ (S) vs the peak of H-1-21-OH (hydrolyzed H-1-21-O-Cam-Leu-NH₂, H).

Experimental conditions: column: Waters XSelect CSH130 C18 2.5µm 4.6x150mm; column temperature: 45°C; injection volume: 5 µL; sampler temperature:10°C; flow: 1.0 ml/min; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.08 % TFA in 90% MeCN/10 %water. Gradient (Time(min), %B): 0, 1; 10, 100; 13, 100; 14, 100; 19, 1; 20, 1.

Figure S25. A schematic representation of the progress of Fig. 7 pure H-22-39-NH₂ + pure H-1-21-O-Cam-Leu-NH₂ ligation.

20. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of pure H-22-39-NH₂ + pure H-1-21-O-Cam-Leu-NH₂ (Fig. 7).

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v100 mixer; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 11; 1, 11; 5, 33; 50, 37; 54, 60; 56, 90; 58, 90; 58.1, 11; 70, 11.

Figure S26. UV chromatogram overview.

Figure S27. UV chromatogram zoom-in.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	1,70	713,700			0,0000	-4184,0273	0,083	1,7	
2	1,76	666,790			0,0000	-4184,0273	0,086	1,59	
3	4,31	329,760			0,0000	-4184,0273	0,210	0,79	
4	6,19	4,540			0,0000	-4184,0273	0,302	0,01	
5	6,50	26,450			0,0000	-4184,0273	0,317	0,06	
6	6,67	6270,680	920,5060	2	1838,9974	-2345,0299	0,325	14,94	H-(22-39)-NH2
7	6,93	72,050	, i		0,0000	-4184,0273	0,338	0,17	, ,
8	7.04	1168,700	788,7120	3	2363.1142	-1820.9131	0.344	2.78	H-(1-21)-OH
9	7.22	24.270	,	-	0.0000	-4184.0273	0.352	0.06	
10	7.32	10.910			0.0000	-4184.0273	0.357	0.03	
11	7.42	9.870			0.0000	-4184.0273	0.362	0.02	
12	7,48	7.920			0.0000	-4184.0273	0.365	0.02	
13	7.51	6.230			0.0000	-4184.0273	0.366	0.01	
14	7.63	7.640			0,0000	-4184.0273	0.372	0.02	
15	7.68	21,780			0.0000	-4184.0273	0.375	0.05	
16	7.80	3.970			0.0000	-4184.0273	0.380	0.01	
17	7.85	1.320			0.0000	-4184.0273	0.383	0.00	
18	8.03	12,720			0.0000	-4184.0273	0.392	0.03	
19	8.07	6.840			0.0000	-4184.0273	0.394	0.02	
20	8.64	0.840			0.0000	-4184.0273	0.422	0.00	
21	8.85	3.180			0.0000	-4184.0273	0.432	0.01	
22	9,04	2,180			0,0000	-4184,0273	0,441	0,01	
23	9,20	6,950			0,0000	-4184,0273	0,449	0,02	
24	9,55	43,700			0,0000	-4184.0273	0,466	0.10	
25	10,17	7,280			0,0000	-4184,0273	0,496	0,02	
26	10,44	0,860			0,0000	-4184,0273	0,509	0,00	
27	11,60	1,470			0,0000	-4184,0273	0,566	0,00	
28	12,04	1,020			0,0000	-4184,0273	0,587	0,00	
29	12,52	4,920			0,0000	-4184,0273	0,611	0,01	
30	13,33	1,120			0,0000	-4184,0273	0,650	0,00	
31	16,22	14,830			0,0000	-4184,0273	0,791	0,04	
32	16,84	11,800			0,0000	-4184,0273	0,821	0,03	
33	17,52	13,480			0,0000	-4184,0273	0,854	0,03	
34	19,21	24,390			0,0000	-4184,0273	0,937	0,06	
35	20,10	217,150			0,0000	-4184,0273	0,981	0,52	
36	20,43	29457,600	1395,6850	3	4184,0332	0,0059	0,997	70,19	Prod. H-(1-39)-NH2
37	22,08	161,070			0,0000	-4184,0273	1,077	0,38	
38	22,52	195,570			0,0000	-4184,0273	1,099	0,47	
39	23,15	104,590			0,0000	-4184,0273	1,129	0,25	
40	23,55	87,340			0,0000	-4184,0273	1,149	0,21	
41	24,19	656,000	1330,9810	3	3989,9212	-194,1061	1,180	1,56	Des Pro-Pro
42	24,56	30,730			0,0000	-4184,0273	1,198	0,07	
43	25,07	225,130			0,0000	-4184,0273	1,223	0,54	
44	26,79	75,260			0,0000	-4184,0273	1,307	0,18	
45	27,29	27,35			0,0000	-4184,0273	1,331	0,07	
46	28,813	149,15			0,0000	-4184,0273	1,406	0,36	
47	29,49	32,7			0,0000	-4184,0273	1,439	0,08	
48	30,693	116,15			0,0000	-4184,0273	1,497	0,28	
49	31,973	47,48			0,0000	-4184,0273	1,560	0,11	
50	32,6	3,22			0,0000	-4184,0273	1,590	0,01	
51	33,923	259,98			0,0000	-4184,0273	1,655	0,62	
52	35,207	8,79			0,0000	-4184,0273	1,717	0,02	
53	37,44	8,07			0,0000	-4184,0273	1,826	0,02	
54	38,41	117,6			0,0000	-4184,0273	1,874	0,28	
55	39,867	9,87			0,0000	-4184,0273	1,945	0,02	
56	47,143	19,77			0,0000	-4184,0273	2,300	0,05	
57	53,047	26,68			0,0000	-4184,0273	2,588	0,06	
58	53,257	9,78			0,0000	-4184,0273	2,598	0,02	
59	53,57	4,31			0,0000	-4184,0273	2,613	0,01	
60	53,787	11,31			0,0000	-4184,0273	2,624	0,03	
61	53,867	84,37			0,0000	-4184,0273	2,628	0,2	
62	54,037	8,76			0,0000	-4184,0273	2,636	0,02	
63	54,1	73,76			0,0000	-4184,0273	2,639	0,18	
64	54,183	86,3			0,0000	-4184,0273	2,643	0,21	
65	54,503	23,57			0,0000	-4184,0273	2,659	0,06	
66	54,787	0,79			0,0000	-4184,0273	2,673	0	
67	55,083	0,8			0,0000	-4184,0273	2,687	0	
68	59,34	17,72			0,0000	-4184,0273	2,895	0,04	
69	59,623	107,72			0,0000	-4184,0273	2,908	0,26	

Table S13. Area% for integrated peaks and MS identities for $H-1-39-NH_2$ and main byproducts.

21. Assessment of kinetics of loss of DKP during piperidine treatment of Fmoc-20-21linker-AA resins.

100 mg of the resin (Fmoc-20-21-O-Cam-Leu-RMG DEG AM or Fmoc-20-21-HMBA-Lys(Trt) MBH) was swollen in DMF, drained and exposed to 2 mL of mol sieves dried 10% (v/v) pip/DMF. The resulting slurry was shaken at 30 °C and 50 µL aliquots of the supernate were taken out over time, diluted with 1.0 mL MeCN and HPLC analyses of the reaction mixtures were carried out. The conversion of the DKP was determined by comparing the HPLC area of the DKP peak (mAu^xmin) at a given timepoint vs the area of the peak upon complete removal of DKP from the resin. DKP loss after 1 h was ~54% for the O-Cam linker and ~12% for the HMBA linker.

Figure S28. A schematic representation of loss of DKP for Fmoc-20-21-O-Cam Leu RMG DEG AM and Fmoc-20-21-HMBA-Lys(Trt) MBH resins upon treatment with pip/DMF. DKP loss after 1 h: O-Cam linker: ~54%; HMBA linker: ~12%.

22. Details of SPPS of Boc-1-21-HMBA-K peptide resin

Regarding choice of the resin, MBH was used as the solid support for the synthesis of the H-1-21-HMBA-K fragment instead of the more common Wang resin,¹³ as the latter is known to be susceptible to cause loss of peptide during peptide resin cleavages.¹⁴ Furthermore, Lys was used as the C-terminal AA instead of Leu used in the synthesis of the O-Cam fragment to offset the more hydrophobic nature of the HMBA linker. The attachment of the HMBA linker followed by coupling of the Leu²¹ residue is summarized in Scheme S4. Thus, after removing the Fmoc group the resulting H-Lys(Trt)-MBH resin was treated with HMBA/Oxyma/DIC (1:2:2) for 2 h at 40 °C resulting in a complete conversion as judged by a Ninhydrin color test. It is worth noting that the content of double HMBA incorporation impurity (endo-HMBA) was <1% whereas examining the recently reported HMBA/Cl-HOBt/DIC (1:2:1.3), rt, 16 h conditions¹⁵ resulted in ~11% endo-HMBA. Next, Leu²¹ coupling was carried out for 16 h at rt using Fmoc-Leu-OH/DIC/Cl-HOBt/DMAP (1:1:1:0.2), which gave the Fmoc-Leu²¹-HMBA MBH resin in full conversion and with good chemoselectivity.

Scheme S4 SPPS of Fmoc-Leu-HMBA-Lys(Trt) MBH resin, reagents and conditions: i) Fmoc deprotection: 10% pip in DMF, 30°C, 30 min; ii) DMF resin wash; iii) coupling: 2 equiv HMBA/Oxyma/DIC (1:2:2) in DMF, 40 °C, 2 h; iv) coupling: 4 equiv Fmoc-Leu-OH/CI-HOBt/DIC/DMAP (1:1:1:0.2) in DMF, rt, 17 h.

Next, synthesis of the intermediate H-9-21 HMBA resin was carried out starting with Fmoc-21-HMBA resin and using mild conventional heating throughout with the exception of Fmoc deprotection of the Fmoc-20-21 HMBA resin which was done at 30 °C to minimize the peptide loss to DKP elimination (Scheme S5). The same protocol as for the synthesis of H-22-39-NH₂ fragment (Scheme S1) was followed and the synthesis furnished 335 g of intermediate H-9-21 -HMBA-Lys(Trt) MBH resin in 84% yield. HPLC purity of the H-9-21-HMBA-K fragment from a test TFA cleavage was 81%, which is comparable to the purity attained for the intermediate Fmoc-9-21-OCam-L-NH₂ fragment.

Scheme S5 SPPS of H-9-21-Leu-HMBA-Lys(Trt) MBH resin, reagents and conditions: i) Fmoc deprotection: 10% pip in DMF, 40 – 45 °C, 2 x 15 min; ii) DMF resin wash; iii) coupling: R-COOH/Oxyma/DIC (1:1:3) in DMF, 40 – 45 °C, 30 min; iv) capping: AcOH, 5 min; v) *i*-PrOH wash and drying in vacuo.
From H-9-21-HMBA-K resin onwards the SPPS was carried out in two portions (1:9), one portion of the resin using Fmoc-Thr(tBu)-Ser(Psi^(Me,Me)Pro)-OH pseudoproline dipeptide for the Ser⁸ and Thr⁷ couplings (Scheme S6, route B) and the other portion using standard AA derivatives (Scheme 6, route A).

Scheme S6 SPPS of Boc-1-21-Leu-HMBA-Lys(Trt) MBH resin, 90% of H-9-21-HMBA-K resin (80 mmol) used in route A, 10% in route B; reagents and conditions: i coupling: R-COOH/Oxyma/DIC (1:1:3) in DMF, 40 – 45 °C, 30 min, Boc-His(Trt)-Gly-OH used in the final coupling; ii) capping: AcOH, 5 min; iii) DMF resin wash; iv) Fmoc deprotection: 10% pip in DMF, 40 – 45 °C, 2 x 15 min, deprotection of route A Fmoc-5-21-HMBA-K resin: 2x15+25 min; v) coupling: Fmoc-Thr(tBu)-Ser(Psi^(Me,Me)Pro)-OH /Oxyma/DIC (1:1:3) in DMF, 40 – 45 °C, 30 min; vi) *i*-PrOH wash and drying in vacuo.

As the aim was to develop a CEPS manufacturing process that would not only be greener than the conventional manufacturing approaches but also more cost-efficient, the plan was to employ the H-1-21-HMBA-K fragment prepared without the expensive pseudoproline dipeptide in large scale omniligase-1 catalyzed ligations. We therefore used 90% of the H-9-21-HMBA-K resin in the pseudoproline-free route (Scheme 6, route A), while the remaining 10% of the resin intermediate was employed in the route utilizing Fmoc-Thr(tBu)-Ser(Psi^(Me,Me)Pro)-OH pseudoproline for Ser⁸ and Thr⁷couplings as a means to obtain a sample of H-1-21-HMBA-K fragment as a reference (Scheme 6, route B).

HPLC analysis of intermediate crude H-9-21-HMBA-K peptide (Scheme S5).

For the details of the purification of the fragment see the Materials & Methods section of the paper. Experimental conditions: column: Waters XSelect CSH130 C18 2.5µm 4.6x150mm; column temperature: 30°C; injection volume: 5 µL; sampler temperature:10°C; flow: 0.8 ml/min; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.08 % TFA in 90% MeCN/10 %water. Gradient (Time(min), %B): 0, 0; 40, 100; 54, 100; 55, 0; 62, 0.

Figure S29. UV chromatogram overview.

Figure S30. UV chromatogram zoom-in.

No	Ret. Time (min)	Area (mAu ^x min)	Height (mAU)	Rel.Area (%)
1	10,700	0,1647	1,434	1,42
2	11,083	0,0256	0,293	0,22
3	11,517	0,0164	0,246	0,14
4	11,983	0,0152	0,141	0,13
5	12,617	0,0697	0,800	0,60
6	13,250	0,1608	1,421	1,39
7	13,500	0,0309	0,465	0,27
8	13,633	0,0721	0,914	0,62
9	14,217	0,0610	0,729	0,53
10	14,933	0,5271	5,212	4,55
11	15,200	0,0317	0,376	0,27
12	15,417	0,0477	0,638	0,41
13	15,700	0,0217	0,200	0,19
14	16,000	0,1005	0,754	0,87
15	16,367	0,1897	1,170	1,64
16	16,567	0,2094	2,482	1,81
17	16,817	9,3273	96,380	80,61
18	17,167	0,1533	1,363	1,33
19	17,550	0,0070	0,142	0,06
20	17,783	0,0394	0,307	0,34
21	18,033	0,0131	0,176	0,11
22	18,333	0,0446	0,489	0,39
23	18,650	0,0716	0,875	0,62
24	18,817	0,0526	0,673	0,45
25	19,150	0,0133	0,108	0,11
26	19,333	0,0095	0,118	0,08
27	20,067	0,0194	0,132	0,17
28	20,433	0,0244	0,142	0,21
29	20,933	0,0076	0,128	0,07
30	21,100	0,0060	0,100	0,05
31	21,283	0,0378	0,237	0,33
Total:		11,5712	118,645	100,00

 Table S14. Area% for integrated peaks.

23. LC-HRMS of crude H-1-21-HMBA-K from SPPS in Scheme S6, route A.

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v380 mixer; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 5; 1, 5; 41, 42; 50, 95; 52, 95; 52.1, 5; 66, 5.

Figure S31. UV chromatogram overview.

