Supporting information

The salt-free Nickel-Catalysed α -Allylation Reaction of Ketones with Allyl Alcohol and Diallylether

Mouhsine Bouchaib^{*a,b*}, Clément Dumont^{*a,c*}, Karim Abdallah,^{*b*} Mathieu Sauthier^{*a**}

^{*a*} Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.

^b Université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Morocco

^c ICAM, site de Lille, 6 rue Auber, 59016 Lille Cedex, France

E-mail : mathieu.sauthier@univ-lille.fr

Table of contents

1- General informations	.3
2- General Procedure for the Nickel (0)-Catalyzed allylation reaction	3
3- NMR spectra of products and HR-MS analysis of the new compounds	.4

Figure 1. ¹ H NMR spectrum of 3a	5
Figure 2. APT NMR spectrum of 3a	5
Figure 3. ¹ H NMR spectrum of 4a	6
Figure 4. ¹³ CNMR spectrum of 4a	6
Figure 5. ¹ H NMR spectrum of 3b	6
Figure 6. ¹³ C NMR spectrum of 3b	6
Figure 7. ¹ H NMR spectrum of 3c	8
Figure 8. ¹³ C NMR spectrum of 3c	8
Figure 9. APT NMR spectrum of 3c	8
Figure 10. ¹ H NMR spectrum of 3d	10
Figure 11. ¹³ C NMR spectrum of 3d	10
Figure 12. APT NMR spectrum of 3d	11
Figure 13 ¹³ C NMR spectrum of 4e	11
Figure 14. APT NMR spectrum of 4e	11
Figure 15. ¹ H NMR spectrum of 4f	13
Figure 16 ¹³ C NMR spectrum of 4f	13
Figure 17. APT NMR spectrum of 4f	14
Figure 18 ¹³ C NMR spectrum of 3f	14

Figure 19. APT NMR spectrum of 3f	14
Figure 20. ¹ H NMR spectrum of 4g	16
Figure 21: ¹³ C NMR spectrum of 4g	16
HRMS of 4g	16
Figure 22. ¹ H NMR spectrum of 3g	17
Figure 23. ¹³ C NMR spectrum of 3g	17
Figure 24. ¹ H NMR spectrum of 3h	18
Figure 25. ¹³ C NMR spectrum of 3h	18
Figure 26. APT NMR spectrum of 3h	19
HR-MS of 3h	19
Figure 27. ¹ H NMR spectrum of 6a	20
Figure 28. ¹³ C NMR spectrum of 6a	20
Figure 29. ¹ H NMR spectrum of 6b	21
Figure 30. ¹³ C NMR spectrum of 6b	21
Figure 31. APT NMR spectrum of 6b	22
Figure 32. ¹ H NMR spectrum of 6c	23
Figure 33. ¹³ C NMR spectrum of 6c	21
Figure 34. APT NMR spectrum of 6c	24
HR-MS of 6c	24
Figure 35. ¹ H NMR spectrum of 6d	25
Figure 36. ¹³ C NMR spectrum of 6d	21
Figure 37. APT NMR spectrum of 6d	26s
Figure 38. ¹ H NMR spectrum of 6e	25
Figure 39. ¹³ C NMR spectrum of 6e	21
Figure 40. ¹ H NMR spectrum of 6f	28
Figure 41. ¹³ C NMR spectrum of 6f	21
Figure 42. ¹ H NMR spectrum of 6g	28
Figure 43. ¹³ C NMR spectrum of 6g	21
HR-MS of 6g	28
Figure 44. ¹ H NMR spectrum of 6h	28
Figure 45. ¹³ C NMR spectrum of 6h	21
Figure 46. ¹ H NMR spectrum of 7e	30
Figure 47. ¹³ C NMR spectrum of 7e	21
Figure 48. 2D NMR (HSQC) spectrum of 7e	21

1-General informations

Chemicals were purchased from Aldrich, Alfa Aesar, Acros, Strem. Common solvents were distilled and degassed before use.

Conversions were determined by gas chromatography on Shimadzu 2010 equipped with a Zebron zb-5 column (30 m, i.d. = 0.32 mm, film thickness: 0,25 μ m) and N₂ as gas vector. The GC was equipped with a FID detector.

NMR spectra were recorded using a Bruker AC 300 spectrometer. ¹H and ¹³C NMR chemical shifts are reported to the solvent resonance [CDCl₃: 7.27 (¹H), 77.0 (¹³C) ppm].

High Resolution Mass Spectra (HR-MS) were measured in REALACAT, Université de Lille. The experiments were performed on a Synapt G2Si (Waters) equipped with an ion mobility cell. The molecules were analyzed through direct infusion in sensitivity and positive mode with the following tune parameters: 3.00 kV as capillary voltage, 60 and 90 respectively set for the sampling cone and source offset. The source temperature was of 100 °C, with a desolvation temperature of 250 °C. The cone gas flow was set to 50 L/h, with a desolation gas flow of 600 L/h and the nebulizer set to 6.5 Bars. The mass range was set to 50 to 500 g/mol for the analysis.

