Supporting Information

Seed- and Solvent-Free Synthesis of ZSM-5 with Tuneable Si/Al Ratios for Biomass Hydrogenation

Bin Zhang^{†,‡,§}, Mark Douthwaite[§], Qiang Liu[†], Chao Zhang^{†,*}, Qifan Wu[†], Ruhui Shi[†], Peixuan Wu[†], Ke Liu[†], Zhuangqing Wang[†], Weiwei Lin[†], Haiyang Cheng[†], Ding Ma[‡], Fengyu Zhao[†], Graham J. Hutchings^{§,*}

[†] State Key Laboratory of Electroanalytical Chemistry and Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

‡ Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China.

§ Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK

Corresponding Author

E-mail: czhang@ciac.ac.cn; hutch@cardiff.ac.uk

Content

Figure S1-Figure S16

Table S1 and Table S2

Figure S1. XRD patterns of MFI zeolites from SiO_2 and $C_{12}H_{28}NF$ at 120 °C (or 150 °C) for 12

h and 48 h of crystallization, respectively.

Sample	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹) ^a	Average pore diameter (nm)			
silicalite-1	212	0.31	4.4			
commercial ZSM-5	256	0.12	3.7			
^a BJH mesopore volumes from the desorption isotherm.						

Figure S2. The physical structure properties of the obtained MFI zeolite.

Figure S3. (a) 1D, (b) 3D DRIFT spectra of monocomponent SiO_2 in an in-situ cell as a function of time at the rate of 4°C/min from 20 °C (0 min) to 180 °C (40 min) and then keep at 180°C until 80 min.

Figure S4. (a) 1D, (b) 3D DRIFT spectra of monocomponent $C_{12}H_{28}NF$ in an in-situ cell as a function of time at the rate of 4°C/min from 20 °C to 180 °C and then keep at 180 °C until 80 min.

Figure S5. In-situ 3D DRIFT spectra of MFI zeolite sample from SiO_2 and $C_{12}H_{28}NF$ in an insitu cell as a function of time from 20 °C at the rate of 4°C/min to 180 °C and keep at 180 °C until 720 min.

Figure S6. DRIFT spectra (950 – 4000 cm⁻¹) of MFI zeolite sample from SiO₂ and $C_{12}H_{28}NF$

in an in-situ cell during the heating-up period of the initial 10 minutes from 20°C (0 min) at the

rate of 4°C/min.

Types	External linking vibration			Internal tetrahedral vibration					
µ/cm ⁻¹	300-420-420500	420-		symm	symmetric stretch		asymmetric stretch		
		500	500-650	650-	750-	820-	950-	1050-	1150-
				750	820	950	1050	1150	1250
Assignment	aperture	δ(T-O)	Double Penta	$\nu_{s}(TO_{4})$	v _s (T-O)	$\nu_{s}(TO_{4})$	$\nu_{as}(TO_4)$	$\nu_{as}(T-O)$	$\nu_{as}(TO_4)$

Table S1. The attribution of DRIFT spectra $(300 - 1250 \text{ cm}^{-1})$ of MFI zeolite.

Table S1 summarizes the vibration attribution of DRIFT spectra ($300 - 1250 \text{ cm}^{-1}$) of MFI zeolite. In general, these vibrations can be divided into two categories: internal tetrahedral vibration and external linking vibration, at $650 - 1250 \text{ cm}^{-1}$ and $300 - 650 \text{ cm}^{-1}$, respectively. The specific vibratory variations of the samples during the crystallization for 12 h at $900 - 1250 \text{ cm}^{-1}$ are showed in Figure S7.

Figure S7. (a) XRD patterns, (b) ATR-FTIR spectra and DRIFT spectra ($450 - 800 \text{ cm}^{-1}$) of zeolite samples from SiO₂ and C₁₂H₂₈NF in different cells at 180°C after 12 h.

We conducted the crystallization process in both DRIFT cell and ATR autoclaves, both of the obtained products crystallized for 12 h at 180 °C shows typical characteristic peaks of double penta-rings of MFI zeolite, 465 and 544 cm⁻¹.

Figure S8. XRD patterns of ZSM-5 zeolite derived from (a) (C₃H₇O)₃Al (b) (NH₄)₃AlF₆, and (c) AlCl₃·6H₂O at 180°C for 48 h.

Figure S9. XRD patterns of samples derived from (a) the mixture of SiO_2 and $C_{12}H_{28}NF$, and (b) the mixture SiO_2 , $C_{12}H_{28}NBr$, and NH_4F at 180 °C for 15 h.

Figure S10. ²⁹Si MAS NMR spectra of ZSM-5 zeolites crystallized at 180 °C for 0, 4, 8, 12 h,

respectively.

Figure S11. ²⁹Si MAS NMR spectra of ZSM-5 zeolites crystallized for 24 h at 180 °C using SiO₂, (CH₃CH₂CH₂)₄NF and NaAlO₂ as raw materials.

Figure S12.²⁹Al MAS NMR spectra of ZSM-5 zeolites crystallized at 180 °C for 24 h.

Figure S13. N₂ sorption of zeolite samples recovered at different crystallization time at 180 °C using SiO₂, (CH₃CH₂CH₂)₄NF and NaAlO₂ as raw materials. More details see Table S2.

Table S2. Texture properties of zeolite samples recovered at different crystallization time at 180 °C using SiO₂, (CH₃CH₂CH₂)₄NF and NaAlO₂ as raw materials.

t (h)	BET surface (m ² /g)	Micropore surface area (m ² /g) ^a	Pore volume (cm ³ /g) ^b	Pore Diameter (nm) ^b
0	308	26	1	9.7
4	123	-	0.55	9.6
8	84	8	0.38	12.1
12	67	3	0.31	12.1
24	37	-	0.19	12.3
48 ^c	315	214	0.16	3.7
commercial ZSM-5	256	178	0.12	3.7

^a t-plot method.

^b BJH desorption.

^c The sample was calcined at 550 ^oC in air.

Figure S14. Pyridine adsorption-desorption FTIR spectra of ZSM-5 (Si/Al = 53) synthesized from aluminium isopropoxide. (A) pyridine adsorption at 50 °C: (a) background, (b) 6, (c) 30, (d) 36, (e) 39 min. (B) purge and desorption: purge for (f) 4, (g) 11, (h) 13 min, and desorption at 200°C for (i) 3, (j) 15 min. (C) desorption at 300°C for (k) 0, (l) 20, (m) 23, (n) 25 min.

Figure S15. Pyridine adsorption-desorption FTIR spectra of ZSM-5 (Si/Al = 133) synthesized from aluminium isopropoxide. (A) pyridine adsorption: (a) 0, (b) 3, (c) 10, (d) 20 min. 39 min.
(B) purge and desorption: purge for (e) 0, (f) 15, and desorption at 200°C for (g) 0, (h) 7, (i) 10, (j) 13 min. (C) desorption at 300°C for (k) 0, (l) 10, (m) 15, (n) 20 min.

Figure S16. Pyridine adsorption-desorption FTIR spectra of ZSM-5 (Si/Al = 20) synthesized from NaAlO₂. (A) pyridine adsorption: (a) background, (b) 1, (c) 4, (d) 11, (e) 14, (f)21 min. (B) purge and desorption: (g) background, (h) purge for 10 min, and desorption at 200°C for (i) 0, (j) 15 min. (C) desorption at 300°C for (k) background, (l) 1 min.