Figure S32. UV chromatogram zoom-in.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	3.89	4,390	and the second sec	12	0.0000	-2625 2380	0 139	0,19	a second
2	5.47	6 700			0.0000	-2625 2380	0.195	0.28	
2	7.90	24 610			0,000	-2625 2290	0,155	1.46	
3	1,00	54,610			0,0000	-2025,2360	0,276	1,40	
4	12,33	0,030			0,0000	-2625,2380	0,439	0,28	
3	14,04	14,020			0,0000	-2625,2380	0,500	0,59	
6	14,35	12,090			0,0000	-2625,2380	0,511	0,51	
7	16,18	10,850			0,0000	-2625,2380	0,576	0,46	
8	17,313	8,49			0,0000	-2625,2380	0,617	0,36	
9	17,567	6,84			0,0000	-2625,2380	0,626	0,29	
10	17,84	2			0,0000	-2625,2380	0,635	0,08	
11	18 963	15.75			0.0000	-2625,2380	0.675	0.67	
12	20.36	10.14			0.0000	-2625 2380	0.725	0.43	
13	20.607	25.48			0,0000	.2625 2380	0,737	1.08	
14	21 007	16.43			0,0000	2625,2300	0.751	0.60	
14	21,097	10,42			0,0000	-2023,2380	0,751	0,05	
15	21,537	9,12			0,0000	-2025,2380	0,767	0,41	
16	21,797	10,69			0,0000	-2625,2380	0,776	0,45	
17	21,92	1,61			0,0000	-2625,2380	0,781	0,07	
18	22	1,65			0,0000	-2625,2380	0,784	0,07	
19	22,383	2,18			0,0000	-2625,2380	0,797	0,09	
20	22,543	12,61	575,293	2	1148,5714	-1476,6666	0,803	0,53	Ac-(15-23)-OH
21	22,663	14,01	346,211	2	690,4074	-1934,8306	0.807	0,59	Ac-(19-23)-OH
22	22 977	1.34			0.0000	-2625,2380	0.818	0.06	
23	23.15	2 44			0 0000	-2625 2380	0.875	01	
24	23.487	20.12	768.90	2	1535 7654	-1089 4726	0.976	0.85	(Ac-(12-23)-OH
25	22.63	6.75	100,03	÷	0.0000	2635 3380	0.943	0.37	her (15-53)-out
23	23,03	0,35			0,000	-2025,2380	0,842	0,27	
20	23,82	3,53			0,0000	-2025,2380	0,848	0,15	
27	24,033	5,73			0,0000	-2625,2380	0,856	0,24	
28	24,26	13,81	552,825	2	1103,6354	-1521,6026	0,864	0,58	DICU-(16-23)-OH
29	24,463	14,42	918,771	3	2753,2912	128,0532	0,871	0,61	Double Lys or Double Gin
30	24,6	1,38			0,0000	-2625,2380	0,876	0,06	
31	24,82	4,65			0,0000	-2625,2380	0,884	0,2	
32	24.887	5,38			0.0000	-2625 2380	0.886	0,23	
33	25.03	11			0,000	-2625 2380	0.891	0.05	
34	25,09	1 20			0,000	-2625 2290	0.993	0.05	
34	25,00	2,55			0,0000	-2023,2360	0,055	0,00	
35	25,11	2,34			0,0000	-2025,2380	0,894	0,11	
36	25,307	5,03			0,0000	-2625,2380	0,901	0,21	
37	25,463	5,68			0,0000	-2625,2380	0,907	0,24	
38	25,6	8,13			0,0000	-2625,2380	0,912	0,34	
39	25,723	6,44			0,0000	-2625,2380	0,916	0,27	
40	25,823	1,81			0,0000	-2625,2380	0,920	0,08	
41	25,943	1,53			0,0000	-2625,2380	0,924	0,06	
42	26,107	9,96			0,0000	-2625,2380	0,930	0,42	
43	26.25	12.72	870,084	3	2607,2302	-18,0078	0.935	0.54	Asp to Aspartimide
44	26 363	4 39	e. open		0.0000	-2625 2380	0.939	0.19	cab in other milling
45	26 552	4 70			0,0000	-7675 3390	0.046	0.7	
42	20,553	4,/9			0,0000	-2025,2380	0,940	0,2	
46	26,603	5,31			0,0000	-2625,2380	0,948	0,22	
47	26,77	2,85			0,0000	-2625,2380	0,953	0,12	
48	26,803	1,61			0,0000	-2625,2380	0,955	0,07	
49	26,893	2,2			0,0000	-2625,2380	0,958	0,09	
50	27,023	14,91			0,0000	-2625,2380	0,962	0,63	
51	27,103	3.76			0.0000	-2625,2380	0.965	0.16	
52	27 217	317			0.0000	-2625 2380	0.969	0.13	
53	27 307	76.77	788 700	3	2363 1052	-262 1328	0.973	3.75	(H.(1.21).OH (des HMBA.K)
E.A.	27.47	60.20	943 405	2	2528 1022	101.0442	0.079	2 90	Der The
24	27,47	08,38	842,405	3	2524,1952	-101,0446	0,978	2,69	Des Inr
55	27,647	12,49	388,263	2	774,5114	-1850,7266	0,985	0,53	DICU-(19-23)-OH
56	27,823	11,61			0,0000	-2625,2380	0,991	0,49	
57	27,893	3,63			0,0000	-2625,2380	0,993	0,15	
58	28,003	11,32			0,0000	-2625,2380	0,997	0,48	
59	28,077	1530,03	876,087	3	2625,2392	0,0012	1,000	64,73	Product
60	28,397	6,55			0,0000	-2625,2380	1,011	0,28	
61	28.613	8,99			0,0000	-2625.2380	1.019	0,38	
62	28 663	12.38	833.073	3	2496 1972	-129,0408	1 021	0.52	Des Glu
63	28 912	2.37		10	0,0000	-2625 2380	1 030	0.1	
64	28 057	11 15			0,0000	-2625 3390	1.021	0.47	
09	20,95/	11,15			0,0000	-2025,2380	1,031	0,47	
00	29,00	3,33			0,0000	-2025,2380	1,035	0,14	
00	29,337	3,06			0,0000	-2625,2380	1,045	0,13	
67	29,763	1,61			0,0000	-2625,2380	1,060	0,07	
68	29,89	3,14			0,0000	-2625,2380	1,065	0,13	
69	30,12	2,32			0,0000	-2625,2380	1,073	0,1	
70	30,203	2,56			0,0000	-2625,2380	1,076	0,11	
71	30,303	2,83			0,0000	-2625,2380	1,079	0,12	
72	30.847	12,71	847,07	3	2538.1882	-87,0498	1.099	0,54	Des Ser
73	31.083	7,73		3	0,0000	-2625.2380	1 107	0.33	012203
74	31 202	11.79	853 432	2	2557 2772	.67 0609	1 115	05	DICL.(2.23).0H
75	31.42	26 50	720 602	2	2186.0542	.430 1000	1 110	1.12	Ac./6 221 OU
13	31,43	20,59	129,092	3	2100,0542	-439,1838	1,119	1,12	PIC-[0-23]-UH
10	31,053	11,62	703 555		0,0000	-2625,2380	1,12/	0,49	
11	31,813	13,38	782,383	3	2344,1272	-281,1108	1,133	0,57	Ac-(4-23)-OH
78	32,09	12,82	913,781	3	2738,3212	113,0832	1,143	0,54	Double Leu
79	32,143	13,21	920,763	3	2759,2672	134,0292	1,145	0,56	Double HMBA
80	32,773	2,05			0,0000	-2625,2380	1,167	0,09	
81	32.82	9,17			0.0000	-2625,2380	1 169	0.39	
82	36.087	1.42			0,0000	-2625 2380	1 285	0.05	
92	26 222	2.16			0,0000	2625,2380	1 200	0.00	
03	30,233	2,10			0,0000	-2025,2380	1,290	0,09	
04	37,03	1,08			0,0000	-2625,2380	1,319	0,05	
85	39,957	13,2			0,0000	-2625,2380	1,423	0,56	
86	40,907	1,88			0,0000	-2625,2380	1,457	0,08	
87	41,377	1,66			0,0000	-2625,2380	1,474	0,07	
88	41,487	10			0,0000	-2625,2380	1,478	0,42	
00	51 017	9.5			0,0000	-2625 2380	1 817	0.4	
00							-/		

Table S15. Area% for integrated peaks and MS identities for H-1-21-HMBA-K and main byproducts.¹

¹ DICU-(X-23)-OH stands for an impurity in which DIC reacted with amino terminus of the growing peptide chain during coupling forming a diisopropylguanidinium truncation byproduct.

24. LC-HRMS of crude H-1-21-HMBA-K from SPPS in Scheme 6, route B.

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v380 mixer; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 5; 1, 5; 41, 42; 50, 95; 52, 95; 52.1, 5; 66, 5.

Figure S33. UV chromatogram overview.

Figure S34. UV chromatogram zoom-in.

Table S16. Area% for integrated peaks and MS identities for H-1-21-HMBA-K and main byproducts.²

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %
1	3,65	9,590			0,0000	-2533,2120	0,130	0,35
2	3,88	8,410			0,0000	-2533,2120	0,138	0,30
3	5,48	5,850			0,0000	-2533,2120	0,195	0,21
4	6,62	2,150			0,0000	-2533,2120	0,236	0,08
5	7,57	3,160			0,0000	-2533,2120	0,270	0,11
6	7,81	29,930			0,0000	-2533,2120	0,278	1,08
7	12,32	8,090			0,0000	-2533,2120	0,439	0,29
8	14,33	29,37			0,0000	-2533,2120	0,511	1,06
9	16,167	19,69			0,0000	-2533,2120	0,576	0,71
10	17,297	10,15			0,0000	-2533,2120	0,617	0,37
11	17,55	8,04			0,0000	-2533,2120	0,626	0,29
12	17,823	2,66			0,0000	-2533,2120	0,635	0,1
13	18,94	21,38			0,0000	-2533,2120	0,675	0,77
14	19,233	2,01			0,0000	-2533,2120	0,686	0,07
15	20,34	11,34			0,0000	-2533,2120	0,725	0,41
16	20,67	28,64			0,0000	-2533,2120	0,737	1,03
17	21,077	21,38			0,0000	-2533,2120	0,751	0,77
18	21,52	12,67			0,0000	-2533,2120	0,767	0,46
19	21,78	12,7			0,0000	-2533,2120	0,776	0,46
20	21,85	2,6			0,0000	-2533,2120	0,779	0,09
21	21,983	2,89			0,0000	-2533,2120	0,784	0,1
22	22,36	2,05			0,0000	-2533,2120	0,797	0,07
23	22,527	9,54			0,0000	-2533,2120	0,803	0,34
24	22,69	35,38			0,0000	-2533,2120	0,809	1,27
25	22,74	22,33			0,0000	-2533,2120	0,811	0,8
26	22,957	2,58			0,0000	-2533,2120	0,818	0,09
27	23,133	3,35			0,0000	-2533,2120	0,825	0,12
28	23,213	1,61			0,0000	-2533,2120	0,827	0,06
29	23,463	22,38			0,0000	-2533,2120	0,836	0,81
30	23,61	7,23			0,0000	-2533,2120	0,842	0,26
31	23,8	4,41			0,0000	-2533,2120	0,848	0,16
32	24,013	5,74			0,0000	-2533,2120	0,856	0,21
33	24,24	11,86			0,0000	-2533,2120	0,864	0,43
34	24,443	16,75			0,0000	-2533,2120	0,871	0,6
35	24,8	5,52			0,0000	-2533,2120	0,884	0,2
36	24,867	6,59			0,0000	-2533,2120	0,886	0,24
37	25,09	5,29			0,0000	-2533,2120	0,894	0,19
38	25,287	9,96			0,0000	-2533,2120	0,901	0,36
39	25,443	2,01			0,0000	-2533,2120	0,907	0,07
40	25,577	37,39			0,000	-2533,2120	0,912	1,35
41	25,703	7,04			0,0000	-2533,2120	0,916	0,25
42	25,803	3,02			0,0000	-2533,2120	0,920	0,11
43	26,083	12,12			0,0000	-2533,2120	0,930	0,44
44	26,23	20,74			0,0000	-2533,2120	0,935	0,75
45	26,343	4,89			0,0000	-2533,2120	0,939	0,18
46	26,54	3,7			0,0000	-2533,2120	0,946	0,13
47	26,75	3,6			0,0000	-2533,2120	0,954	0,13
48	26,993	6,35			0,0000	-2533,2120	0,962	0,23
49	27,093	16,09			0,0000	-2533,2120	0,966	0,58
50	27,213	2,05			0,0000	-2533,2120	0,970	0,07
51	27,283	95,08			0,0000	-2533,2120	0,973	3,42
52	27,46	11,97			0,0000	-2533,2120	0,979	0,43
53	27,627	5,38			0,0000	-2533,2120	0,985	0,19
94	27,797	3,00			0,0000	-2553,2120	0,991	0,2
55	27,873	3,27			0,0000	-2533,2120	0,994	0,12
50	27,987	19,10			0,0000	-2533,2120	0,998	0,69
57	28,055	1809,03			0,0000	-2533,2120	1,000	0.12
50	20,347	3,0			0,0000	-2555,2120	1,010	0,15
29	28,01	0,33			0,0000	-2333,2120	1,020	0,3
61	20,04	2 00			0,0000	-2533,2120	1,020	0.14
62	28,937	5.47			0.0000	-2533 2120	1,030	0.2
63	29.04	2,62			0.0000	-2533 2120	1.035	0.09
64	29,317	1.95			0.0000	-2533,2120	1.045	0.07
65	29,757	1.4			0,0000	-2533,2120	1,061	0.05
66	29.88	6,41			0,0000	-2533.2120	1.065	0,23
67	30,107	5,48			0,0000	-2533.2120	1,073	0.2
68	30.19	3.8			0,0000	-2533,2120	1.076	0.14
69	30.29	5,52			0,0000	-2533.2120	1,080	0.2
70	30,403	1,41			0,0000	-2533,2120	1,084	0,05
71	30,83	13,7			0,0000	-2533,2120	1,099	0,49
72	31,07	9,77			0,0000	-2533,2120	1,108	0,35
73	31,277	12,34			0,0000	-2533,2120	1,115	0,44
74	31,413	24,33			0,0000	-2533,2120	1,120	0,88
75	31,64	11,47			0,0000	-2533,2120	1,128	0,41
76	31,8	8,87			0,0000	-2533,2120	1,134	0,32
77	32,127	33,75			0,0000	-2533,2120	1,145	1,22
78	32,733	2,53			0,0000	-2533,2120	1,167	0,09
79	32,8	1,4			0,0000	-2533,2120	1,169	0,05
80	33,58	1,93			0,0000	-2533,2120	1,197	0,07
81	34,38	1,63			0,0000	-2533,2120	1,226	0,06
82	36,083	2,14			0,0000	-2533,2120	1,286	0,08
83	36,227	8,66			0,0000	-2533,2120	1,291	0,31
84	39,98	5,13			0,0000	-2533,2120	1,425	0,18
85	40,893	2,13			0,0000	-2533,2120	1,458	0,08
86	51,013	7,2			0,0000	-2533,2120	1,818	0,26
87	51,72	11,54			0,0000	-2533,2120	1,844	0,42

² Impurity profile and peak identities were comparable to the Scheme 5, route A crude (see Section 23 in this ESI) with the exception of the des Thr impurity which was much smaller in the Scheme 5, route B, see overlay of the two crudes in Fig. 8).

25. Mechanism of formation of the des HMBA-Lys impurity during SPPS of Boc-1-21-HMBA-Lys(Trt) MBH resin (Schemes S4 – S6).

Scheme S7. A schematic representation of the proposed mechanism of formation of des HMBA-Lys impurity during SPPS of Boc-1-21-HMBA-Lys(Trt) MBH resin caused by the presence of MBH resin in the starting Fmoc-Lys(Trt) MBH resin. i) Fmoc deprotection: 10% pip in DMF, 30°C, 30 min; ii) DMF resin wash; iii) coupling: 2 equiv HMBA/Oxyma/DIC (1:2:2) in DMF, 40 °C, 2 h; iv) coupling: 4 equiv Fmoc-Leu-OH/Cl-HOBt/DIC/DMAP (1:1:1:0.2) in DMF, rt, 17 h.

26. Automated SPPS of Boc-1-21-HMBA-Lys(Trt) MBH resin. Synthesis of H-1-21-HMBA-K with lower content of the des HMBA-K impurity.

Using a batch of Fmoc-Lys(Trt)-MBH resin not employed in the large scale SPPS of Boc-1-21-HMBA-Lys(Trt) MBH resin detailed in Schemes S4 – S6 a batch of Fmoc-Leu-HMBA-Lys(Trt) MBH resin was prepared according to the protocol in Scheme S4. Next, 0.1 mmol of the Fmoc-Leu-HMBA-Lys(Trt) MBH resin thus prepared was used to synthesize Boc-1-21-HMBA-Lys(Trt) MBH resin on the PSW1100 automated synthesizer according to the protocols delineated in Schemes 4 and 5 (route A). The temperature for the synthesis was 50 °C throughout and all Fmoc deprotections were done for 3 x 15 min whereas all couplings were done for 2 x 20 min. A sample of the final resin was TFA cleaved and isolated by precipitation as described in the Materials & Methods section and the resulting crude H-1-21-HMBA-K was analyzed by LC-HRMS (see below). This analysis revealed that the content of the des HMBA-K impurity was 2.5% vs the product (1.8% vs 71.6%) while the content of des-HMBA-K in the crude material from the large scale H-1-21-HMBA-K SPPS (Schemes S4 – S6) was 5.0% (3.3% vs 64.8%), see section 23 of this ESI. The difference in the content of des HMBA-K in H-1-21-HMBA-K from two syntheses of Boc-1-21-HMBA-Lys(Trt) MBH resin employing different Fmoc-Lys(Trt) MBH resin starting materials indicates that the des HMBA-K was conceivably formed according to the mechanism depicted in Scheme S7.

27. LC-HRMS of crude H-1-21-HMBA-K from section 20 automated SPPS.

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v380 mixer; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 5; 1, 5; 41, 42; 50, 95; 52, 95; 52.1, 5; 66, 5.

Figure S35. UV chromatogram overview.

Figure S36. UV chromatogram zoom-in.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	24,75	13,470			0,0000	-2533,2120	0,886	1,58	
2	24,83	6,940			0,0000	-2533,2120	0,889	0,82	
3	24,89	18,710	488,3060	2	974,5974	-1558,6146	0,892	2,20	DICU-(17-23)-OH
4	25,02	50,840	640,8150	2	1279,6154	-1253,5966	0,896	5,97	Ac-(14-23)-OH
5	25,15	3,900			0,0000	-2533,2120	0,901	0,46	
6	25,28	3,500			0,0000	-2533,2120	0,906	0,41	
7	25,44	15,200	876,4230	3	2626,2472	93,0352	0,911	1,79	Deamidation
8	25,53	5,740			0,0000	-2533,2120	0,914	0,68	
9	26,81	7,350			0,0000	-2533,2120	0,960	0,86	
10	26,94	3,360			0,0000	-2533,2120	0,965	0,40	
11	27,04	17,800			0,0000	-2533,2120	0,968	2,09	
12	27,12	15,190	788,7110	3	2363,1112	-170,1008	0,971	1,78	(H-(1-21)-OH (des HMBA-Lys)
13	27,23	3,320	926,4590	2	1850,9034	-682,3086	0,975	0,39	Ac-(9-23)-OH
14	27,29	26,200			0,0000	-2533,2120	0,977	3,08	
15	27,44	12,920			0,0000	-2533,2120	0,983	1,52	
16	27,66	17,120			0,0000	-2533,2120	0,991	2,01	
17	27,83	18,820			0,0000	-2533,2120	0,997	2,21	
18	27,92	610,500	876,4230	3	2626,2472	93,0352	1,000	71,75	Product

Table S17. Area% for integrated peaks and MS identities for H-1-21-HMBA-K and main byproducts.