2- General Procedures

2.1- α -Allylation of propiophenone **1a** with allyl alcohol **2a** or diallyl ether **2b**

 α -allylation reactions of ketones were carried out under nitrogen atmosphere as follows: a glass reactor closed with a Rotaflo® stopcock was filled in a glovebox under argon atmosphere with the precursor Ni(cod)₂. The other reactants were added under nitrogen outside the glove box by using Schlenk tube techniques.

In a Schlenk tube were placed first the catalytic precursor Ni(cod)₂ (1.5 mol %), then the ligand (3 mol %), the ketone (1.8 mmol, 1 equiv.). Freshly distilled and degassed allyl alcohol (2 eq.) or diallyl ether (1 eq.) were then added. MeOH (0.5 mL) was added and the reaction mixture was stirred at 80°C for 18 h. The reaction mixture was then concentrated under reduced pressure. Trimethoxybenzene (1 mmol) was added as internal standard for NMR analysis.

For determination of ketones conversions by GC, the crude was homogenized by 0.5 mL methanol addition and a precise quantity of anisole (1 mmol) was added as internal standard. Conversions were calculated from the GC analysis of the homogeneous mixture.

2.2- α -Allylation of ketones **1b-h** with allyl alcohol **2a**

The products **3b-h** were synthesized according to the same procedure as those for α -allylation of propiophenone.

The products were purified by silica gel column chromatography using petroleum ether/ethyl acetate (98/2) as eluent. The physical state of all products is liquid.

3- NMR spectra of products 3a-h and HR-MS analyses of the new compounds

1-Phenyl-2-methyl-4-peS-1-one (3a) Rdt : 70 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 8.08 – 7.86 (m, 2H, H₁+H₃), 7.56 (d, *J* = 0.6 Hz, 1H, H₅), 7.50 – 7.36 (m, 2H, H₄+H₆), 5.88 – 5.71 (m, 1H, H₁₂), 5.12 – 4.99 (m, 2H, H₁₃), 3.54 (h, *J* = 6.9 Hz, 1H, H₈), 2.56 (dddt, *J* = 14.4, 7.7, 6.9, 1.3 Hz, 1H, H₁₀), 2.20 (dddt, *J* = 14.4, 7.7, 6.9, 1.3 Hz, 1H, H₁₀), 1.21 (d, *J* = 6.9 Hz, 3H, H₁₁).

Figure 1. ¹H NMR spectrum of 3a

1-Phenyl-2-methyl-4-penten-1-one (3a) : ¹³C NMR (75 MHz, CDCl₃) δ 203.61 (C₇), 136.52 (C_{ar}), 135.83 (C_{ar}), 132.90 (C_{ar}), 128.65 (C_{ar}), 128.29 (C₁₂), 116.74 (C₁₃), 40.37 (C₈), 37.63 (C₁₀), 17.01 (C₁₁).

Figure 2. APT NMR spectrum of 3a

5

1-phenyl-2-methyl-2-(2-propen-1-yl)- 4-penten-1-one (4a) Rdt : 11 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.63 (dd, J = 8.2, 1.5 Hz, 2H, H₁+H₃), 7.40 (d, J = 7.2 Hz, 3H, H₄+H₅+H₆), 5.85 – 5.56 (m, 2H, H₁₄+ H₁₅), 5.13 – 4.95 (m, 4H, H₁₆+ H₁₇), 2.62 (ddt, J = 14.0, 7.1, 1.3 Hz, 2H, H₁₂, H₁₃), 2.40 (ddt, J = 14.0, 7.6, 1.2 Hz, 2H, H₁₃, H₁₂), 1.29 (s, 3H, H₁₁).

Figure 3. ¹H NMR spectrum of 4a

1-phenyl-2-methyl-2-(2-propen-1-yl)-4-penten-1-one (4a): ¹³C NMR (75 MHz, CDCl₃) δ 208.13 (C₇), 139.58 (C_{ar}), 133.72 (C_{ar}), 130.76 (C_{ar}), 128.11 (C_{ar}), 127.43 (C_{14,15}), 118.41, 51.20 (C_{16,17}), 43.14 (C₈), 29.70 (C_{12,13}), 22.76 (C₁₁).

Figure 4. ¹³C NMR spectrum of 4a

1-(4-methylphenyl)-2-methyl-4-penten-1-one (3b) Rdt : 67 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.93 – 7.78 (m, 2H, H₁+H₃), 7.31 – 7.23 (m, 2H, H₄+H₆), 5.78 (dddd, *J* = 16.8, 10.1, 7.5, 6.5 Hz, 1H, H₁₂), 5.10 – 4.97 (m, 2H, H₁₃), 3.51 (h, *J* = 6.9 Hz, 1H, H₈), 2.55 (dddt, *J* = 14.4, 7.7, 6.9, 1.3 Hz, 1H, H₁₁), 2.41 (s, 1H, H₁₄), 2.27 – 2.12 (m, 1H, H₁₁), 1.20 (d, *J* = 6.9 Hz, 3H, H₉).