28. Kinetics of the omniligase-1 catalyzed ligation of crude H-22-39-NH₂ + crude H-1-21-HMBA-K (Fig. 9).

Throughout the ligation 50 μ L aliquots of the reaction mixture were taken out, quenched with 10% AcOH (1.0 mL) and analyzed by HPLC. When all H-1-21-HMBA-K was consumed and no further conversion to the product could be observed the reaction was quenched with 10% AcOH. The S/H ratio was calculated by integrating the peak of H-1-39-NH₂ together with byproducts peaks formed by reactions between H-1-21-HMBA-K and byproducts in the crude H-2-39-NH₂ (S) vs the peak of H-1-21-OH (hydrolyzed H-1-21-HMBA-K, H). The fact that the H-1-21-HMBA-K starting material contained ~5% of H-1-21-OH (des-HMBA-K, H) was taken into account when calculating the S/H ratio of the final crude product.

Experimental conditions: column: Waters XSelect CSH130 C18 2.5µm 4.6x150mm; column temperature: 45°C; injection volume: 5 µL; sampler temperature:10°C; flow: 1.0 ml/min; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.08 % TFA in 90% MeCN/10 %water. Gradient (Time(min), %B): 0, 1; 10, 100; 13, 100; 14, 100; 19, 1; 20, 1.

Figure S37. A schematic representation of the progress of Fig. 9 crude H-22-39-NH₂ + crude H-1-21-HMBA-K ligation.

29. LC-HRMS of crude exenatide from omniligase-1 catalyzed ligation of crude H-22-39-NH₂ + crude H-1-21-HMBA-K (Fig. 9).

Experimental conditions: column: Waters CSH 1.7 μ m 2.1 x 150 mm; column temperature: 55°C; injection volume: 1 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 214 nm; data rate: 5Hz; detector cell: standard cell 1 μ L; flow: 0.2 ml/min; jet weaver: v380 mixer; mobile phase A: 0.1 % TFA in water, mobile phase B: 0.10 % TFA in MeCN. Gradient (Time(min), %B): 0, 11; 1, 11; 5, 33; 50, 39; 54, 60; 56, 90; 58, 90; 58.1, 11; 68, 11.

Figure S38. UV chromatogram overview.

Figure S39. UV chromatogram zoom-in.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	3,10	7,210			0,0000	-4184,0273	0,153	0,08	
2	3,36	18,320			0,0000	-4184,0273	0,165	0,20	
3	3,613	52,24			0,0000	-4184,0273	0,178	0,58	
4	4.86	6.490			0.0000	-4184 0273	0.239	0.07	
	5.05	20,520			0,0000	-4194 0272	0,239	0.22	
5	5,05	20,330			0,0000	-4104,0273	0,240	0,23	
0	5,53	12,360			0,0000	-4184,0273	0,272	0,14	
7	5,61	36,020			0,0000	-4184,0273	0,276	0,40	
8	6,057	5,25			0,0000	-4184,0273	0,298	0,06	
9	6,277	5,44			0,0000	-4184,0273	0,309	0,06	
10	6,32	29,47			0,0000	-4184,0273	0,311	0,33	
11	6,42	8,45			0,0000	-4184,0273	0,316	0,09	
12	6.813	29.86			0.0000	-4184.0273	0.335	0.33	
12	6 0 2 2	14.50			0,0000	4194 0272	0,341	0.16	
10	6,935	19,35			0,0000	-1101/0273	0,341	0,10	
14	0,90	49,14			0,0000	**10*,0273	0,343	0,55	
15	7,097	52,45			0,0000	-4184,0273	0,349	0,58	
16	7,343	17,61			0,0000	-4184,0273	0,361	0,2	
17	7,397	97,78	811,403	2	1620,7914	-2563,2359	0,364	1,09	Ac-(24-39)-NH2
18	7,463	11			0,0000	-4184,0273	0,367	0,12	
19	7.617	40.05			0.0000	-4184.0273	0.375	0.44	
20	7 767	1268 58	920 506	2	1838 9974	-2345 0299	0.382	14.08	H-(22-39)-NH2
21	7 977	22.9	,	-	0.0000	-4194 0272	0.297	0.26	
22	7,077	32,6			0,0000	-4104,0273	0,307	0,30	
22	8,043	20,88			0,0000	-4184,0273	0,395	0,23	
23	8,117	5,69			0,0000	-4184,0273	0,399	0,06	
24	8,18	428,87	788,713	3	2363,1172	-1820,9101	0,402	4,76	H-(1-21)-OH
25	8,34	8,23			0,0000	-4184,0273	0,410	0,09	
26	8,56	14.72			0.0000	-4184.0273	0.421	0.16	
27	8,797	11.93			0.0000	-4184 0273	0,433	0,13	
28	8,867	31 74			0.0000	-4184 0273	0.436	0.35	
20	0.26	7.34			0,0000	.4194.0272	0.455	0,00	
29	9,20	1,21			0,0000	-+104,02/3	0,455	0,08	
30	9,493	16,09			0,0000	-4184,0273	0,467	0,18	
31	9,573	15,23			0,0000	-4184,0273	0,471	0,17	
32	9,66	28,34			0,0000	-4184,0273	0,475	0,31	
33	10,2	48,73			0,0000	-4184,0273	0,502	0,54	
34	10,283	25,99			0,0000	-4184,0273	0,506	0,29	
35	10.51	6.69			0.0000	-4184 0273	0.517	0.07	
26	10.6	7 28			0,0000	-4194 0272	0.524	0.02	
30	10,0	10.34			0,0000	4104,0273	0,521	0,08	
3/	10,797	18,24			0,0000	-4184,0273	0,531	0,2	
38	11,43	5,09			0,0000	-4184,0273	0,562	0,06	
39	11,577	6,43			0,0000	-4184,0273	0,569	0,07	
40	11,837	11,7			0,0000	-4184,0273	0,582	0,13	
41	12.053	13.28			0.0000	-4184.0273	0.593	0.15	
42	12 137	5.03			0,0000	-4184 0273	0.597	0.06	
42	10,400	54.30	1422.202	2	4207 1242	112 0050	0,557	0.6	Deuble lle/Leu
43	12,433	54,35	1433,382	3	4297,1242	113,0909	0,011	0,6	Double lie/Leu
44	12,743	5,42			0,0000	-4184,0273	0,627	0,06	
45	12,987	17,8			0,0000	-4184,0273	0,639	0,2	
46	13,76	47,37	845,466	3	2533,3762	-1650,6511	0,677	0,53	DICU-(17-39)-NH2
47	14,65	42,91			0,0000	-4184,0273	0,720	0,48	
48	15.27	36.12			0.0000	-4184.0273	0,751	0.4	
49	15 502	11.28			0,0000	-4184 0272	0.767	0.12	
50	16.63	24.24			0,0000	4194 0272	0,010	0,29	
50	10,03	34,24			0,0000	-4184,0273	0,818	0,38	
51	16,953	20,64			0,0000	-4184,0273	0,834	0,23	
52	18,127	43,28			0,0000	-4184,0273	0,891	0,48	
53	19,033	85,73	1362,002	3	4082,9842	-101,0431	0,936	0,95	Des Thr
54	19,787	41.91			0.0000	-4184.0273	0,973	0,47	
55	20,337	4297.26	1395.689	3	4184.0452	0.0179	1.000	47.71	Product (H-1-39-NH2)
56	21 167	02 72	002.465	2	2707 2722	-1476 6541	1,000	1.04	Ac.(15-20)-NH2
50	21,107	95,75	905,405	\$	2/07,5752	-1470,0341	1,041	1,04	AC(15-59)-NH2
57	21,453	38,3			0,0000	-4184,0273	1,055	0,43	
58	22,187	57,85			0,0000	-4184,0273	1,091	0,64	
59	22,697	270,08	1330,977	3	3989,9092	-194,1181	1,116	3	Des Pro-Pro
60	23,083	87,09	1339,659	3	4015,9552	-168,0721	1,135	0,97	Des Ala-Pro
61	23,423	34.47			0,0000	-4184.0273	1,152	0,38	
62	25 343	26.19			0,0000	-4184 0273	1 246	0.29	
62	26 602	19.07			0,0000	-4194 0272	1 21 2	0.25	
64	27,093	22,07			0,0000	.4104.0273	1,010	0.27	
64	27,373	33,03			0,0000	-4184,0273	1,340	0,37	
65	28,853	31,34			0,0000	-4184,0273	1,419	0,35	
66	30,027	363,41	1427,678	3	4280,0122	95,9849	1,476	4,03	Add on TFA
67	30,373	44,61			0,0000	-4184,0273	1,493	0,5	
68	31,443	16,02			0,0000	-4184,0273	1,546	0,18	
69	32,927	32,09			0,0000	-4184,0273	1,619	0,36	
70	33,657	22,4			0,0000	-4184,0273	1,655	0,25	
71	34,183	8.3			0,0000	-4184,0273	1,681	0,09	
72	34.89	73.33	1409.701	3	4226.0812	42,0539	1,716	0.81	Met to hCvs(tBu)
72	35 622	37.09			0.0000	-4184 0272	1 752	0.41	
75	35,023	13.40			0,0000	4104 0070	1,014	0.41	
/4	36,9	13,45			0,0000	-4184,0273	1,814	0,15	
75	37,883	15,45			0,0000	-4184,0273	1,863	0,17	
76	39,177	8,57			0,0000	-4184,0273	1,926	0,1	
77	39,51	9,54			0,0000	-4184,0273	1,943	0,11	
78	40,427	25,16			0,0000	-4184,0273	1,988	0,28	
79	41,283	8,26			0.0000	-4184.0273	2,030	0.09	
80	41 07	34 27			0,0000	-4184 0272	2 064	0.28	
00	42,57	7.2/			0,0000	.4104.0273	2,004	0.00	
81	42,40	7,34			0,0000	-4104,0273	2,000	0,08	
82	43,93	29,93			0,0000	-4184,0273	2,160	0,33	
83	44,413	55,03	1249,308	3	3744,9022	-439,1251	2,184	0,61	Ac-(6-39)-NH2
84	47,23	11,32			0,0000	-4184,0273	2,322	0,13	
85	49,723	8,35			0,0000	-4184,0273	2,445	0,09	
86	51,287	27.52			0.0000	-4184.0273	2,522	0.31	
97	52.07	19.76			0,0000	-4184 0272	2,554	0.22	
07	54.96	10.6			0,0000	-4184 0272	2,00%	0.12	
88	54,20	10,6			0,0000	-4184,UZ/3	2,008	0,12	
89	54,653	5,01			0,0000	-4184,0273	2,687	0,07	
90	55,007	7,29			0,0000	-4184,0273	2,705	0,08	
91	55,283	8,56			0,0000	-4184,0273	2,718	0,09	
92	55,46	7,89			0,0000	-4184.0273	2,727	0,09	
93	55.66	10.89			0.0000	-4184.0273	2,737	0,12	
04	56.047	7 21			0,0000	-4184 0272	2,756	0.02	
05	57,047	7,00			0,0000	4104 0070	2,004	0,00	
95	57,643	7,05			0,0000	-4184,0273	2,834	0,08	a
96	57,96	69,52	243,118	1	242,1107	-3941,9166	2,850	0,77	Trityl
97	59,827	17,99			0,0000	-4184,0273	2,942	0,2	

Table S18. Area% for integrated peaks and MS identities for H-1-39-NH₂ and main byproducts.

30. LC-HRMS of commercial exenatide reference standard (Fig. 10).

Experimental conditions: column: Waters Xbridge C18 3.5 μ m 4.6 x150 mm; column temperature: 60°C; injection volume: 10 μ L; sampler temperature: 10°C; MS mode: positive 50-3200; DAD: 220 nm; data rate: 2.5Hz; detector cell: standard cell 1 μ L; flow: 0.8 ml/min; jet weaver: v380 mixer; mobile phase A: 10 mM NH₄CO₃ pH 9.5, mobile phase B: 10 % mobile phase A/90 % MeCN. Gradient (Time(min), %B): 0, 26; 0.5, 26; 33, 37; 35, 90; 36, 90; 36.1, 26; 42, 26.

Figure S41. UV chromatogram zoom-in.

Table S19. Area% for integrated peaks and MS identities for H-1-39-NH₂ and main byproducts.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	13,75	5,070	1047,2610	4	4185,0149	0,9876	0,695	0,05	Deamidation
2	14,56	6,410	1051,0130	4	4200,0229	15,9956	0,736	0,07	Met to Met(O) or 2-Oxindole/5-HTTP
3	18,82	11,750	1043,5100	4	4170,0109	-14,0164	0,952	0,12	Met to hCys
4	19,77	9398,840	1395,6890	3	4184,0452	0,0179	1,000	98,76	Product (H-(1-39)-NH2)
5	20,90	22,480	1043,0170	4	4168,0389	-15,9884	1,057	0,24	Ser to Ala, (L,D) or Endo βAla des Ser
6	21,25	12,100	1059,0150	4	4232,0309	48,0036	1,075	0,13	hydroxy-NFK (Trp Ox)
7	21,60	7,220	1057,5130	4	4226,0229	41,9956	1,093	0,08	Met to hCys(tBu) or add on acetyl
8	22,18	10,040	1057,5180	4	4226,0429	42,0156	1,122	0,11	Met to hCys(tBu) or add on acetyl
9	22,91	6,720	1042,7580	4	4167,0029	-17,0244	1,159	0,07	Asn to Aspartimide
10	23,17	19,310	1042,7570	4	4166,9989	-17,0284	1,172	0,20	Asn to Aspartimide
11	23,69	5,850	1061,0300	4	4240,0909	56,0636	1,198	0,06	Add on tBu
12	34,23	11.180	1032,5140	4	4126.0269	-58,0004	1.731	0.12	Endo BAla des Glu

31. LC-HRMS of purified exenatide from H-1-21-O-Cam-Leu-NH₂+H-22-39-NH₂ c+c ligation (Fig. 10).

Experimental conditions: see section 30 of this ESI.

Figure S43. UV chromatogram zoom-in.

Table S20. Area% for integrated peaks and MS identities for H-1-39-NH ₂ and main byproc	ducts.
--	--------

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	4,45	13,990	501,7810	2	1001,5474	-3182,4799	0,225	0,13	H-(1-19)-OH/des -SCH3
2	14,49	14,400	1051,0140	4	4200,0269	15,9996	0,733	0,14	Met to Met(O) or 2-Oxindole/5-HTTP
3	18,50	9,360	1048,0130	4	4188,0229	3,9956	0,936	0,09	Kynurenine
4	18,77	18,370	1043,5120	4	4170,0189	-14,0084	0,949	0,17	Met to hCys
5	19,39	19,070	1068,7770	4	4271,0789	87,0516	0,981	0,18	Double Ser
6	19,67	10320,940	1395,6910	3	4184,0512	0,0239	0,995	97,97	Prod. H-(1-39)-NH2
7	20,84	56,170	1043,0170	4	4168,0389	-15,9884	1,054	0,53	Ser to Ala, (L,D) or Endo βAla des Ser
8	21,17	15,900	1050,5260	4	4198,0749	14,0476	1,071	0,15	Endo βAla des Gly
9	21,42	12,270	1057,5190	4	4226,0469	42,0196	1,083	0,12	Met to hCys(tBu) or add on acetyl
10	22,09	7,670	1061,0270	4	4240,0789	56,0516	1,117	0,07	Add on tBu
11	22,81	25,210	1075,2850	4	4297,1109	113,0836	1,154	0,24	Double Ile/Leu
12	23,00	6,650	1042,7500	4	4166,9709	-17,0564	1,163	0,06	Asn to Aspartimide
13	23,33	7,120	1063,0230	4	4248,0629	64,0356	1,180	0,07	[2Na +K] Asp to Aspartimide
14	27,49	7,380	1146,5780	3	3436,7122	-747,3151	1,390	0,07	pyruvyl-(9-39)-NH2/RH-NH2 to R=O

32. LC-HRMS of purified exenatide from H-1-21-O-Cam-Leu-NH₂+H-22-39-NH₂ p+p ligation (Fig. 10).

Experimental conditions: see section 30 of this ESI.

	Figure S4	5. UV	chromatogram	zoom-in.
--	-----------	-------	--------------	----------

Table S21. Area% for integrated peaks and MS identities for H-1-39-NH₂ and main byproducts.