Figure 5. ¹H NMR spectrum of 3b

1-(4-methylphenyl)-2-methyl-4-penten-1-one (3b):¹³C NMR (75 MHz, CDCl₃) δ 203.24 (C₇), 143.66 (C₂), 135.95 (C_{ar}), 133.98 (C_{ar}), 129.34 (C_{ar}), 128.43 (C₁₂), 116.62 (C₁₃), 40.29 (C₁₄), 37.71(C₈), 21.60(C₁₁), 17.09(C₉).

Figure 6. ¹³C NMR spectrum of 3b

1-(4-methoxyphenyl)-2-methyl-4-penten-1-one (3c) Rdt : 70 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 8.03 – 7.89 (m, 2H, H₁+H₃), 7.03 – 6.87 (m, 2H, H₄+H₆), 5.89 – 5.67 (m, 1H, H₁₄), 5.14 – 4.90 (m, 2H, H₁₄), 3.86 (s, 3H, H₁₁), 3.49 (h, *J* = 6.9 Hz, 1H, H₈), 2.61 – 2.47 (m, 1H, H₁₃), 2.29 – 2.10 (m, 1H, H₁₃), 1.19 (d, *J* = 6.9, 3H, H₉).

Figure 7. ¹H NMR spectrum of 3c

1-(4-methoxyphenyl)-2-methyl-4-penten-1-one (3c): ¹³C NMR (75 MHz, CDCl₃) δ 202.14, 163.39 (C_{ar}), 136.03 (C_{ar}), 130.56 (C_{ar}), 129.45 (C_{ar}), 116.56 (C₁₄), 113.80 (C₁₅), 55.45 (C₁₁), 40.03 (C₈), 37.80 (C₁₃), 17.19 (C₉).

Figure 8. ¹³C NMR spectrum of 3c

1-(4-methoxyphenyl)-2-methyl-4-penten-1-one (3c)¹³C NMR (75 MHz, CDCl₃) δ 202.14 (C₇), 163.39 (C₂), 136.03 (C_{ar}), 130.56 (C_{ar}), 129.45 (C_{ar}), 116.56 (C₁₄), 113.80 (C₁₅), 55.45 (C₁₁), 40.03 (C₈), 37.80 (C₁₃), 17.19 (C₉).

Figure 9. APT NMR spectrum of 3c

1-phenyl-2-(2-phenylethyl)-4-penten-1-one (3d) Rdt : 65 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.87 – 7.74 (m, 2H, H₁+H₃), 7.53 – 7.42 (m, 1H, H₅), 7.36 (dd, *J* = 8.2, 6.7 Hz, 2H, H₄+H₆), 7.23 – 7.00 (m, 5H, H₂₃+ H₂₄ + H₂₅ + H₂₆+ H₂₇), 5.65 (ddt, *J* = 17.1, 10.1, 7.0 Hz, 1H, H₁₄), 5.02 – 4.81 (m, 2H, H₁₅), 3.59 – 3.32 (m, 1H, H₈), 2.66 – 2.39 (m, 3H, H₉ + H₁₃), 2.30 – 2.13 (m, 1H, H₉), 2.10 – 1.95 (m, 1H, H₁₀), 1.77 (dddd, *J* = 13.6, 9.6, 6.4, 5.3 Hz, 1H, H₁₀).

Figure 10. ¹H NMR spectrum of 3d

1-phenyl-2-(2-phenylethyl) -4-penten-1-one (3d): ${}^{13}C$ NMR (75 MHz, CDCl₃) δ 203.27(C₇), 141.69 (C_{ar}), 137.23 (C_{ar}), 135.53 (C_{ar}), 133.00 (C_{ar}), 128.67 (C_{ar}), 128.49 (C_{ar}), 128.40 (C_{ar}), 128.28 (C_{ar}), 125.98 (C₁₄), 116.90 (C₁₅), 45.06 (C₈), 36.39 (C₁₃), 33.45 (C₉), 33.29 (C₁₀).

Figure 11.13C NMR spectrum of 3d

 $\begin{array}{l} \textbf{1-phenyl-2-(2-phenylethyl)-4-penten-1-one (3d):} \quad {}^{13}\text{C} \ \text{NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 203.27 \\ (C_7), \ 141.69 \ (C_2), \ 137.23 \ (C_{22}), \ 135.53 \ (C_{ar}), \ 133.00 \ (C_{ar}), \ 128.67 \ (C_{ar}), \ 128.49 \ (C_{ar}), \ 128.40 \\ (C_{ar}), \ 128.28 \ (C_{ar}), \ 125.98 \ (C_{14}), \ 116.90 \ (C_{15}), \ 45.06 \ (C_8), \ 36.39 \ (C_{13}), \ 33.45 \ (C_9), \ 33.29 \ (C_{10}). \end{array}$

Figure 12. APT NMR spectrum of 3d

3-phenyl-3-(2-propen-1-yl)-5-hexen-2-one (4e) Rdt : 65 %, ¹H NMR (300 MHz, Chloroformd) δ 7.42 – 7.30 (m, 2H, H₁+H₃), 7.33 – 7.24 (m, 1H, H₅), 7.23 – 7.14 (m, 1H, H₄+H₆), 5.45 (dddd, *J* = 17.0, 10.1, 7.6, 6.8 Hz, 2H, H₁₃+H₁₄), 5.13 – 4.99 (m, 4H, H₁₅+H₁₆), 2.82 – 2.65 (m, 4H, H₁₁+H₁₂), 1.90 (s, 3H, H₉).

Figure 13. ¹H NMR spectrum of 4e

3-phenyl-3-(2-propen-1-yl)-5-hexen-2-one (4e) : ¹³C NMR (75 MHz, CDCl₃) δ 209.26 (C₈), 141.15 (C₂), 133.26 (2C_{ar}), 128.80 (2C_{ar}), 127.12 (C₃), 126.66 (C₁₃ + C₁₄), 118.53 (C₁₅ + C₁₆), 58.93 (C₇), 37.47(C₁₁ + C₁₂), 26.20 (C₉).

Figure 14. ¹³C NMR spectrum of 4e

3-(4-methoxyphenyl)-3-(2-propen-1-yl)-5-hexen-2-one (4f) Rdt : 67 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.10 (d, J = 8.9 Hz, 2H, H₁+ H₃), 6.88 (d, J = 8.9 Hz, 2H, H₄+ H₅), 5.57 – 5.33 (m, 2H, H₁₃ + H₁₄), 5.15 – 4.96 (m, 4H, H₁₅ + H₁₆), 3.80 (s, 3H, H₁₈), 2.70 (dt, J = 6.6, 1.2 Hz, 4H, H₁₁ + H₁₂), 1.89 (s, 3H, H₉).

Figure 15. ¹H NMR spectrum of 4f

3-(4-methoxyphenyl)-3-(2-propen-1-yl)-5-hexen-2-one (4f) :¹³C NMR (75 MHz, CDCl₃) δ 209.59 (C₇), 158.58 (C₂), 133.40 (C_{ar}), 133.07 (C_{ar}), 127.73 (C_{ar}), 118.42 (C₁₃ + C₁₄), 114.15 (C₁₅ + C₁₆), 58.20 (C₁₈), 55.22 (C₈), 37.49 (C₁₁ + C₁₂), 26.00 (C₉).

Figure 16¹³C NMR spectrum of 4f

 $\begin{array}{l} \textbf{3-(4-methoxyphenyl)-3-(2-propen-1-yl)-5-hexen-2-one~(4f)} : \ ^{13}\text{C} \ \text{NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \\ 209.59 \ (C_8), \ 158.58 \ (C_2), \ 133.40 \ (C_{ar}), \ 133.07 \ (C_{ar}), \ 127.73 \ (C_{ar}), \ 118.42 \ (C_{13} + C_{14}), \ 114.15 \\ (C_{15} + C_{16}), \ 58.20 \ (C_{18}), \ 55.22 \ (C_4), \ 37.49 \ (C_{11} + C_{12}), \ 26.00 \ (C_9). \end{array}$

Figure 17. APT NMR spectrum of 4f

3-(4-methoxyphenyl)-5-hexen-2-one (3f) Rdt : 16 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 6.6 Hz, 2H, H₁₊₃), 6.86 (d, *J* = 8.7 Hz, 2H, H₄₊₆), 5.66 (ddt, *J* = 17.1, 10.1, 6.9 Hz, 1H, H₁₁), 5.04 - 4.91 (m, 2H, H₁₂), 3.78 (s, 3H, H₁₅), 3.63 (t, *J* = 7.5 Hz, 1H, H₇), 2.82 - 2.70 (m, 1H, H₁₀), 2.39 (dddt, *J* = 14.4, 7.7, 6.9, 1.3 Hz, 1H, H₁₀), 2.04 (s, 3H, H₉).

Figure 18. ¹H NMR spectrum of 3f

3-(4-methoxyphenyl)-5-hexen-2-one (3f) : ¹³C NMR (75 MHz, CDCl₃) δ 207.92 (C₈), 158.90 (C₂), 135.89 (C_{ar}), 130.38 (C_{ar}), 129.27 (C_ar), 116.50 (C₁₁), 114.33 (C₁₂), 58.53 (C₁₅), 55.22 (C₇), 36.16 (C₁₀), 28.92 (C₉).