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	13,74	11,640	1047,2620	4	4185,0189	0,9916	0,695	0,12	Deamidation
2	14,55	5,610	1051,0130	4	4200,0229	15,9956	0,736	0,06	Met to Met(O) or 2-Oxindole/5-HTTP
3	15,11	17,310	1047,2610	4	4185,0149	0,9876	0,764	0,17	Deamidation
4	16,94	14,650	1079,2760	4	4313,0749	129,0476	0,857	0,15	Double Glu
5	19,41	14,890	1068,7720	4	4271,0589	87,0316	0,982	0,15	Double Ser
6	19,71	9873,440	1395,6880	3	4184,0422	0,0149	0,997	97,92	Product (H-(1-39)-NH2)
7	20,85	40,660	1043,0170	4	4168,0389	-15,9884	1,055	0,40	Ser to Ala, (L,D) or Endo βAla des Ser
8	21,20	13,730	1025,2570	4	4096,9989	-87,0284	1,072	0,14	Des Ser
9	21,73	30,790	1047,0170	4	4184,0389	0,0116	1,099	0,31	lsomer
10	22,15	11,450	1057,5170	4	4226,0389	42,0116	1,120	0,11	Met to hCys(tBu) or add on acetyl
11	23,05	12,780	1042,7580	4	4167,0029	-17,0244	1,166	0,13	Asn to Aspartimide
12	23,39	4,970	1063,0220	4	4248,0589	64,0316	1,183	0,05	[2Na +K] Asp to Aspartimide
13	24,63	9,690	1042,5140	4	4166,0269	-18,0004	1,246	0,10	Asp to Aspartimide
14	30,13	14,850	990,7560	4	3958,9949	-225,0324	1,524	0,15	Des Gly-Ala-Pro
15	35,57	6,850	1061,0330	4	4240,1029	56,0756	1,799	0,07	Add on tBu

33. LC-HRMS of purified exenatide from H-1-21-HMBA-K+H-22-39-NH $_2$ c+c ligation (Fig. 10).

Experimental conditions: see section 30 of this ESI.

Response Units vs. Acquisition Time (min)

39 40

Table S22. Area% for integrated peaks and MS	identities for H-1-39-NH $_{2}$ and main byproducts.
--	--

Peak	Rt	Area	most(m+z)/z	z	decon.	diff	RRT	Area %	identity
1	14,43	12,160	1051,0140	4	4200,0269	15,9996	0,730	0,13	Met to Met(O) or 2-Oxindole/5-HTTP
2	15,00	12,280	1047,2600	4	4185,0109	0,9836	0,759	0,13	Deamidation
3	16,01	13,270	1014,2550	4	4052,9909	-131,0364	0,810	0,14	Des Met
4	16,62	23,170	1047,2610	4	4185,0149	0,9876	0,841	0,24	Deamidation
5	18,22	4,420	1051,0150	4	4200,0309	16,0036	0,922	0,05	Met to Met(O) or 2-Oxindole/5-HTTP
6	18,47	6,970	1048,0090	4	4188,0069	3,9796	0,934	0,07	Kynurenine
7	18,75	21,220	1043,5110	4	4170,0149	-14,0124	0,948	0,22	Met to hCys
8	19,36	16,990	855,2400	5	4271,1636	87,1363	0,979	0,18	Double Ser
9	19,65	9418,970	1395,6900	3	4184,0482	0,0209	0,994	97,73	Prod. H-(1-39)-NH2
10	20,82	46,730	1025,2570	4	4096,9989	-87,0284	1,053	0,48	Des Ser
11	21,07	14,090	1004,9960	4	4015,9549	-168,0724	1,066	0,15	Des Ala-Pro
12	21,67	16,730	999,9960	4	3995,9549	-188,0724	1,096	0,17	Des Thr-Ser
13	22,09	10,060	849,0260	5	4240,0936	56,0663	1,117	0,10	Add on tBu
14	22,63	4,390	1042,7660	4	4167,0349	-16,9924	1,145	0,05	Asn to Aspartimide
15	22,82	10,420	1075,2870	4	4297,1189	113,0916	1,154	0,11	Double Ile/Leu
16	22,95	6,100	1042,7590	4	4167,0069	-17,0204	1,161	0,06	Asn to Aspartimide

34. Lyophilization details.

All three batches of exenatide API prepared herein as well as the purified H-22-39-NH₂ and H-1-21-O-Cam-Leu-NH₂ fragments respectively were isolated by lyophilization as follows: the product solution was placed in a tray of the lyophilizer, frozen to – 40 °C after which the main drying was performed at 15 °C at 0.2 mBar and the secondary drying was performed at 25 °C at 0.05 mB for 3 h. The total freeze drying cycle was 64 h.

35. Sustainability and cost assessment.

35.1. General

The cost and sustainability assessment for the six processes examined was carried out as follows: first, the amounts of starting materials, cost of starting materials, cost of waste disposal, cost of processing energy, CO_2 formed during manufacturing of starting materials, CO_2 formed during incineration of the waste and CO_2 formed by consumption of processing energy was determined for all six processes assuming that all these exenatide manufactures were carried out on 1 mol as the master scale. For schematic overviews of flow charts of all six manufacturing processes see Figs. S48 - S53 in sections 35.2 - 35.7 of this ESI, for full details see Tables S23 – S83 of this ESI. Next, the values thus obtained were recalculated for 1 kg exenatide API manufactured, taking into account that the six 1 mol manufactures each provided a different amount of the API. The assessment of sustainability and cost for the 6 manufacturing routes examined in Table 4 in the main article is thus based on 1 kg exenatide being the amount of API produced in each route.

With respect to the use of decimal separators in the ESI and in the main article. Commas were used as decimal separators in the tables in the ESI as all these tables were made in Excel. These ESI tables contain a large amount of data which was used to carry out calculations necessary to obtain the pertinent cost and sustainability results. These calculations were performed by using the formula functions of the program and as Excel does not recognize decimal points in calculations the use of commas as decimal separators was necessary. In the main article dots (decimal points) were used as decimal separators throughout as customary.

Cost of raw materials and waste disposal:

For estimated cost of raw materials actual and/or quoted prices from suppliers qualified as vendors for GMP manufacturing at PolyPeptide Group AB Sweden were used, see Tables S27, S36, S39, S48, S51, S56, S59, S67, S70, S78 and S81. These prices may vary depending on the

manufacturing location and/or vendor used. The cost of processing water as well as cost of inorganic salts, acid and bases used in the preparation of buffers for RPC purifications was insignificant and was not included.

To estimate the amount of solvent used during downstream processing of the crude exenatide fragments as well as exenatide API a value for a typical RPC purification of a pharmaceutical peptide carried out at PolyPeptide Group AB was used in which it was assumed that to perform one RPC purification step on a 1 kg of a crude peptide material requires ~1 m³ of solvent which is H₂O/MeCN, 70:30.

Estimated price of waste disposal (incineration) at a waste treatment facility (Stena Recycling) utilized by PolyPeptide Group AB was 0,21 EURkg⁻¹.

Energy cost, consumption and carbon intensity (CI):

Cost of energy was based on the current price of electricity on the electric power grid in Sweden i.e.: 1 kWh⁻¹ equals ~0,066 Eur. Cost of energy for each process route was thus calculated as

Cost of processing energy (EURkg⁻¹ API) = Σ of energy consumed x 0,066.

Estimates of energy consumed in manufacturing exenatide API were based on the values for a typical process for manufacturing of a therapeutic peptide in a GMP setting at PolyPeptide Group:

i) SPPS: it was assumed that heating 100 kg solvent from 22 to 50 °C required 1,6 kWh⁻¹ and stirring required 4.5 kWh⁻¹, it was further assumed that a coupling cycle (Fmoc removal+washing+coupling+washing) for all rt SPPS processes lasted 6h, whereas a coupling cycle for an et SPPS process lasted 3h. The temperature of all et SPPS processes was assumed to be 50 °C and the amount of the solvent in the reactor was assumed to be 50 kgmol⁻¹ throughout.

ii) TFA cleavage and precipitation: it was assumed that 12 kg total amount (2 kg for TFA cleavage, 2 x 5 kg for solvent precipitation) stirred for 1 h at 22 °C: required 0,46 kWh⁻¹; for all cleavages/precipitations it was assumed that the cleavage was carried out for 2 h and the subsequent solvent precipitations were carried out for a total of 1 h. Furthermore, it was assumed that the amount of solvent used for cleavage & precipitation was the total amount throughout.

iii) enzymatic ligation: it was assumed that stirring 10 kg of solvent for 1 h at 22 °C required 0,38 kWh⁻¹, it was also assumed that at the intended target scale (1 kg of exenatide API) all ligations were allowed to proceed for 3 h.

iv) RPC purification: it was assumed that passing 1 t of solvent through a RPC column at 22 °C requires 4,5 kWh⁻¹.

v) lyophilization: it was assumed that lyophilizing 1 kg of a peptide fragment/peptide API at 20 gkg⁻¹ lyophilization concentration requires 35 kWh⁻¹.

The amount of cooling water consumed was negligible for all process steps of all process routes and was not included in the calculations herein.

The processing energy consumed was calculated for all six exenatide processes examined based on the energy consumption values for the individual process steps above see Tables S28, S29, S40, S41, S52, S53, S60, S61, S71, S72, S82 and S83 in this ESI for details.

For the conversion of the consumed energy to CI of energy consumption (CI_{en}) three contributors were considered based on previously reported values:¹⁸

i) electricity generated: 0,28307 kg CO₂ eq. kWh⁻¹.

ii) electricity transmitted & distributed: 0,02413 kg CO₂ eq. kWh⁻¹.

iii) electricity used (benchmark processes I & II): 0,30720 kg CO_2 eq. kWh⁻¹; carbon intensity for electricity used on CEPS processes herein which used wind energy: 0,0 kg CO_2 eq. kWh⁻¹.¹⁶

Clen was therefore calculated as:

 $CI_{en} = i) + ii) + iii)$

Carbon intensity for all chemicals involved in exenatide processing (Cl_{chem}): as for all six routes solvents constituted >90% of the mass of the utilized starting materials estimated CI of production of starting materials as well as estimated CI of waste disposal of all materials were based on assuming that the starting materials and the waste were the solvents used, excluding processing water used for DSP.

Cl_{production} for the production of raw materials: Cl_{production} for production of following solvents was used for the calculations herein: DMF, MeCN, MTBE, ether and heptane all of which were based on previously reported values.¹⁷

Cl_{process} for processing of exenatide: it was assumed that no loss of solvents and/or other materials occurred during the processing of the API and the impact of Cl_{process} was thus deemed as negligible and was not included in the calculations herein.

Cl_{waste} for waste disposal (incineration), theoretical CI:¹⁸ it was assumed that under incineration all solvents underwent a perfect combustion i.e. each mol of C in the incinerated solvent produced one mol of CO₂ during incineration i.e.: 1.00 kg DMF produced 1.81 kg CO₂; 1.00 kg MeCN produced 2.15 kg CO₂; 1.00 kg MTBE produced 2.49 kg CO₂; 1.00 kg ether produced 2.37 kg CO₂ and 1.00 kg heptane produced 3.07 kg CO₂.

Cl_{chem} was therefore calculated as:

CI_{chem} = CI_{production} + CI_{process} (0) + CI_{waste} = CI_{production} + CI_{waste}

Total CI (kg⁻¹ API) for all six exenatide manufacturing routes was calculated as:

Total $CI_{chem} = CI_{chem} + CI_{en}$

35.2. Conventional SPPS, benchmark 1¹⁹

Figure S48. A schematic representation of the flow chart for a conventional SPPS exenatide manufacturing process.

Table S23. Overview of raw materials used in 1 mol SPPS of exenatide peptide resin, benchmarkprocess 1.

AA nr	AA	MW	mol	equiv AA	kg AA	kg HOBt	kg DIC	kg pip	kg DMF ²
resin linker	Fmoc-Rink amide resin, 0.24 mmol/g, 4,17 kg	n.a.	1,00	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ser ³⁹	Fmoc-Ser(t-Bu)-OH	383,44	1,00	1,00	0,38	0,16	0,15	16,7	692,2
Pro ³⁸	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,65	0,61	16,7	692,2
Pro ³⁷	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,65	0,61	16,7	692,2
Pro ³⁶	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,65	0,61	16,7	692,2
Ala ³⁵	Fmoc-Ala-OHxH ₂ O	329,36	4,00	4,00	1,32	0,65	0,61	16,7	692,2
Gly ³⁴	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,65	0,61	16,7	692,2
Ser ³³	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,65	0,61	16,7	692,2
Ser ³²	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,65	0,61	16,7	692,2
Pro ³¹	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,65	0,61	16,7	692,2
Gly ³⁰	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,65	0,61	16,7	692,2
Gly ²⁹	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,65	0,61	16,7	692,2
Asn ²⁸	Fmoc-Asn(Trt)-OH	596,67	4,00	4,00	2,39	0,65	0,61	16,7	692,2
Lys ²⁷	Fmoc-Lys(Boc)-OH	468,54	4,00	4,00	1,87	0,65	0,61	16,7	692,2
Leu ²⁶	Fmoc-Leu-OH	354,41	4,00	4,00	1,42	0,65	0,61	16,7	692,2
Trp ²⁵	Fmoc-Trp(Boc)-OH	526,59	4,00	4,00	2,11	0,65	0,61	16,7	692,2
Glu ²⁴	Fmoc-Glu(OtBu)-OHxH ₂ O	443,49	4,00	4,00	1,77	0,65	0,61	16,7	692,2
lle ²³	Fmoc-Ile-OH	354,41	4,00	4,00	1,42	0,65	0,61	16,7	692,2
Phe ²²	Fmoc-Phe-OH	387,45	4,00	4,00	1,55	0,65	0,61	16,7	692,2
Leu ²¹	Fmoc-Leu-OH	354,41	4,00	4,00	1,42	0,65	0,61	16,7	692,2
Arg ²⁰	Fmoc-Arg(Pbf)-OH	648,77	4,00	4,00	2,60	0,65	0,61	16,7	692,2
Val ¹⁹	Fmoc-Val-OH	339,39	4,00	4,00	1,36	0,65	0,61	16,7	692,2
Ala ¹⁸	Fmoc-Ala-OHxH ₂ O	329,36	4,00	4,00	1,32	0,65	0,61	16,7	692,2
Glu ¹⁷	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,65	0,61	16,7	692,2
Glu ¹⁶	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,65	0,61	16,7	692,2
Glu ¹⁵	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,65	0,61	16,7	692,2
Met ¹⁴	Fmoc-Met-OH	371,45	4,00	4,00	1,49	0,65	0,61	16,7	692,2
Gln ¹³	Fmoc-Gln(Trt)-OH	610,70	4,00	4,00	2,44	0,65	0,61	16,7	692,2
Lys ¹²	Fmoc-Lys(Boc)-OH	468,54	4,00	4,00	1,87	0,65	0,61	16,7	692,2
Ser ¹¹	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,65	0,61	16,7	692,2
Leu ¹⁰	Fmoc-Leu-OH	354,41	4,00	4,00	1,42	0,65	0,61	16,7	692,2
Asp ⁹	Fmoc-Asp(Ot Bu)-OH	411,45	4,00	4,00	1,65	0,65	0,61	16,7	692,2
Ser ⁸	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,65	0,61	16,7	692,2
Thr ⁷	Fmoc-Thr(<i>t</i> - Bu)-OH	397,48	4,00	4,00	1,59	0,65	0,61	16,7	692,2
Phe ⁶	Fmoc-Phe-OH	387,45	4,00	4,00	1,55	0,65	0,61	16,7	692,2
Thr⁵	Fmoc-Thr(t- Bu)-OH	397,48	4,00	4,00	1,59	0,65	0,61	16,7	692,2
Gly ⁴	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,65	0,61	16,7	692,2
Glu ³	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,65	0,61	16,7	692,2
Gly ²	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,65	0,61	16,7	692,2
His ¹	Boc-His(Boc)-OH ^x DCHA ¹	355,39	4,00	4,00	1,42	n.a.1	n.a.	16,7	692,2
Σ					60,51	24,16	22,56	651,30	26995,80

¹HATU (4 mol, 1,52 kg), HOAT (4,8 mol, 0,65 kg) and TMP (8 mol, 0,97 kg) were used for the coupling; ²in some steps of the synthesis DCM and NMP were used as well, as DMF accounts for >95% of solvent consumption DMF was considered as the sole solvent of the synthesis

Table S24. Summary of amounts of raw materials used in 1 mol SPPS of exenatide peptide resin, benchmark process 1.

Scale (mol)	1,00
Weight resin (kg)	4,17
Σ Weight AAs (kg)	60,51
Σ Weight HOBt (kg)	24,16
Σ Weight DIC (kg)	22,56
Σ Weight His 1 coupling (kg)	3,14
Σ Weight resin/AAs/coupling agents (kg)	115,54
Σ Weight pip (kg)	651,30
Σ starting materials (kg)	766,84
Σ solvents (kg)	26995,80
peptide resin formed (kg)	10,68

Table S25. Summary of amounts of raw materials used in 0,19 mol (reported) and 1 mol TFA cleavage of exenatide peptide resin, benchmark process 1.