Figure 19. ¹³C NMR spectrum of 3f

3-(4-trifluoromethylphenyl)-3-(2-propen-1-yl)-5-hexen-2-one (4g) Rdt : 72 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.61 – 7.43 (m, 3H, H₁ + H₃ + H₆), 7.36 (dddd, *J* = 7.6, 2.0, 1.5, 0.7 Hz, 1H, H₅), 5.43 (ddt, *J* = 17.5, 9.6, 7.2 Hz, 2H, H₁₃ + H₁₄), 5.17 – 4.99 (m, 4H, H₁₅ + H₁₆), 2.75 (dt, *J* = 7.1, 1.1 Hz, 4H, H₁₁ + H₁₂), 1.91 (s, 3H, H₉).

Figure 20. ¹H NMR spectrum of 4g

3-(4-trifluoromethylphenyl)-3-(2-propen-1-yl)-5-hexen-2-one (4g) : ^{13C} NMR (75 MHz, CDCl₃) δ 208.34 (C₈), 142.36 (C₁₇), 132.46 (C_{ar}), 130.28 (C_{ar}), 129.29 (C₁₃+C₁₄), 124.13 (C_{ar}), 124.09 (C_{ar}), 123.34 (C_{ar}), 123.30 (C_{ar}), 119.14 (C₁₅ + C₁₆), 59.03 (C₇), 37.48 (C₁₁ + C₁₂), 26.26(C₉).

Figure 21: ¹³C NMR spectrum of 4g

HRMS (ESI) m/z: Calcd for [M+H]⁺C₁₆H₁₇OF₃ 282,1231; Found 282.2789.

3-(4-trifluoromethylphenyl)-5-Hexen-2-one (3g) : ¹H NMR (300 MHz, Chloroform-*d*) δ 7.58 – 7.41 (m, 4H, H_{Ph}), 5.64 (ddt, J = 17.1, 10.1, 6.9 Hz, 1H, H₁₂), 5.07 – 4.95 (m, 2H, H₁₃), 3.78 (t, J = 7.5 Hz, 1H, H₇), 2.89 – 2.75 (m, 1H, H₁₁), 2.43 (dddt, J = 14.4, 7.7, 6.9, 1.3 Hz, 1H, H₁₁), 2.09 (s, 3H, H₉).

Figure 22. ¹H NMR spectrum of 3g

3-(4-trifluoromethylphenyl)-5-hexen-2-one (3g) Rdt : 14 %, ¹³C NMR (75 MHz, CDCl₃) δ 206.79 (C₈), 139.31 (C₁₄), 134.97 (C_{ar}), 131.57 (C_{ar}), 129.40 (C₁₂), 124.33 (C_{ar}), 124.28 (C_{ar}), 117.26 (C_{ar}), 59.01 (C₇), 36.30 (C₁₁), 29.36 (C₉).

Figure 23. ¹³C NMR spectrum of 3g

3-(2-methoxyphenyl)-5-hexen-2-one (3h) Rdt : 91 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.21 – 7.13 (m, 1H, H₁), 7.02 (dd, J = 7.5, 1.8 Hz, 1H, H₅), 6.90 – 6.79 (m, 2H, H₄+ H₆), 5.62 (ddt, J = 17.0, 10.1, 6.9 Hz, 1H, H₁₄), 4.96 – 4.79 (m, 2H, H₁₅), 4.03 (t, J = 7.4 Hz, 1H, H₇), 3.76 (s, 3H, H₁₂), 2.72 (m, 1H, H₁₃), 2.40 – 2.24 (m, 1H, H₁₃), 1.94 (s, 3H, H₉).

3-(2-methoxyphenyl)-5-hexen-2-one (3h): ¹³C NMR (75 MHz, CDCl₃) δ 208.17 (C₈), 156.98 (C₃), 136.32 (C_{ar}), 128.74 (C_{ar}), 128.00 (C_{ar}), 127.26 (C₂), 120.93 (C_{ar}), 116.07 (C₁₂), 110.80 (C₁₃), 55.43 (C₁₅), 51.98 (C₇), 34.80 (C₁₁), 28.94 (C₉).

Figure 25. ¹³C NMR spectrum of 3h

3-(2-methoxyphenyl-5-hexen-2-one (3h): ¹³C NMR (75 MHz, CDCl₃) δ 208.17(C₈), 156.98 (C₃), 136.32 (C_{ar}), 128.74 (C_{ar}), 128.00 (C_{ar}), 127.26 (C₂), 120.93 (C_{ar}), 116.07 (C₁₂), 110.80 (C₁₃), 55.43 (C₁₅), 51.98 (C₇), 34.80 (C₁₁), 28.94 (C₉).

Figure 26. APT NMR spectrum of 3h

HRMS (ESI) m/z : Calcd for $[M+H]^+C_{13}H_{17}O$ 205.1229; Found 205.1186.

3,4-dihydro-2-methyl-2-(2-propen-1-yl)-1-(2H)-naphthalenone (6a) Rdt : 72 %,: ¹H NMR (300 MHz, Chloroform-*d*) δ 8.04 (dd, J = 7.9, 1.4 Hz, 1H, H₁), 7.45 (td, J = 7.5, 1.5 Hz, 1H, H₄), 7.35 – 7.17 (m, 2H, H₅+H₆), 5.89 – 5.70 (m, 1H, H₁₂), 5.15 – 5.01 (m, 2H, H₁₃), 3.09 – 2.86 (m, 2H, H₉), 2.46 (ddt, J = 13.8, 7.2, 1.2 Hz, 1H, H₁₁), 2.28 (ddt, J = 13.8, 7.5, 1.1 Hz, 1H, H₁₁), 2.08 (ddd, J = 13.7, 7.0, 5.9 Hz, 1H, H₁₀), 1.90 (ddd, J = 13.7, 6.9, 5.7 Hz, 1H, H₁₀), 1.19 (s, 3H, H₁₄).

Figure 27. ¹H NMR spectrum of 6a

3,4-dihydro-2-methyl-2-(2-propen-1-yl)-1-(2H)-naphthalenone (6a) : ¹³C NMR (75 MHz, CDCl₃) δ 202.04 (C₇), 143.32 (C₂), 133.98 (C_{ar}), 133.06 (C_{ar}), 131.62 (C₃), 128.66 (C_{ar}), 128.03 (C_{ar}), 126.64 (C₁₃), 118.19 (C₁₂), 44.6 (C₈), 41.14 (C₉), 33.38 (C₁₁), 25.36 (C₁₀), 21.92 (C₁₄).

Figure 28. ¹³C NMR spectrum of 6a

3,4-dihydro-2,2-di-2-propen-1-yl-1-(2H)-naphthalenone (6b) Rdt : 72 %,: ¹H NMR (300 MHz, Chloroform-*d*) δ 7.96 (dd, J = 7.9, 1.5 Hz, 1H, H₁), 7.36 (td, J = 7.4, 1.5 Hz, 1H, H₄), 7.27 - 7.18 (m, 1H, H₆), 7.15 - 7.06 (m, 1H, H₅), 5.69 (ddt, J = 18.8, 9.0, 7.3 Hz, 2H, H₁₄+H₁₆), 5.03 - 4.91 (m, 4H, H₁₅+H₁₇), 2.89 (t, J = 6.4 Hz, 2H, H₁₀), 2.41 (ddt, J = 14.0, 7.1, 1.3 Hz, 2H, H₁₃, H₁₂), 2.19 (ddt, J = 13.9, 7.5, 1.2 Hz, 2H, H₁₂,H₁₃), 1.94 (t, J = 6.4 Hz, 2H, H₉).

Figure 29. ¹H NMR spectrum of 6b

3,4-dihydro-2,2-di-2-propen-1-yl-1-(2H)-naphthalenone (6b) : 13 C NMR (75 MHz, CDCl₃) δ 200.80 (C₇), 143.18 (C₂), 133.84 (C_{ar}), 131.90 (C_{ar}), 128.67 (C₃), 127.97 (C_{ar}), 126.63 (C_{ar}), 118.27 (C₁₄+C₁₅), 115.96 (C₁₆+C₁₇), 47.76 (C₈), 39.19 (C₉), 30.64 (C₁₂+C₁₃), 25.13 (C₁₀),.

Figure 30. ¹³C NMR spectrum of 6b

3,4-dihydro-2,2-di-2-propen-1-yl-1-(2H)-naphthalenone (6b) : ¹³C NMR (75 MHz, CDCl₃) δ 200.80 (C₇), 143.18 (C₂), 133.84 (C_{ar}), 131.90 (C_{ar}), 128.67 (C₃), 127.97 (C_{ar}), 126.63 (C_{ar}), 118.27 (C₁₄+C₁₅), 115.96 (C₁₆+C₁₇), 47.76 (C₈), 39.19 (C₉), 30.64 (C₁₂+C₁₃), 25.13 (C₁₀).

Figure 31. APT NMR spectrum of 6b

4-methyl-3,4-dihydro-2,2-di-2-propen-1-yl-1-(2H)-naphthalenone (6c) Rdt : 78 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 8.05 (dd, J = 7.8, 1.5 Hz, 1H, H₁), 7.52 (ddd, J = 7.8, 7.1, 1.6 Hz, 1H, H₄), 7.40 - 7.28 (m, 2H, H₅+H₆), 5.89 - 5.68 (m, 2H, H₁₄+H₁₅), 5.17 - 4.97 (m, 4H, H₁₆+H₁₇), 3.30 - 3.10 (m, 1H, H₁₀), 2.65 (ddt, J = 13.8, 6.3, 1.4 Hz, 1H, H_{12,13}), 2.37 - 2.20 (m, 3H, H_{12,13}), 1.99 - 1.80 (m, 2H, H₉), 1.40 (d, J = 6.8 Hz, 3H, H₁₈).