Scale (mol)	0,19	1,00
TFA (kg)	24,48	128,84
TIS (kg)	0,75	3,95
H ₂ O (kg)	0,51	2,68
EDT (kg)	1,15	6,05
PhSMe (kg)	1,08	5,68
PhOH (kg)	0,21	1,11
Σ Reagents (kg)	28,18	148,32
solvents (ether, kg)	579,00	3047,37

Table S26. Summary of amounts of raw materials used in DSP of crude exenatide, benchmark process 1.

Step	kg peptide	kg solvent
API (1 RPC)	0,92	861,12

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)	cost (%)
resin	2800,0	4,2	11676,0	9,0
HOBt	62,0	24,2	1497,9	1,2
piperidine	10,6	651,3	6903,8	5,3
std AA	400,0	60,5	24204,0	18,7
DIC	240,0	22,6	5414,4	4,2
DMF	1,4	26995,8	37794,1	29,2
HATU	2700,0	1,5	4104,0	3,2
HOAT	2200,0	0,7	1430,0	1,1
TMP	370,0	1,0	358,9	0,3
TFA	20,0	128,8	2576,8	2,0
TIS	900,0	4,0	3555,0	2,7
EDT	50,0	6,1	302,5	0,2
PhSMe	100,0	5,7	568,0	0,4
PhOH	150,0	1,1	166,5	0,1
Ether	9,0	3047,4	27426,6	21,2
MeCN	6,0	258,3	1549,8	1,2
Σ	n.a.	n.a.	129528,3	100,0
$\Sigma/1 \text{ kg API}$			140791,7	

Table S27. Summary of amounts and cost of raw materials used in the entire manufacturing process, benchmark process 1.

Table S28. Summary of total CI for organic solvents used in exenatide manufacturing benchmarkprocess 1.

Total organic solvents	weight (kg)	CO ₂ formed during solvent production / kg kg ⁻¹	theoretical CI / kg kg ⁻¹	${\sf CI}_{\Sigma}$ / kg kg $^{-1}$	Cl_Σ
DMF (SPPS)	26995,8	1,75	1,81	3,56	96105,05
Ether (cleavage)	3047,4	1,08	2,37	3,45	10513,53
MeCN (DSP)	258,3	1,95	2,15	4,1	1059,03
Σ (kg CO ₂)					107677,61
\sum (kg CO ₂)kg ⁻¹ API					117040,88

Table S29. Summary of energy consumed, cost of energy and total CI for process energy in exenatide manufacturing benchmark process 1.

Energy & Cl	SPPS ^a	SPPS ^a cleavage/precipitation ^b DSP ^c lyophilization		lyophilization ^d	Σ	
energy used (kWh ⁻¹)	526,55	365	3,9	32,2	927,65	1007,22
cost of energy used (EUR)	34,75	24,09	0,26	2,13	61,22	66,48
Cl for electricity generated (t CO ₂)	0,15	0,10	0,001	0,009	0,26	0,29
CI for electricity transmitted & distributed (t CO ₂)	0,01	0,01	0,000	0,001	0,02	0,02
CI for electricity used (t CO ₂)	0,16	0,11	0,001	0,010	0,28	0,31
CI for electricity Σ (t CO ₂)	0,32	0,22	0,002	0,020	0,57	0,62

^aenergy used=39 (AA cycles) x 6 (duration of AA cycle in h) x 50 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 4,5 (amount of energy needed to stir nominal amount of solvent for 1 h); ^b3176 (total amount of TFA+solvent in kg) x 3 (total time of cleavage + precipitation in h) /12 (nominal amount of TFA+solvent in kg) x 0,46 (amount of energy needed to stir nominal amount of TFA+solvent for 1 h); ^c861 (amount of solvent used in DSP in kg)/1000 (nominal amount of solvent used in DSP in kg) x 4,5 (amount of energy needed to pass nominal amount of solvent through an RPC column); ^d0,921 (amount of API obtained in kg)/1,0 (nominal amount of API in kg) x 35 (amount of energy needed to lyophilize nominal amount of API). 35.3. Lab scale CEPS (P+P), benchmark 2²⁰

Figure S49. A schematic representation of the flow chart of a lab scale CEPS (P+P) exenatide manufacturing process.

Table S30. Overview of raw materials used in 1 mol SPPS of Boc-1-21-O-Cam-Leu peptidefragment resin, benchmark process 2.

AA nr	AA	MW	mol	equiv AA	kg AA	kg HBTU	kg HOBtxH₂O	kg DIEA	kg pip	kg DMF
resin	Fmoc-Leu-Wang resin, 0.72 mmol/g, 1,388 kg	n.a.	1,00	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
linker	iodoacetic acid	185,96	4,00	4,00	0,74	n.a.	n.a.	n.a.	6,0	137,6
Leu ²¹	Fmoc-Leu-OH	354,41	4,00	4,00	1,42	n.a.	n.a.	1,03	0,0	91,7
Arg ²⁰	Fmoc-Arg(Pbf)-OH	648,77	4,00	4,00	2,60	0,57	0,61	1,03	6,0	137,6
Val ¹⁹	Fmoc-Val-OH	339,39	4,00	4,00	1,36	0,57	0,61	1,03	6,0	137,6
Ala ¹⁸	Fmoc-Ala-OHxH ₂ O	329,36	4,00	4,00	1,32	0,57	0,61	1,03	6,0	137,6
Glu ¹⁷	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,57	0,61	1,03	6,0	137,6
Glu ¹⁶	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,57	0,61	1,03	6,0	137,6
Glu ¹⁵	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,57	0,61	1,03	6,0	137,6
Met ¹⁴	Fmoc-Met-OH	371,45	4,00	4,00	1,49	0,57	0,61	1,03	6,0	137,6
Gln ¹³	Fmoc-Gln(Trt)-OH	610,70	4,00	4,00	2,44	0,57	0,61	1,03	6,0	137,6
Lys ¹²	Fmoc-Lys(Boc)-OH	468,54	4,00	4,00	1,87	0,57	0,61	1,03	6,0	137,6
Ser ¹¹	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,57	0,61	1,03	6,0	137,6
Leu ¹⁰	Fmoc-Leu-OH	354,41	4,00	4,00	1,42	0,57	0,61	1,03	6,0	137,6
Asp ⁹	Fmoc-Asp(Ot Bu)-OH	411,45	4,00	4,00	1,65	0,57	0,61	1,03	6,0	137,6
Ser ⁸	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,57	0,61	1,03	6,0	137,6
Thr ⁷	Emas Dha Thr(Daima Manza) Oll	F 28 C	4.00	4.00	2.11	0.57	0.61	1.02	6.0	127.0
Phe ⁶	Finoc-Prie-Titr(Psime,Mepro)-OH	528,0	4,00	4,00	2,11	0,57	0,61	1,03	6,0	137,0
Thr⁵	Fmoc-Thr(t- Bu)-OH	397,48	4,00	4,00	1,59	0,57	0,61	1,03	6,0	137,6
Gly ⁴	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,57	0,61	1,03	6,0	137,6
Glu ³	Fmoc-Glu-OHxH ₂ O	443,49	4,00	4,00	1,77	0,57	0,61	1,03	6,0	137,6
Gly ²	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,57	0,61	1,03	6,0	137,6
His ¹	Boc-His(Trt)-OH	497,57	4,00	4,00	1,99	0,57	0,61	1,03	6,0	137,6
Σ					34,53	10,80	11,64	20,68	120,00	2843,70

Table S31. Overview of raw materials used in 1 mol SPPS of H-22-39-peptide fragment resin, benchmark process 2.

-

AA nr	АА	MW	mol	equiv AA	kg AA	kg HBTU	kg HOBtxH₂O	kg DIEA	kg pip	kg DMF
resin linker	Fmoc-Rink amide resin, 0.64 mmol/g, 1,563 kg	n.a.	1,00	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ser ³⁹	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	1,52	0,61	1,03	6,7	154,6
Pro ³⁸	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,57	0,61	1,03	6,7	154,6
Pro ³⁷	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,57	0,61	1,03	6,7	154,6
Pro ³⁶	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,57	0,61	1,03	6,7	154,6
Ala ³⁵	Fmoc-Ala-OHxH ₂ O	329,36	4,00	4,00	1,32	0,57	0,61	1,03	6,7	154,6
Gly ³⁴	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,57	0,61	1,03	6,7	154,6
Ser ³³	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,57	0,61	1,03	6,7	154,6
Ser ³²	Fmoc-Ser(t-Bu)-OH	383,44	4,00	4,00	1,53	0,57	0,61	1,03	6,7	154,6
Pro ³¹	Fmoc-Pro-OH	337,37	4,00	4,00	1,35	0,57	0,61	1,03	6,7	154,6
Gly ³⁰	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,57	0,61	1,03	6,7	154,6
Gly ²⁹	Fmoc-Gly-OH	297,30	4,00	4,00	1,19	0,57	0,61	1,03	6,7	154,6
Asn ²⁸	Fmoc-Asn(Trt)-OH	596,67	4,00	4,00	2,39	0,57	0,61	1,03	6,7	154,6
Lys ²⁷	Fmoc-Lys(Boc)-OH	468,54	4,00	4,00	1,87	0,57	0,61	1,03	6,7	154,6
Leu ²⁶	Fmoc-Leu-OH	354,41	4,00	4,00	1,42	0,57	0,61	1,03	6,7	154,6
Trp ²⁵	Fmoc-Trp(Boc)-OH	526,59	4,00	4,00	2,11	0,57	0,61	1,03	6,7	154,6
Glu ²⁴	Fmoc-Glu(OtBu)-OHxH ₂ O	443,49	4,00	4,00	1,77	0,57	0,61	1,03	6,7	154,6
Ile ²³	Fmoc-Ile-OH	354,41	4,00	4,00	1,42	0,57	0,61	1,03	6,7	154,6
Phe ²²	Fmoc-Phe-OH	387,45	4,00	4,00	1,55	0,57	0,61	1,03	6,7	154,6
Σ		1			27,41	11,18	11,03	18,61	120,60	2782,80

Table S32. Summary of amounts of raw materials used in 1 mol SPPS of Boc-1-21-O-Cam-Leu peptide fragment resin, benchmark process 2.

Scale (mol)	1,00
Weight resin (kg)	1,39
Σ Weight AAs (kg)	34,53
Σ Weight HBTU (kg)	10,80
Σ Weight HOBtxH ₂ O (kg)	11,64
Σ Weight DIEA (kg)	20,68
Σ Weight resin/AAs/coupling agents (kg)	80,04
Σ Weight pip (kg)	120,00
Σ starting materials (kg)	200,04
Σ solvents (kg)	2843,70
peptide resin formed (kg)	5,04

Table S33. Summary of amounts of raw materials used in 1 mol (nominal) and 0,95 mol (actual) SPPS of H-22-39-peptide fragment resin, benchmark process 2.

Scale (mol)	1,00	0,95
Weight resin (kg)	1,56	1,48
Σ Weight AAs (kg)	27,41	26,04
Σ Weight HBTU (kg)	11,18	10,62
Σ Weight HOBtxH ₂ O (kg)	11,03	10,48
Σ Weight DIEA (kg)	18,61	17,68
Σ Weight AAs/coupling agents (kg)	69,79	66,30
Σ Weight pip (kg)	120,60	114,57
Σ starting materials (kg)	190,39	180,87
Σ solvents (kg)	2782,80	2643,66
peptide resin formed (kg)	3,84	3,65

Table S34. Summary of amounts of raw materials used in 0,72 mol (reported scaled-up protocol) and 1 mol TFA cleavage of Boc-1-21-O-Cam-Leu peptide fragment resin, benchmark process 2.

Scale (mol)	0,72	1,00
TFA (kg)	21,09	29,29
TIS (kg)	0,27	0,38
H ₂ O (kg)	0,38	0,53
Σ Reagents (kg)	21,74	30,19
solvents (MTBE/heptanes, kg)	106,50	147,92

Table S35. Summary of amounts of raw materials used in 0,62 mol (reported scaled-up protocol) and 0,95 mol TFA cleavage of H-22-39 peptide fragment resin, benchmark process 2.

Scale (mol)	0,64	0,95
TFA (kg)	21,09	31,31
TIS (kg)	0,27	0,40
H ₂ O (kg)	0,38	0,56
Σ Reagents (kg)	21,74	32,27
solvents (MTBE/heptanes, kg)	106,50	158,09

Table S36. Summary of amounts and cost of raw materials used in the SPPS of H-22-39 fragmentresin and TFA cleavage of H-22-39 fragment resin, benchmark process 2.

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (Fmoc-Rink amide)	2800,0	1,5	4144,0
HOBtxH ₂ O	62,0	10,5	649,8
piperidine	10,6	114,6	1214,8
std AA	400,0	26,0	10400,0
DIEA	59,3	17,7	1048,4
DMF	1,4	2643,7	3701,2
HBTU	150,0	10,6	1590,0
TFA	20,0	31,3	626,0
TIS	900,0	0,4	360,0
MTBE	4,3	79,0	339,7
heptanes	2,1	79,0	165,9
\sum	n.a.	n.a.	24239,7

Table S37. Summary of amounts of raw materials used in enzymatic ligation, 0,0021 mol (reported) and 0,56 mol, benchmark process 2.

Scale (mol)	0,0021	0,56
Amine F (kg)	0,0043	1,16
O-Cam F (kg)	0,0057	1,53
Enzyme (g)	0,0170	4,53
Solvent (kg)	0,2636	70,30

Table S38. Summary of amounts of raw materials used in DSP of crude exenatide, benchmark process 2.

Step	kg peptide	kg solvent
Amine fragment (1 RPC)	1,16	1085,76
O-Cam fragment (1 RPC)	1,53	1432,08
API (1 RPC)	1,84	1722,24
Σ	4,53	4240,08

Table S39. Summary of amounts and cost of raw materials used in the entire process, benchmarkprocess 2.1

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (Fmoc-Leu Wang)	4004,0	1,4	5565,6
HOBtxH ₂ O	62,0	11,6	721,7
piperidine	10,6	120,0	1272,0
std AA	400,0	32,4	12968,0
Fmoc-Phe-Thr(Psime,Mepro)-OH	9000,0	2,1	18990,0
DIEA	59,3	20,7	1227,5
DMF	1,4	2843,7	3981,2
HBTU	150,0	10,8	1620,0
TFA	20,0	29,3	586,0
TIS	900,0	0,5	477,0
MTBE	4,3	74,0	318,2
heptanes	2,1	74,0	155,4
Omniligase (cost in EUR/g)	750,0	0,0045	3,4
MeCN	6,0	1272,0	7632,0
Σ +O-Cam fragment+ ligation+DSP	n.a.	n.a.	55517,9
Σ amine fragment	n.a.	n.a.	24239,7
Σ			79757,6
Σ /1 kg API			43346,5

¹Weight of Omniligase is in g.

Table S40. Summary of total CI for organic solvents used in exenatide manufacturing, benchmarkprocess 2.

Total organic solvents	weight (kg)	ng solvent pro	CI / kg kg ⁻¹	CI_{Σ} / kg kg $^{-1}$	Cl_Σ
DMF (SPPS)	5487,4	1,75	1,81	3,56	19535,14
MTBE (cleavage)	153,0	1,75	2,49	4,24	648,72
heptanes (cleavage)	153,0	0,86	3,07	3,93	601,29
MeCN (DSP)	1272,0	1,95	2,15	4,1	5215,20
Σ					26000,35
Σ /kg API					14130,63

Table S41. Summary of energy consumed, cost of energy and total CI for process energy in exenatide manufacturing benchmark process 2.

		Process step						
Energy & Cl	SPPS ^a	cleavage/pr ecipitation ^b	ligation ^c	DSP ^d	lyophilization ^e	Σ	\sum kg API ⁻¹	
energy used (kWh ⁻¹)	527,9	42,2	9,7	19,1	64,47	663,37	360,14	
cost of energy used (EUR)	34,84	2,79	0,640	1,26	4,26	43,78	23,77	
CI for electricity generated (t CO ₂)	0,15	0,01	0,003	0,005	0,018	0,19	0,10	
CI for electricity transmitted & distributed (t CO ₂)	0,01	0,00	0,000	0,000	0,002	0,02	0,01	
CI for electricity used (t CO ₂)	0,16	0,01	0,003	0,006	0,020	0,20	0,11	
CI for electricity Σ (t CO ₂)	0,32	0,03	0,006	0,012	0,040	0,41	0,22	

^aenergy used=[amine fragment: 18 (AA cycles) x 6 (duration of AA cycle in h) x 47,5 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 4,5 (amount of energy needed to stir nominal amount of solvent for 1 h)]+[O-Cam fragment: 22 (AA cycles) x 6 (duration of AA cycle in h) x 50 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 4,5 (amount of energy needed to stir nominal amount of solvent for 1 h)]; ^b367 (total amount of TFA+solvent in kg, amine+O-Cam fragments) x 3 (total time of cleavage + precipitation in h) /12 (nominal amount of TFA+solvent in kg) x 0,46 (amount of energy needed to stir nominal amount of TFA+solvent for 1 h); ^c70,3 (total amount of ligation solvent in kg) x 3 (total time ligation h)/10 (nominal amount of solvent in kg) x 0,38 (amount of energy needed to stir nominal amount of solvent in kg) x 0,38 (amount of energy needed to stir nominal amount of solvent in kg) x 0,38 (amount of energy needed to stir nominal amount of solvent in kg) x 0,38 (amount of energy needed to solvent used in DSP in kg) x 4,5 (amount of energy needed to pass nominal amount of solvent through an RPC column); ^e1,842 (amount of API obtained in kg)/1,0 (nominal amount of API in kg) x 35 (amount of energy needed to lyophilize nominal amount of API).