Figure 32. ¹H NMR spectrum of 6c

4-methyl-3,4-dihydro-2,2-di-2-propen-1-yl-1-(2H)-naphthalenone (6c) : 13 C NMR (75 MHz, CDCl₃) δ 201.13 (C₇), 147.22 (C₂), 134.53 (C_{ar}), 133.37 (C_{ar}), 133.23 (C₃), 131.54 (C_{ar}), 128.02 (C_{ar}), 126.54 (C₁₄,C₁₅), 126.50 (C₁₄,C₁₅), 118.46 (C₁₆,C₁₇), 118.04 (C₁₆,C₁₇), 48.22 (C₈), 40.13 (C₁₂,C₁₃), 39.97 (C₁₂,C₁₃), 39.10 (C₉), 28.15 (C₁₀), 20.63 (C₁₈).

4-methyl-3,4-dihydro-2,2-di-2-propen-1-yl-1-(2H)-naphthalenone (6c) : ¹³C NMR (75 MHz, CDCl₃) δ 201.13 (C₇), 147.22 (C₂), 134.53 (C_{ar}), 133.37 (C_{ar}), 133.23 (C₃), 131.54 (C_{ar}), 128.02 (C_{ar}), 126.54(C14,C₁₅), 126.50 (C₁₄,C₁₅), 118.46 (C₁₆,C₁₇), 118.04 (C₁₆,C₁₇), 48.22 (C₈), 40.13 (C₁₂,C₁₃), 39.97 (C₁₂,C₁₃), 39.10 (C₉), 28.15 (C₁₀), 20.63 (C₁₈).

Figure 34. APT NMR spectrum of 6c

HRMS (ESI) m/z : Calcd for $[M+H]^+ C_{17}H_{21}O$ 241.1592; Found 241.1543

2,3-dihydro-2,2-di-2-propen-1-yl-1H-inden-1-one (6d) Rdt : 94 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.73 (d, J = 7.7 Hz, 1H, H₁), 7.57 (td, J = 7.5, 1.2 Hz, 1H, H₄), 7.48 – 7.31 (m, 2H, H₅+H₆), 5.59 (dddd, J = 16.8, 10.0, 8.1, 6.6 Hz, 2H, H₁₃+H₁₄), 5.13 – 4.89 (m, 4H, H₁₅+H₁₆), 3.03 (s, 2H, H₉), 2.45 (ddt, J = 13.6, 6.6, 1.2 Hz, 2H, H₁₂, H₁₁), 2.31 (ddt, J = 13.7, 8.1, 1.1 Hz, 2H, H₁₁, H₁₂).

Figure 35. ¹H NMR spectrum of 6d

2,3-dihydro-2,2-di-2-propen-1-yl-1H-inden-1-one (6d) : 13 C NMR (75 MHz, CDCl₃) δ 210.01 (C₇), 153.03 (C₂), 136.74 (C₃), 134.93 (C_{ar}), 133.41 (C_{ar}), 127.36 (C_{ar}), 126.06 (C_{ar}), 123.89 (C₁₃+C₁₄), 118.50 (C₁₅+C₁₆), 52.24 (C₈), 41.73 (C₁₁+C₁₂), 36.08 (C₉).

Figure 36 .13C NMR spectrum of 6d

2,3-dihydro-2,2-di-2-propen-1-yl-1H-inden-1-one (6d) : 13 C NMR (75 MHz, CDCl₃) δ 210.01 (C₇), 153.03 (C₂), 136.74 (C₃), 134.93 (C_{ar}), 133.41 (C_{ar}), 127.36 (C_{ar}), 126.06 (C_{ar}), 123.89 (C₁₃+C₁₄), 118.50 (C₁₅+C₁₆), 52.24 (C₈), 41.73 (C₁₁+C₁₂), 36.08 (C₉).

.

Figure 37. APT NMR spectrum of 6d

2,3-dihydro-2-methyl-2-(2-propen-1-yl)-1H-inden-1-one (6e) Rdt : 97 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.75 (ddd, J = 7.7, 1.3, 0.7 Hz, 1H, H₁), 7.58 (td, J = 7.4, 1.3 Hz, 1H, H₄), 7.47 – 7.29 (m, 2H, H₅+H₆), 5.65 (dddd, J = 16.9, 10.1, 7.9, 6.7 Hz, 1H, H₁₃), 5.15 – 4.95 (m, 2H, H₁₄), 3.16 (d, J = 16.9 Hz, 1H, H₉), 2.83 (d, J = 17.2 Hz, 1H, H₉), 2.34 (dddd, J = 14.7, 13.6, 7.3, 1.1 Hz, 2H, H₁₂), 1.22 (s, 3H, H₁₁).