Figure S50. A schematic representation of the flow chart of the O-Cam fragment CEPS (C+C) exenatide manufacturing process herein.

Table S42. Overview of raw materials used in 1 mol SPPS of Boc-1-21-O-Cam-Leu peptidefragment resin, O-Cam fragment CEPS (C+C) process.

AA nr	AA	MW	mol AA	equiv AA	kg AA	kg Oxyma	Total kg DIC	kg TBTU	kg NMM	kg pip	kg DMF
resin	DEG AM, 0.77 mmol/g, 1.77 kg	n.a.	1,15	1,36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
linker	Fmoc-RMG-OH	505,60	1,08	1,32	0,57	0,15	0,34	n.a.	n.a.	3,13	92,50
Leu-linker	Fmoc-Leu-OH	354,41	2,00	1,27	0,75	0,28	0,63	n.a.	n.a.	3,13	92,50
Leu ²¹ -O-Cam	Fmoc-Leu-O-Cam-OH	411,45	1,00	1,00	0,43	0,14	0,32	n.a.	n.a.	3,13	92,50
Arg ²⁰	Fmoc-Arg(Pbf)-OH	434,49	1,90	1,90	0,87	n.a.	n.a.	0,61	0,38	1,38	80,00
Val ¹⁹	Fmoc-Val-OH	337,37	1,90	1,90	0,67	n.a.	n.a.	0,61	0,38	1,44	80,00
Ala ¹⁸	Fmoc-Ala-OHxH ₂ O	329,36	1,90	1,90	0,66	n.a.	n.a.	0,61	0,38	2,75	92,50
Glu ¹⁷	Fmoc-Glu-OHxH ₂ O	297,30	1,90	1,90	0,59	n.a.	n.a.	0,61	0,38	2,75	92,50
Glu ¹⁶	Fmoc-Glu-OHxH ₂ O	569,66	1,90	1,90	1,14	n.a.	n.a.	0,61	0,38	2,75	92,50
Glu ¹⁵	Fmoc-Glu-OHxH ₂ O	569,66	1,90	1,90	1,14	n.a.	n.a.	0,61	0,38	2,75	92,50
Met ¹⁴	Fmoc-Met-OH	337,37	1,90	1,90	0,67	n.a.	n.a.	0,61	0,38	2,75	92,50
Gln ¹³	Fmoc-Gln(Trt)-OH	354,40	1,90	1,90	0,71	n.a.	n.a.	0,61	0,38	2,75	92,50
Lys ¹²	Fmoc-Lys(Trt)-OH	596,67	1,90	1,90	1,19	n.a.	n.a.	0,61	0,38	2,75	92,50
Ser ¹¹	Fmoc-Ser(t-Bu)-OH	610,8	1,90	1,90	1,22	n.a.	n.a.	0,61	0,38	2,75	92,50
Leu ¹⁰	Fmoc-Leu-OH	354,41	1,90	1,90	0,71	n.a.	n.a.	0,61	0,38	2,75	92,50
Asp ⁹	Fmoc-Asp(Ot Bu)-OH	526,59	1,90	1,90	1,05	n.a.	n.a.	0,61	0,38	2,75	92,50
Ser ⁸	Fmoc-Ser(t-Bu)-OH	443,49	1,90	1,90	0,89	n.a.	n.a.	0,61	0,38	5,00	92,50
Thr ⁷	Fmoc-Thr(t- Bu)-OH	354,41	1,90	1,90	0,71	n.a.	n.a.	0,61	0,38	5,00	92,50
Phe ⁶	Fmoc-Phe-OH	387,45	3,80	3,80	1,55	n.a.	n.a.	1,22	0,77	12,50	147,50
Thr ⁵	Fmoc-Thr(t- Bu)-OH	387,45	5,70	5,70	2,32	n.a.	n.a.	1,83	1,15	5,00	127,50
Gly ⁴	Fmoc-Gly-OH	387,45	1,90	1,90	0,77	n.a.	n.a.	0,61	0,38	5,00	92,50
Glu ³	Fmoc-Glu-OHxH ₂ O	387,45	1,90	1,90	0,77	n.a.	n.a.	0,61	0,38	5,00	92,50
His ¹ -Gly ²	Boc-His(Trt)-Gly-OH	387,45	1,90	1,90	0,77	n.a.	n.a.	0,61	0,38	5,00	92,50
Σ					20,19	0,58	1,29	13,42	8,46	82,21	2100,00

Table S43. Overview of raw materials used in 1 mol SPPS of H-22-39-peptide fragment resin, O-Cam fragment CEPS (C+C) process.

AA nr	АА	MW	mol AA	equiv AA	kg AA	kg Oxyma	Total kg DIC	kg pip	kg DMF
resin	DEG AM, 0.68 mmol/g, 1.69 kg	n.a.	1,15	1,15	n.a.	n.a.	n.a.	n.a.	n.a.
linker	Fmoc-RMG-OH	505,60	1,08	1,08	0,57	0,15	0,34	3,13	92,50
Ser ³⁹	Fmoc-Ser(Trt)-OH	569,66	1,00	1,00	0,60	0,14	0,32	3,13	92,50
Pro ³⁸⁻³⁷	Fmoc-Pro-Pro-OH	434,49	1,00	1,00	0,43	0,14	0,32	3,13	92,50
Pro ³⁶	Fmoc-Pro-OH	337,37	2,00	2,00	0,67	0,28	0,63	3,13	92,50
Ala ³⁵	Fmoc-Ala-OHxH ₂ O	329,36	2,00	2,00	0,66	0,28	0,63	3,13	92,50
Gly ³⁴	Fmoc-Gly-OH	297,30	2,00	2,00	0,59	0,28	0,63	3,13	92,50
Ser ³³	Fmoc-Ser(Trt)-OH	569,66	2,00	2,00	1,20	0,28	0,63	3,13	92,50
Ser ³²	Fmoc-Ser(Trt)-OH	569,66	2,00	2,00	1,20	0,28	0,63	3,13	92,50
Pro ³¹	Fmoc-Pro-OH	337,37	2,00	2,00	0,71	0,28	0,63	3,13	92,50
Gly ³⁰⁻²⁹	Fmoc-Gly-Gly-OH	354,40	1,50	1,50	0,56	0,21	0,47	3,13	92,50
Asn ²⁸	Fmoc-Asn(Trt)-OH	596,67	2,00	2,00	1,26	0,28	0,63	3,13	92,50
Lys ²⁷	Fmoc-Lys(Trt)-OH	610,8	1,50	1,50	0,96	0,21	0,47	3,13	92,50
Leu ²⁶	Fmoc-Leu-OH	354,41	2,00	2,00	0,75	0,28	0,63	3,13	92,50
Trp ²⁵	Fmoc-Trp(Boc)-OH	526,59	4,00	4,00	2,22	0,57	1,26	3,13	110,00
Glu ²⁴	Fmoc-Glu(OtBu)-OHxH ₂ O	443,49	4,00	4,00	1,87	0,57	1,26	3,13	110,00
lle ²³	Fmoc-Ile-OH	354,41	4,00	4,00	1,49	0,57	1,26	3,13	110,00
Phe ²²	Fmoc-Phe-OH	387,45	4,00	4,00	1,63	0,57	1,26	3,13	110,00
Σ					17,38	5,41	12,01	53,21	1642,50
Table S44. Summary of amounts of raw materials used in 1 mol SPPS of Boc-1-21-O-Cam-Leu peptide fragment resin, O-Cam fragment CEPS (C+C) process.

Scale (mol)	1,00
Weight resin (kg)	1,77
Σ Weight AAs (kg)	20,19
Σ Weight Oxyma (kg)	0,58
Σ Weight DIC (kg)	1,29
Σ Weight TBTU (kg)	13,42
Σ Weight NMM (kg)	8,46
Σ Weight resin/AAs/coupling agents (kg)	45,71
Σ Weight pip (kg)	82,21
Σ starting materials (kg)	127,92
Σ solvents (kg)	2100
peptide resin formed (kg)	5,73

Table S45. Summary of amounts of raw materials used in 1 mol (nominal) and 1,4 mol (actual) SPPS of H-22-39-peptide fragment resin, O-Cam fragment CEPS (C+C) process.

Scale (mol)	1,00	1,40
Weight resin (kg)	1,69	2,37
Σ Weight AAs (kg)	17,38	24,33
Σ Weight Oxyma (kg)	5,41	7,57
Σ Weight DIC (kg)	12,01	16,81
Σ Weight resin/AAs/coupling agents (kg)	36,49	51,09
Σ Weight pip (kg)	53,21	74,49
Σ starting materials (kg)	89,7	125,58
Σ solvents (kg)	1642,5	2299,50
peptide resin formed (kg)	5,5	7,70

Table S46. Summary of amounts of raw materials used in 1 mol TFA cleavage of Boc-1-21-O-Cam-Leu peptide fragment resin, O-Cam fragment CEPS (C+C) process.

Scale (mol)	1,00
TFA (kg)	38,00
TIS (kg)	0,84
H ₂ O (kg)	0,30
DTT (kg)	0,86
NH ₄ I (kg)	0,57
Σ Reagents (kg)	40,57
solvents (ether, kg)	129,77

Table S47. Summary of amounts of raw materials used in 1,40 mol TFA cleavage of H-22-39 peptide fragment resin, O-Cam fragment CEPS (C+C) process.

Scale (mol)	1,40
TFA (kg)	60,28
TIS (kg)	1,12
H ₂ O (kg)	0,38
DTT (kg)	1,15
Σ Reagents (kg)	62,92
solvents (ether, kg)	271,09

Table S48. Summary of amounts and cost of raw materials used in the SPPS of H-22-39 fragment resin and TFA cleavage of H-22-39 fragment resin, O-Cam fragment CEPS (C+C) process.

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (DEG AM)	1300,0	2,4	3081,0
Oxyma	85,0	7,6	643,5
piperidine	10,6	74,5	789,6
std AA	400,0	24,3	9732,0
DIC	240,0	16,8	4034,4
DMF	1,4	2299,5	3219,3
TFA	20,0	60,3	1205,6
TIS	900,0	1,1	1008,0
DTT	668,0	1,2	768,2
Ether	9,0	271,1	2439,9
Σ	n.a.	n.a.	26921,4

Table S49. Summary of amounts of raw materials used in enzymatic ligation, O-Cam fragment CEPS (C+C) process.

Scale (mol)	0,42
Amine F (kg)	2,72
O-Cam F (kg)	3,94
TCEPxHCI (kg)	0,10
Enzyme (g)	3,90
Solvent (kg)	64,29

Table S50. Summary of amounts of raw materials used in DSP of crude exenatide, O-Cam fragment CEPS (C+C) process.

Step	kg peptide	kg solvent
API (3 RPC)	0,75	2106

Table S51. Summary of amounts and cost of raw materials used in the entire process, O-Cam fragment CEPS (C+C) process.¹

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (DEG AM)	1300,0	1,8	2301,0
Oxyma	85,0	0,6	51,0
piperidine	10,6	82,2	871,4
std AA	400,0	19,0	7596,0
dipeptide	1500,0	1,2	1800,0
DIC	240,0	1,3	312,0
NMM	15,0	8,5	126,9
DMF	1,4	2100,0	2940,0
TBTU	150,0	13,4	2013,0
TFA	20,0	38,0	760,0
TIS	900,0	0,8	756,0
DTT	668,0	0,9	574,5
NH ₄ I	450,0	0,6	256,5
Ether	9,0	129,8	1168,2
TCEP ^x HCI	582,0	0,1	58,2
Omniligase (EUR/g)	750,0	3,9	2925,0
MeCN	6,0	638,2	3829,2
Σ +O-Cam fragment+ ligation+DSP	n.a.	n.a.	28338,9
Σ amine fragment	n.a.	n.a.	26921,4
Σ	n.a.	n.a.	55260,3
Σ /1 kg API	n.a.	n.a.	73680,4

¹Weight of Omniligase is in g.

Table S52. Summary of total CI for organic solvents used in exenatide manufacturing, O-Cam fragment CEPS (C+C) process.

Total organic solvents	weight (kg)	CO ₂ formed during solvent production / kg kg -1	CI / kg kg ⁻	${\sf CI}_{\Sigma}$ / kg kg $^{-1}$	Cl_Σ
DMF (SPPS)	4399,5	1,75	1,81	3,56	15662,22
Ether (cleavage)	400,9	1,08	2,37	3,45	1383,11
MeCN (DSP+ligation)	638,2	1,95	2,15	4,1	2616,62
Σ					19661,95
\sum/kg API					26215,93

		Process step					
Energy & Cl	SPPS ^a	cleavage/pr ecipitation ^b	ligation ^c	DSP ^d	lyophilization ^e	Σ	$\Sigma \text{ kg API}^{-1}$
energy used (kWh ⁻¹)	419,1	51,2	7,3	9,5	26,39	513,49	681,02
cost of energy used (EUR)	27,66	3,38	0,482	0,63	1,74	33,89	44,95
CI for electricity generated (t CO ₂)	0,12	0,01	0,002	0,003	0,007	0,15	0,19
CI for electricity transmitted & distributed (t CO ₂)	0,01	0,00	0,000	0,000	0,001	0,01	0,02
CI for electricity used $(t CO_2)^f$	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI for electricity \sum (t CO ₂)	0,13	0,02	0,002	0,003	0,008	0,16	0,21

Table S53. Summary of energy consumed, cost of energy and total CI for process energy in exenatide manufacturing, O-Cam fragment CEPS (C+C) process.

^aenergy used=[amine fragment: 17 (AA cycles) x 3 (duration of AA cycle in h) x 70 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]+[O-Cam fragment: 22 (AA cycles) x 3 (duration of AA cycle in h) x 50 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]; ^b445 (total amount of TFA+solvent in kg, amine+O-Cam fragments) x 3 (total time of cleavage + precipitation in h) /12 (nominal amount of TFA+solvent in kg) x 0,46 (amount of energy needed to stir nominal amount of TFA+solvent for 1 h); ^c64,3 (total amount of ligation solvent in kg) x 3 (total time ligation h)/10 (nominal amount of solvent in kg) x 0,38 (amount of energy needed to stir nominal amount of solvent in kg) x 0,38 (amount of solvent used in DSP in kg)/1000 (nominal amount of solvent used in DSP in kg) x 4,5 (amount of energy needed to pass nominal amount of solvent through an RPC column); ^e0,754 (amount of API obtained in kg)/1,0 (nominal amount of API in kg) x 35 (amount of energy needed to lyophilize nominal amount of API); ^f wind energy was used in this exenatide API manufacture, the use of electricity was assumed to be CO₂ neutral.

35.5. O-Cam fragment CEPS (P+P)

Figure S51. A schematic representation of the flow chart of the O-Cam fragment CEPS (P+P) exenatide manufacturing process herein.

For an overview of raw materials used in 1 mol SPPS of Boc-1-21-O-Cam-Leu peptide fragment resin, O-Cam fragment CEPS (P+P) process see Table S42.

For an overview of raw materials used in 1 mol SPPS of H-22-39-peptide fragment resin, O-Cam fragment CEPS (P+P) process see Table S43.

For a **s**ummary of amounts of raw materials used in 1 mol SPPS of Boc-1-21-O-Cam-Leu peptide fragment resin, O-Cam fragment CEPS (P+P) process see Table S44.

orro un rezesse peptide nayment resin,	0-Cam naymen	
Scale (mol)	1,00	2,20
Weight resin (kg)	1,69	3,72
Σ Weight AAs (kg)	17,38	38,24
Σ Weight Oxyma (kg)	5,41	11,90
Σ Weight DIC (kg)	12,01	26,42
Σ Weight resin/AAs/coupling agents (kg)	36,49	80,28
Σ Weight pip (kg)	53,21	117,06
Σ starting materials (kg)	89,7	197,34
Σ solvents (kg)	1642,5	3613,50
peptide resin formed (kg)	5,5	12,10

Table S54. Summary of amounts of raw materials used in 1 mol (nominal) and 2,2 mol (actual) SPPS of H-22-39-peptide fragment resin, O-Cam fragment CEPS (P+P) process.

For a summary of amounts of raw materials used in 1 mol TFA cleavage of Boc-1-21-O-Cam-Leu peptide fragment resin, O-Cam fragment CEPS (P+P) process see Table S46.

Table S55. Summary of amounts of raw materials used in 2,20 mol TFA cleavage of H-22-39 peptide fragment resin, O-Cam fragment CEPS (P+P) process.

Scale (mol)	2,20
TFA (kg)	94,72
TIS (kg)	1,76
H ₂ O (kg)	0,60
DTT (kg)	1,80
Σ Reagents (kg)	98,88
solvents (ether, kg)	426,00

Table S56. Summary of amounts and cost of raw materials used in the SPPS of H-22-39 fragment resin and TFA cleavage of H-22-39 fragment resin, O-Cam fragment CEPS (P+P) process.

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (DEG AM)	1300,0	3,7	4841,6
Oxyma	85,0	11,9	1011,1
piperidine	10,6	117,1	1240,8
std AA	400,0	38,2	15293,1
DIC	240,0	26,4	6339,8
DMF	1,4	3613,5	5058,9
TFA	20,0	94,7	1894,5
TIS	900,0	1,8	1584,0
DTT	668,0	1,8	1207,2
Ether	9,0	426,0	3834,1
Σ	n.a.	n.a.	42305,1

Table S57. Summary of amounts of raw materials used in enzymatic ligation, O-Cam fragment CEPS (P+P) process.

Scale (mol)	0,37
Amine F (kg)	0,81
O-Cam F (kg)	0,94
TCEPxHCI (kg)	0,07
Enzyme (g)	2,73
Solvent (kg)	45,00

Table S58. Summary of amounts of raw materials used in DSP of crude exenatide, O-Cam fragment CEPS (P+P) process.

Step	kg peptide	kg solvent
Amine fragment (1 RPC)	0,81	758,16
O-Cam fragment (1 RPC)	0,94	1759,68
API (2 RPC)	0,96	1797,12
Σ	2,71	4314,96

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (DEG AM)	1300,0	1,8	2301,0
Oxyma	85,0	0,6	51,0
piperidine	10,6	82,2	871,4
std AA	400,0	19,0	7596,0
dipeptide	1500,0	1,2	1800,0
DIC	240,0	1,3	312,0
NMM	15,0	8,5	126,9
DMF	1,4	2100,0	2940,0
TBTU	150,0	13,4	2013,0
TFA	20,0	38,0	760,0
TIS	900,0	0,8	756,0
DTT	668,0	0,9	574,5
NH₄I	450,0	0,6	256,5
Ether	9,0	129,8	1168,2
TCEP ^x HCl	582,0	0,1	40,7
Omniligase (EUR/g)	750,0	2,7	2047,5
MeCN	6,0	1299,0	7794,0
Σ +O-Cam fragment+ ligation+DSP	n.a.	n.a.	31408,7
Σ amine fragment	n.a.	n.a.	42305,1
Σ	n.a.	n.a.	73713,8
\sum /1 kg API	n.a.	n.a.	76785,3

Table S59. Summary of amounts and cost of raw materials used in the entire process, O-Cam fragment CEPS (P+P) process.¹

¹Weight of Omniligase is in g.

Table S60. Summary of total CI for organic solvents used in exenatide manufacturing, O-Cam fragment CEPS (P+P) process.

Total organic solvents	weight (kg)	CO ₂ formed during solvent production / kg kg -1	CI / kg kg ⁻¹	${\sf Cl}_{\Sigma}$ / kg kg $^{-1}$	Cl_Σ
DMF (SPPS)	5713,5	1,75	1,81	3,56	20340,06
Ether (cleavage)	555,8	1,08	2,37	3,45	1917,51
MeCN (DSP+ligation)	1299,0	1,95	2,15	4,1	5325,90
Σ					27583,47
∑/kg API					28732,78

Table S61. Summary of energy consumed, cost of energy and total CI for process energy in exenatide manufacturing, O-Cam fragment CEPS (P+P) process.

	Process step							
Energy & Cl	SPPS ^a	cleavage/pre cipitation ^b	ligation ^c	DSP ^d	lyophilization e	Σ	Σ kg API $^{-1}$	
energy used (kWh ⁻¹)	543,5	79,2	5,1	19,4	33,67	680 <i>,</i> 87	707,77	
cost of energy used (EUR)	35,87	5,23	0,337	1,28	2,22	44,94	46,71	
CI for electricity generated (t CO ₂)	0,15	0,02	0,001	0,005	0,010	0,19	0,20	
CI for electricity transmitted & distributed (t CO ₂)	0,01	0,00	0,000	0,000	0,001	0,02	0,02	
CI for electricity used (t CO_2) ^f	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
CI for electricity Σ (t CO ₂)	0,17	0,02	0,002	0,006	0,010	0,21	0,22	

^aenergy used=[amine fragment: 17 (AA cycles) x 3 (duration of AA cycle in h) x 110 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]+[O-Cam fragment: 22 (AA cycles) x 3 (duration of AA cycle in h) x 50 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]; ^b689 (total amount of TFA+solvent in kg, amine+O-Cam fragments) x 3 (total time of cleavage + precipitation in h) /12 (nominal amount of ligation solvent in kg) x 0,46 (amount of energy needed to stir nominal amount of TFA+solvent for 1 h); ^c45 (total amount of ligation solvent in kg) x 3 (total time ligation h)/10 (nominal amount of solvent in kg) x 0,38 (amount of energy needed to stir nominal amount of solvent in kg) x 0,38 (amount of energy needed to pass nominal amount of solvent through an RPC column); ^e0,962 (amount of API obtained in kg)/1,0 (nominal amount of API in kg) x 35 (amount of energy needed to lyophilize nominal amount of API); ^f wind energy was used in this exenatide API manufacture, the use of electricity was assumed to be CO₂ neutral.

Figure S52. A schematic representation of the flow chart of the HMBA fragment CEPS (C+C) exenatide manufacturing process herein.

Table S62. Overview of raw materials used in 1 mol SPPS of Boc-1-21-HMBA-K peptide fragment resin, HMBA fragment CEPS (C+C) process.

AA nr	AA	MW	mol AA	equiv AA	kg AA	kg Oxyma	Total kg DIC	kg pip	kg DMF
resin	Fmoc-K(Trt)-MBH resin, 0.52 mmol/g, 1.92 kg	n.a.	1,00	1,00	n.a.	n.a.	n.a.	n.a.	n.a.
linker	HMBA	152,15	2,00	2,00	0,32	0,57	0,50	3,13	92,50
Leu ²¹	Fmoc-Leu-OH ¹	354,41	4,00	4,00	1,49	0,68	0,50	0,00	17,50
Arg ²⁰	Fmoc-Arg(Pbf)-OH	648,77	2,00	2,00	1,37	0,28	0,63	3,13	92,50
Val ¹⁹	Fmoc-Val-OH	339,39	2,00	2,00	0,71	0,28	0,63	3,13	92,50
Ala ¹⁸	Fmoc-Ala-OHxH ₂ O	329,36	2,00	2,00	0,69	0,28	0,63	3,13	92,50
Glu ¹⁷	Fmoc-Glu-OHxH ₂ O	425,50	2,00	2,00	0,90	0,28	0,63	3,13	92,50
Glu ¹⁶	Fmoc-Glu-OHxH ₂ O	425,50	2,00	2,00	0,90	0,28	0,63	3,13	92,50
Glu ¹⁵	Fmoc-Glu-OHxH ₂ O	425,50	2,00	2,00	0,90	0,28	0,63	3,13	92,50
Met ¹⁴	Fmoc-Met-OH	371,45	2,00	2,00	0,78	0,28	0,63	3,13	92,50
Gln ¹³	Fmoc-Gln(Trt)-OH	610,70	2,00	2,00	1,29	0,28	0,63	3,13	92,50
Lys ¹²	Fmoc-Lys(Trt)-OH	610,74	2,00	2,00	1,29	0,28	0,63	3,13	92,50
Ser ¹¹	Fmoc-Ser(Trt)-OH	569,65	2,00	2,00	1,20	0,28	0,63	3,13	92,50
Leu ¹⁰	Fmoc-Leu-OH	354,41	2,00	2,00	0,75	0,28	0,63	3,13	92,50
Asp ⁹	Fmoc-Asp(Ot Bu)-OH	411,45	2,00	2,00	0,87	0,28	0,63	3,13	92,50
Ser ⁸	Fmoc-Ser(Trt)-OH	569,65	2,20	2,20	1,32	0,31	0,69	3,13	92,50
Thr ⁷	Fmoc-Thr(t- Bu)-OH	397,48	2,20	2,20	0,92	0,31	0,69	3,13	92,50
Phe ⁶	Fmoc-Phe-OH	387,45	2,20	2,20	0,90	0,31	0,69	3,13	92,50
Thr⁵	Fmoc-Thr(t- Bu)-OH	397,48	2,20	2,20	0,92	0,31	0,69	3,13	92,50
Gly ⁴	Fmoc-Gly-OH	297,31	2,20	2,20	0,69	0,31	0,69	4,69	105,00
Glu ³	Fmoc-Glu-OHxH ₂ O	425,50	2,20	2,20	0,99	0,31	0,69	3,13	92,50
His ¹ -Gly ²	Boc-His(Trt)-Gly-OH	554,65	2,20	2,20	1,28	0,31	0,69	3,13	92,50
Σ					20,45	6,85	13,44	64,16	1880,00
¹ CI-HOBt used in	stead of Oxyma								

For an overview of raw materials used in 1 mol SPPS of H-22-39-peptide fragment resin, HMBA fragment CEPS (C+C) process see Table S43.

Table S63. Summary of amounts of raw materials used in 1 mol SPPS of Boc-1-21-HMBA-K peptide fragment resin, HMBA fragment CEPS (C+C) process.

Scale (mol)	1,00
Weight resin (kg)	1,92
Σ Weight AAs (kg)	20,45
Σ Weight Oxyma (kg)	6,85
Σ Weight DIC (kg)	13,44
Σ Weight resin/AAs/coupling agents (kg)	42,66
Σ Weight pip (kg)	64,16
Σ starting materials (kg)	106,82
Σ solvents (kg)	1880
peptide resin formed (kg)	5,53

Table S64. Summary of amounts of raw materials used in 1,10 mol SPPS of H-22-39-peptide fragment resin, O-Cam fragment CEPS (C+C) process.

	//
Scale (mol)	1,10
Weight resin (kg)	1,86
Σ Weight AAs (kg)	19,12
Σ Weight Oxyma (kg)	5,95
Σ Weight DIC (kg)	13,21
Σ Weight resin/AAs/coupling agents (kg)	40,14
Σ Weight pip (kg)	58,53
Σ starting materials (kg)	98,67
Σ solvents (kg)	1806,75
peptide resin formed (kg)	6,05

Table S65. Summary of amounts of raw materials used in 1 mol TFA cleavage of Boc-1-21-HMBA-K peptide fragment resin, HMBA fragment CEPS (C+C) process.

Scale (mol)	1,00
TFA (kg)	27,75
TIS (kg)	0,61
H ₂ O (kg)	0,21
DTT (kg)	0,63
NH ₄ I (kg)	0,42
Σ Reagents (kg)	29,61
solvents (ether, kg)	99,03

Table S66. Summary of amounts of raw materials used in 1,1 mol TFA cleavage of H-22-39 peptide fragment resin, HMBA fragment CEPS (C+C) process.

Scale (mol)	1,10
TFA (kg)	47,36
TIS (kg)	0,88
H ₂ O (kg)	0,30
DTT (kg)	0,90
Σ Reagents (kg)	49,44
solvents (ether, kg)	213,00

Table S67. Summary of amounts and cost of raw materials used in the SPPS of H-22-39 fragment resin and TFA cleavage of H-22-39 fragment resin, HMBA fragment CEPS (C+C) process.

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (DEG AM)	1300,0	1,9	2420,8
Oxyma	85,0	5,9	505,6
piperidine	10,6	58,5	620,4
std AA	400,0	19,1	7646,6
DIC	240,0	13,2	3169,9
DMF	1,4	1806,8	2529,5
TFA	20,0	47,4	947,3
TIS	900,0	0,9	792,0
DTT	668,0	0,9	603,6
Ether	9,0	213,0	1917,1
Σ	n.a.	n.a.	21152,6

Table S68. Summary of amounts of raw materials used in enzymatic ligation, HMBA fragment CEPS (C+C) process.

Scale (mol)	0,67
Amine F (kg)	2,08
HMBA F (kg)	3,11
TCEPxHCl (kg)	0,17
Enzyme (g)	8,93
Solvent (kg)	11,39

Table S69. Summary of amounts of raw materials used in DSP of crude exenatide, HMBA fragment CEPS (C+C) process.

Step	kg peptide	kg solvent
API (2 RPC)	1,47	2751,84

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (Fmoc-K(Trt)-MBH)	4000,0	1,9	7680,0
Oxyma	85,0	6,9	582,3
piperidine	10,6	64,2	680,1
std AA	400,0	19,2	7668,0
dipeptide	1500,0	1,3	1920,0
DIC	240,0	13,4	3225,6
DMF	1,4	1880,0	2632,0
TFA	20,0	27,8	555,0
TIS	900,0	0,6	549,0
DTT	668,0	0,6	420,8
NH ₄ I	450,0	0,4	189,0
Ether	9,0	99,0	891,3
TCEP [×] HCI	582,0	0,2	98,9
Omniligase (EUR/g)	750,0	8,9	6697,5
MeCN	6,0	826,7	4960,1
Σ +HMBA fragment+ ligation+DSP	n.a.	n.a.	38749,6
Σ amine fragment	n.a.	n.a.	21152,6
Σ			59902,2
Σ /1 kg API			40749,8

Table S70. Summary of amounts and cost of raw materials used in the entire process, HMBA fragment CEPS (C+C) process.¹

¹Weight of Omniligase is in g.

Table S71. Summary of total CI for organic solvents used in exenatide manufacturing, HMBA fragment CEPS (C+C) process.

Total organic solvents	weight (kg)	CO ₂ formed during solvent production / kg kg ⁻¹	CI / kg kg ⁻¹	CI_{Σ} / kg kg $^{-1}$	Cl_Σ
DMF (SPPS)	3686,8	1,75	1,81	3,56	13125,01
Ether (cleavage)	312	1,08	2,37	3,45	1076,40
MeCN (DSP+ligation)	826,7	1,95	2,15	4,1	3389,47
Σ					17590,88
∑/kg API					11966,58

Table S72. Summary of energy consumed, cost of energy and total CI for process energy in exenatide manufacturing, HMBA fragment CEPS (C+C) process.

	Process step						
Energy & Cl	SPPS ^a	cleavage/prec ipitation ^b	ligation ^c	DSP ^d	lyophilization ^e	Σ	\sum kg API ⁻¹
energy used (kWh ⁻¹)	363,3	44,5	1,3	12,4	51,3	472,80	322,73
cost of energy used (EUR)	23,98	2,94	0,086	0,82	3,39	31,20	21,30
CI for electricity generated (t CO ₂)	0,10	0,01	0,000	0,004	0,015	0,13	0,09
CI for electricity transmitted & distributed (t CO ₂)	0,01	0,00	0,000	0,000	0,001	0,01	0,01
CI for electricity used (t CO ₂) ^f	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI for electricity Σ (t CO ₂)	0,11	0,01	0,000	0,004	0,016	0,15	0,10

^aenergy used=[amine fragment: 17 (AA cycles) x 3 (duration of AA cycle in h) x 55 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]+[HMBA fragment: 21 (AA cycles) x 3 (duration of AA cycle in h) x 50 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]; ^b387 (total amount of TFA+solvent in kg, amine+HMBA fragments) x 3 (total time of cleavage + precipitation in h) /12 (nominal amount of TFA+solvent in kg) x 0,46 (amount of energy needed to stir nominal amount of TFA+solvent for 1 h); ^c11,4 (total amount of ligation solvent in kg) x 3 (total time ligation h)/10 (nominal amount of solvent in kg) x 0,38 (amount of energy needed to pass nominal amount of solvent through an RPC column); ^e1,465 (amount of API); ^f wind energy was used in this exenatide API manufacture, the use of electricity was assumed to

35.7. HMBA fragment CEPS, pseudoproline (C+C)

Figure S53. A schematic representation of the flow chart of A schematic representation of the flow chart of the HMBA fragment CEPS, pseudoproline (C+C) exenatide manufacturing process herein.

Table S73. Overview of raw materials used in 1 mol SPPS of Boc-1-21-HMBA-K peptide fragmentresin, HMBA fragment CEPS pseudoproline (C+C) process.