Figure 38. ¹H NMR spectrum of 6e

2,3-dihydro-2-methyl-2-(2-propen-1-yl)-1H-inden-1-one (6e) : 13 C NMR (75 MHz, CDCl₃) δ 210.74 (C₇), 152.58 (C₂), 135.88 (C₃), 134.89 (C_{ar}), 133.87 (C_{ar}), 127.41 (C_{ar}), 126.59 (C_{ar}), 124.25 (C₁₃), 118.32 (C₁₄), 48.83 (C₈), 42.53 (C₁₂), 39.44 (C₉), 23.78 (C₁₁).

2,3-dihydro-5,6-dimethoxy-2,2-di-2-propen-1-yl-1H-Inden-1-one (6f) Rdt : 88 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.15 (s, 1H, H₁), 6.83 (d, *J* = 0.9 Hz, 1H, H₄), 5.59 (dddd, *J* = 16.7, 10.0, 8.2, 6.5 Hz, 2H, H₁₃+ H₁₅), 5.11 – 4.94 (m, 4H, H₁₄+H₁₆), 3.95 (s, 3H, H₁₈), 3.90 (s, 3H, H₂₂), 2.93 (d, *J* = 0.9 Hz, 2H, H₉), 2.44 (ddt, *J* = 13.6, 6.4, 1.3 Hz, 2H, H₁₁, H₁₂), 2.29 (ddt, *J* = 13.6, 8.2, 1.0 Hz, 2H, H₁₁, H₁₂).

2,3-dihydro-5,6-dimethoxy-2,2-di-2-propen-1-yl-1H-Inden-1-one (6f) : 13 C NMR (75 MHz, CDCl₃) δ 208.53 (C₇), 155.75 (C₂), 149.47 (C₅), 148.25 (C₆), 133.61 (C₁₃+C₁₅), 129.50 (C₃), 118.30 (C₁), 107.27 (C₁), 104.27 (C₄), 56.18 (C₁₈), 56.06 (C₁₈), 52.51 (C₈), 41.91 (C₁₁+C₁₂), 35.69 (C₉).

Figure 41.13C NMR spectrum of 6f

6,6-dimethyl-2,2--Diallylcyclopentanone (6g) Rdt : 87 %, ¹H NMR (300 MHz, Chloroformd) δ 5.66 (dddd, J = 16.9, 10.4, 7.8, 7.1 Hz, 2H, H₁₁+H₁₃), 5.13 – 4.92 (m, 4H, H₁₂+H₁₄), 2.15 (m, 4H, H₉+H₁₀), 1.83 – 1.76 (m, 2H, H₄), 1.76 – 1.68 (m, 2H, H₃), 0.99 (s, 6H, H₇+ H₈).

Figure 42. ¹H NMR spectrum of 6g

6,6-dimethyl-2,2--Diallylcyclopentanone (6g) : 13 C NMR (75 MHz, CDCl₃) δ 225.28 (C₁), 133.92 (C₁₁+C₁₃), 118.25 (C₁₂+C₁₄), 52.56 (C₅), 45.27 (C₂), 40.46 (C₉+C₁₀), 34.84 (C₄), 28.24 (C₃), 24.47 (C₇+C₈).

Figure 43. ¹³C NMR spectrum of 6g

HRMS (ESI) m/z : Calcd for [M]⁺ C₁₃H₂₁O 192.1592; Found 192.1552

2,2-DiallyIcyclohexanone (6h) Rdt : 66 %, ¹H NMR (300 MHz, Chloroform-*d*) δ 5.61 (ddt, *J* = 16.1, 11.0, 7.4 Hz, 2H, H₁₀+H₁₁), 5.08 – 4.91 (m, 4H, H₁₂+H₁₃), 2.30 (m, 4H, H₈+H₉), 2.19 (ddt, *J* = 14.2, 7.0, 1.5 Hz, 2H, H₆), 1.80 – 1.60 (m, 6H, H₃+H₄+H₅).

Figure 44. ¹H NMR spectrum of 6h

2,2-Diallylcyclohexanone (6h) : 13 C NMR (75 MHz, CDCl₃) δ 214.09 (C₁), 133.66 (C₁₀+C₁₁), 118.04 (C₁₂+C₁₃), 51.48 (C₂), 39.32 (C₆), 39.28 (C₈+C₉), 35.97 (C₃), 27.06 (C₅), 20.80 (C₄).

Figure 45. ¹³C NMR spectrum of 6h

Spiro[3-cyclopentene-1,2'-[2H]inden]-1'(3'H)-one Rdt : 86 %,: ¹H NMR (300 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 7.7 Hz, 1H, H₁), 7.52 (td, *J* = 7.4, 1.3 Hz, 1H, H₄), 7.44 – 7.27 (m, 1H, H₅+H₆), 5.66 (s, 1H, H₁₂+H₁₄), 3.10 (s, 1H, H₉), 2.92 – 2.73 (m, 1H, H₁₁), 2.34 – 2.20 (m, 1H, H₁₃).

Figure 47. ¹³C NMR spectrum of 7e

Figure 48. 2D NMR (HSQC) spectrum of 7e