AA nr	AA	MW	mol AA	equiv AA	kg AA	kg Oxyma	Total kg DIC	kg pip	kg DMF
resin	Fmoc-K(Trt)-MBH resin, 0.52 mmol/g, 1.92 kg	n.a.	1,00	1,00	n.a.	n.a.	n.a.	n.a.	n.a.
linker	HMBA	152,15	2,00	2,00	0,32	0,57	0,50	3,13	92,50
Leu ²¹	Fmoc-Leu-OH ¹	354,41	4,00	4,00	1,49	0,68	0,50	0,00	17,50
Arg ²⁰	Fmoc-Arg(Pbf)-OH	648,77	2,00	2,00	1,37	0,28	0,63	3,13	92,50
Val ¹⁹	Fmoc-Val-OH	339,39	2,00	2,00	0,71	0,28	0,63	3,13	92,50
Ala ¹⁸	Fmoc-Ala-OHxH ₂ O	329,36	2,00	2,00	0,69	0,28	0,63	3,13	92,50
Glu ¹⁷	Fmoc-Glu-OHxH ₂ O	425,50	2,00	2,00	0,90	0,28	0,63	3,13	92,50
Glu ¹⁶	Fmoc-Glu-OHxH ₂ O	425,50	2,00	2,00	0,90	0,28	0,63	3,13	92,50
Glu ¹⁵	Fmoc-Glu-OHxH ₂ O	425,50	2,00	2,00	0,90	0,28	0,63	3,13	92,50
Met ¹⁴	Fmoc-Met-OH	371,45	2,00	2,00	0,78	0,28	0,63	3,13	92,50
GIn ¹³	Fmoc-Gln(Trt)-OH	610,70	2,00	2,00	1,29	0,28	0,63	3,13	92,50
Lys ¹²	Fmoc-Lys(Trt)-OH	610,74	2,00	2,00	1,29	0,28	0,63	3,13	92,50
Ser ¹¹	Fmoc-Ser(Trt)-OH	569,65	2,00	2,00	1,20	0,28	0,63	3,13	92,50
Leu ¹⁰	Fmoc-Leu-OH	354,41	2,00	2,00	0,75	0,28	0,63	3,13	92,50
Asp ⁹	Fmoc-Asp(Ot Bu)-OH	411,45	2,00	2,00	0,87	0,28	0,63	3,13	92,50
Ser ⁸ Thr ⁷	Fmoc-Thr(t-Bu)- Ser[Psi(Me,Me)Pro]-OH	542,61	2,00	2,00	1,14	0,28	0,63	3,13	92,50
Phe ⁶	Fmoc-Phe-OH	387,45	2,00	2,00	0,82	0,28	0,63	3,13	92,50
Thr⁵	Fmoc-Thr(t- Bu)-OH	397,48	2,00	2,00	0,84	0,28	0,63	3,13	92,50
Gly ⁴	Fmoc-Gly-OH	297,31	2,00	2,00	0,63	0,28	0,63	3,13	92,50
Glu ³	Fmoc-Glu-OHxH ₂ O	425,50	2,00	2,00	0,90	0,28	0,63	3,13	92,50
His ¹ -Gly ²	Boc-His(Trt)-Gly-OH	554,65	2,00	2,00	1,17	0,28	0,63	3,13	92,50
Σ					18,92	6,37	12,37	59,47	1775,00
¹ CI-HOBt used in	stead of Oxyma								

For an overview of raw materials used in 1 mol SPPS of H-22-39-peptide fragment resin, HMBA fragment CEPS pseudoproline (C+C) process see Table S43.

Table S74. Summary of amounts of raw materials used in 1 mol SPPS of Boc-1-21-HMBA-K peptide fragment resin, HMBA fragment CEPS pseudoproline (C+C) process.

1,00
1,92
18,92
6,37
12,37
39,58
59,47
99,05
1775,00
5,00

	· · · · · · · · · · · · · · · · · · ·		
Scale (mol)	1,00	1,20	
Weight resin (kg)	1,69	2,03	
Σ Weight AAs (kg)	17,38	20,86	
Σ Weight Oxyma (kg)	5,41	6,49	
Σ Weight DIC (kg)	12,01	14,41	
Σ Weight resin/AAs/coupling	26.40	42 70	
agents (kg)	50,49	43,79	
Σ Weight pip (kg)	53,21	63 <i>,</i> 85	
Σ starting materials (kg)	89,7	107,64	
Σ solvents (kg)	1642,5	1971,00	
peptide resin formed (kg)	5,5	6,60	

Table S75. Summary of amounts of raw materials used in 1 mol (nominal) and 1,2 mol (actual) SPPS of H-22-39-peptide fragment resin, O-Cam fragment CEPS pseudoproline (C+C) process.

Table S76. Summary of amounts of raw materials used in 1 mol TFA cleavage of Boc-1-21-HMBA-K peptide fragment resin, HMBA fragment CEPS pseudoproline (C+C) process.

Scale (mol)	1,00
TFA (kg)	27,75
TIS (kg)	0,61
H ₂ O (kg)	0,21
DTT (kg)	0,63
NH ₄ I (kg)	0,42
Σ Reagents (kg)	29,61
solvents (ether, kg)	99,03

Table S77. Summary of amounts of raw materials used in 1,2 mol TFA cleavage of H-22-39 peptide fragment resin, HMBA fragment CEPS pseudoproline (C+C) process.

Scale (mol)	1,20
TFA (kg)	51,67
TIS (kg)	0,96
H ₂ O (kg)	0,33
DTT (kg)	0,98
Σ Reagents (kg)	53,93
solvents (ether, kg)	232,36

Table S78. Summary of amounts and cost of raw materials used in the SPPS of H-22-39 fragment resin and TFA cleavage of H-22-39 fragment resin, HMBA fragment CEPS pseudoproline (C+C) process.

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (DEG AM)	1300,0	2,0	2640,9
Oxyma	85,0	6,5	551,5
piperidine	10,6	63,8	676,8
std AA	400,0	20,9	8341,7
DIC	240,0	14,4	3458,1
DMF	1,4	1971,0	2759,4
TFA	20,0	51,7	1033,4
TIS	900,0	1,0	864,0
DTT	668,0	1,0	658,5
Ether	9,0	232,4	2091,3
\sum	n.a.	n.a.	23075,5

Table S79. Summary of amounts of raw materials used in enzymatic ligation, HMBA fragment CEPS pseudoproline (C+C) process.

Scale (mol)	0,75
Amine F (kg)	2,33
HMBA F (kg)	3,48
TCEPxHCI (kg)	0,20
Enzyme (g)	10,00
Solvent (kg)	12,75

Table S80. Summary of amounts of raw materials used in DSP of crude exenatide, HMBA fragment CEPS pseudoproline (C+C) process.

Step	kg peptide	kg solvent		
API (2 RPC)	1,67	3126,24		

Raw material	cost (EUR/kg)	weight (kg)	cost (EUR)
resin (Fmoc-K(Trt)-MBH)	4000,0	1,9	7680,0
Охута	85,0	6,4	541,5
piperidine	10,6	59,5	630,4
std AA	400,0	16,6	6644,0
dipeptide	1500,0	1,2	1755,0
pseudoproline dipeptide	9000,0	1,1	10260,0
DIC	240,0	12,4	2968,8
DMF	1,4	1775,0	2485,0
TFA	20,0	27,8	555,0
TIS	900,0	0,6	549,0
DTT	668,0	0,6	420,8
NH ₄ I	450,0	0,4	189,0
Ether	9,0	99,0	891,3
TCEP [×] HCI	582,0	0,2	98,9
Omniligase (EUR/g)	750,0	10,0	7500,0
MeCN	6,0	939,1	5634,9
Σ +HMBA fragment+ ligation+DSP	n.a.	n.a.	48803,6
Σ amine fragment	n.a.	n.a.	23075,5
Σ			71879,1
Σ /1 kg API			43041,4

Table S81. Summary of amounts and cost of raw materials used in the entire process, HMBA fragment CEPS pseudoproline (C+C) process.¹

¹Weight of Omniligase is in g.

Table S82. Summary of total CI for organic solvents used in exenatide manufacturing, HMBA fragment CEPS pseudoproline (C+C) process.

Total organic solvents	weight (kg)	CO ₂ formed during solvent production / kg kg	CI / kg kg ⁻	CI_{Σ} / kg kg ⁻¹	Cl_Σ
DME (SPPS)	3746	- <u>1</u> 1 75	1 81	3 56	13335 76
Ether (cleavage)	331,4	1,08	2,37	3,45	1143,33
MeCN (DSP+ligation)	939,1	1,95	2,15	4,1	3850,31
Σ					18329,40
\sum /kg API					10975,69

Table S83. Summary of energy consumed, cost of energy and total CI for process energy in exenatide manufacturing, HMBA fragment CEPS pseudoproline (C+C) process.

	Process step						
Energy & CI	SPPS ^a	PS ^a cleavage/precipita ligation ^c DSP ^d lyophilization ^e		Σ	\sum kg API ⁻¹		
energy used (kWh ⁻¹)	369,7	47,3	1,5	14,1	58,6	491,20	293,25
cost of energy used (EUR)	24,40	3,12	0,099	0,93	3,87	32,42	19,35
CI for electricity generated (t CO ₂)	rated 0,10 0,01		0,000	0,004	0,017	0,14	0,08
Cl for electricity transmitted & distributed (t CO ₂)	0,01	0,00	0,000	0,000	0,001	0,01	0,01
CI for electricity used (t CO_2) ^f 0,00 0,00		0,00	0,00	0,00	0,00	0,00	0,00
CI for electricity \sum (t CO ₂) 0,11 0,0		0,01	0,000	0,004	0,018	0,15	0,09

^aenergy used=[amine fragment: 17 (AA cycles) x 3 (duration of AA cycle in h) x 60 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]+[HMBA fragment: 20 (AA cycles) x 3 (duration of AA cycle in h) x 50 (amount of solvent in reactor in kg)/100 (nominal amount of solvent in reactor) x 6,1 (amount of energy needed to stir and heat nominal amount of solvent for 1 h)]; ^b411 (total amount of TFA+solvent in kg, amine+HMBA fragments) x 3 (total time of cleavage + precipitation in h) /12 (nominal amount of TFA+solvent in kg) x 0,46 (amount of energy needed to stir nominal amount of TFA+solvent for 1 h); ^c12,8 (total amount of ligation solvent in kg) x 3 (total time ligation h)/10 (nominal amount of solvent in kg) x 0,38 (amount of energy needed to stir nominal amount of solvent in kg) x 0,46 (amount of energy needed to pass nominal amount of solvent in kg) x 0,38 (amount of energy needed to stir nominal amount of solvent in kg) x 0,46 (amount of energy needed to pass nominal amount of solvent through an RPC column); ^e1,675 (amount of API obtained in kg)/1,0 (nominal amount of API in kg) x 35 (amount of energy needed to lyophilize nominal amount of API); ^fwind energy was used in this exenatide API manufacture, the use of electricity was assumed to

35.8. Summary

The Table S84 below summarizes the results for the six manufacturing routes to exenatide API examined as delineated in sections 35.2 – 35.7 of this ESI. Specifically,

i) amounts of SPPS starting materials are summarized from Tables S23, S24, S30, S31, S32, S33, S42, S43, S44, S45, S54, S62, S63, S64, S73, S74 and S75.

ii) amounts of cleavage starting materials are summarized from Tables S25, S34, S35, S46, S47, S55, S65, S66, S76 and S77.

iii) amounts of ligation starting materials are summarized from Tables S37, S49, S57, S68 and S79.

iv) amounts of DSP starting materials are summarized from Tables S26, S38, S50, S58, S69 and S80.

v) overall yields and amounts of exenatide API obtained in 1 mol manufacture are summarized from Figs S48 – 53.

vi) cost of goods data are summarized from Tables S27, S36, S39, S48, S51, S56, S59, S67, S70, S78 and S81.

vii) cost of processing energy data and CI are summarized from Tables S28, S29, S40, S41, S52, S53, S60, S61, S71, S72, S82 and S83.

Furthermore, most important results from Table S84 (overall yield, total cost, cEF and total CI) are provided as excerpts in the main article, Table 4.

Table S84. Summary of amounts of reagents and solvents, cost of goods and processing energyconsumed, overall yield, cEF and total CI for six process routes to exenatide API.

	Process attributes Process routes						
Process stage	Materials used	Conventional SPPS, benchmark 1	Lab scale CEPS (P+P), benchmark 2	O-Cam fragment CEPS (C+C)	O-Cam fragment CEPS (P+P)	HMBA fragment CEPS (C+C)	HMBA fragment CEPS, pseudoproline (C+C)
	reagents/reactants (kg)	766.84	380.91	253.50	397.38	205.49	206.69
SPPS	solvents (kg)	26995,80	5487,36	4399,50	6456,88	3686,75	3746,00
	reagents/reactants (kg)	148,32	62,46	103,49	129,07	79,05	83,54
Cleavage	solvents (kg)	3047,37	306,01	400,86	573,92	312,03	331,39
	reagents/reactants (kg)	n.a.	n.a.	0,10	0,07	0,17	0,20
Ligation	enzyme (g)	n.a.	4,53	3,90	2,73	8,93	10,00
DSP	solvents (kg)	n.a.	70,03	64,29	45,00	11,39	12,75
DSP	solvents (kg)	861,12	4240,08	2106,00	4314,96	2751,84	3126,24
	reagents/reactants (kg)	915,16	443,37	357,09	526,52	284,71	290,43
Overall	enzyme (g)	n.a.	4,53	3,90	2,73	8,93	10,00
	solvents (kg)	30043,17	10103,48	6970,65	11390,76	6762,01	7216,38
	Overall yield (%)	22	44	18	23	35	40
ex	xenatide API obtained (kg)	0,92	1,84	0,75	0,96	1,47	1,67
Overall	reagents/reactants (kg)	993,66	240,96	476,12	548,46	193,68	173,91
(per kg	enzyme (g)	0,00	2,46	5,20	2,84	6,07	5,99
API)	solvents (kg)	32620,16	5491,02	9294,20	11865,38	4600,01	4321,19
	cEF	33612,8	5731,0	9769,3	12412,8	4792,7	4494,1
Solv	vent contribution to cEF (%)	97,0	95,8	95,1	95,6	96,0	96,2
Co	ost of Goods (EURkg ⁻¹ API)	140791,7	45178,9	73680,4	76785,3	40749,8	43041,4
Cost o	of waste disposal (EURkg ⁻¹ API)	7058,9	1203,7	2051,8	2606,9	1006,7	944,0
Total	Cost of Goods (EURkg ⁻¹ API)	147850,6	46382,6	75732,2	79392,2	41756,5	43985,4
Cost of	processing energy (EURkg ⁻¹ API)	66,5	23,8	45,0	44,9	21,3	19,4
	Total cost (EURkg ⁻¹ API)	147917,1	46406,4	75777,2	79437,1	41777,8	44004,8
Solvent cost contribution to the total cost, 1mol scale (EUR)		66770,5	16293,6	13596,6	20795,2	12930,0	13861,9
Solvent cost contribution to the total cost (EURkg ⁻¹ API)		72576,6	8855,2	18128,8	21661,7	8795,9	8300,5
Solvent cost contribution to the total cost (%)		49,1	19,1	23,9	27,3	21,1	18,9
Total CI	for starting materials (kg CO ₂ kg ⁻¹ API)	117040,9	14130,6	26215,9	28732,8	11966,6	10975,7
Total CI	for processing energy (kg CO ₂ kg ⁻¹ API)	620	220	210	220	100	90
Total CI (kg CO ₂ kg ⁻¹ API)		117660,9	14350,6	26425,9	28952,8	12066,6	11065,7

¹ R. Subirós-Funosas, R. Prohens, R. Barbas, A. El-Faham, F. Albericio, *Chem. Eur. J. 2009*, **15**, 9394.

² M. Noda, M. Yamaguchi, E. Ando, K. Takeda, K. Nokihara, J. Org. Chem. 1994, 59, 7968.

³ For an example of an intentional downloading protocol see N. Zinieris, C. Zikos, N. Ferderigos, *Tetrahedron Lett.* 2006, **47**, 6861.

⁴ M. A. Fara, J. J. Díaz-Mochón, M. Bradley, *Tetrahedron Lett. 2006*, **47**, 1011.

⁵ K. Barlos, D. Gatos, S. Koutsogianni, J. Peptide Res. 1998, **51**, 194.

⁶ J. Pawlas, U. Törnvall, *The proceedings of the 33rd European Peptide Symposium*, Sofia, Bulgaria, 2014, 108.

⁷ X.-H. Tong, K. Ichihara, Q. Tian, A. Hong, *The proceedings of the 18th American Peptide Symposium,* Boston, U.S.A., 2003, 21.

⁸ E. Kaiser, R. L. Colescott, C. D: Bossinger, P. I. Cook, Anal.Biochem. 1970, 34, 595.

⁹ T. Vojkovsky, Pept. Res. 1995, 8, 236.

¹⁰ E. Pedroso, A. Grandas, X. de las Heras, R. Eritja, E. Giralt, *Tetrahedron Lett. 1986*, **27**, 743.

¹¹ I. Abdelmoty, F. Albericio, L. A. Carpino, B. M. Forman, S. A. Kates, *Lett. Pept. Sci. 1994*, **1**, 57.

¹² E. Nicolás, M. Vilaseca, E. Giralt, *Tetrahedron*, 1995, **51**, 5701.

¹³ F. Guillier, D. Orain, M. Bradley, *Chem. Rev.* **2000**, *100*, 2091.

¹⁴ V. Castro, H. Rodriguez, Fernando Albericio, Org. Lett., 2013, 15, 246.

¹⁵ P. W. R. Harris, G. M. Cook, I. K. H. Leung, M. A. Brimble, Aust. J. Chem. 2017, 70, 172.

¹⁶ The electricity used in manufacturing of exenatide by CEPS herein was from wind energy which is essentially CO₂ neutral, for a certificate (in Swedish) see https://www.polypeptide.com/web/upload/medias/15574730915cd5274 730915cd52743c222c.pdf.

¹⁷ M. J. Raymond, C. S. Slater, M. J. Savelski, *Green Chem.*, 2010, **12**, 1826.

¹⁸ For a recent calculation of CI in a manufacturing process see: L. Cseri and G. Szekely, *Green Chem.*, 2019, **21**, 4178.

¹⁹ P. Mi, J. Liu, Y. Ma, J. Yuan, WO2014067084A1, 2014.

²⁰ T. Nuijens, A. Toplak, P. J. L.M Quaedflieg, J. Drenth, B. Wu, D. B. Janssen, *Adv. Synth. Catal.* 2016, **358**, 4041.