Supporting Information

Multicenter Synergistic Polyoxometalate-based Metal–Organic Framework for One-Step Selective Oxidative Cleavage of β-O-4 Lignin Models

Hong-Rui Tian,[‡] Yi-Wei Liu,[‡] Zhong Zhang, Shu-Mei Liu, Tian-Yi Dang, Xiao-Hui Li, Xiu-Wei Sun, Ying Lu and Shu-Xia Liu*

Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry,

Northeast Normal University, Changchun, Jilin 130024, P. R. China

Table of Contents

1. Experimental procudures	S3
2. Crystallographic data and structure refinements	S10
3. Characterization of NENU-MV-5	S11
4. 3D supramolecular framework of NENU-MV-5	S12
5. BVS results	
6. BET analysis of NENMU-MV-5 powder	
7. Oxidative cleavage of lignin model compound 1 with NENU-MV-5	
8. Esterification reaction of benzoic acid and MeOH with NENU-MV-5.	S14
9. PXRD patterns of $(Et_4N)_4(V_{10}O_{26})\cdot H_2O$	S14
10. EPR spectrum for DMPO \rightarrow O ₂ ⁻ radical species in acetonitrile	
11. Two types of broken bond of 2-phenoxy-1-phenylenthanone (1a)	
12.Catalytyic oxidation of methyl benzoylformate with NENU-MV-5	S16
13. Detection of reaction gas phase product CO ₂ .	S16
14. The reaction equation of CO ₂ and limewater	S16
15. The carbon balance of oxidative cleavage of lignin model compound 1	
16. The mechanism of oxidative of phenol to CO ₂ and H ₂ O	
17. Catalytic systems for the oxidative cleavage of β -O-4 ligin model compounds	S18
18. ¹ HNMR Spectra	S19
19. References.	S27

1. Experimental procedures

Synthesis of ligand bbi¹ A mixture of imidazole (8.2g, 0.12mol) and NaOH (4.8 g, 0.12 mol) in DMSO (35 mL) was stirred at 60 °C for 2 hours, and then 1,4dibromobutane (12.0 g, 0.056 mol) was added. After stirring at 60 °C for another 2 hours, the reaction mixture was cooled to room temperature and then poured into 400 mL of ice-water and a large amount of white solid precipitated, which was filtered and dried in air to afford 21.0 g, yield:92.0%. ¹H NMR (600MHz, CD₃CN) δ : 7.45 (s, 2H), 6.99 (s, 2H), 6.91 (s, 2H), 3.92-3.95 (m, 4H), 1.67-1.70 (m, 4H) ppm.

Synthesis of lignin model compounds²⁻³

Synthesis of 2-phenoxy-1-phenylethanol $(1)^2$

Synthesis of 2-phenoxy-1-phenylethanone (1a): A mixture of phenol (6.9 g, 0.073mol) and K₂CO₃ (15.1 g, 0.11mol) in acetone (200 mL) was stirred at room temperature for 30min and then a solution of 2-bromoacetophenone (13.2 g, 0.067mol) in acetone (100 mL) was added dropwise. The resulting mixture was heated to reflux and stirred overnight. The reaction mixture was cooled to room temperature and filtered, the filtrate was concentrated in vacuum. The residue was dissolved with EA and washed with 5% NaOH aq. The organic layer was dried over anhydrous Na₂SO₄ and filtered, the filtrate was concentrated in vacuum. The crude product was recrystallization with ethanol (EtOH) to afford white solid 13.2 g, yield: 85.0%. ¹H NMR (600 MHz, CDCl₃) δ : 8.00-8.02 (m, 2H), 7.61-7.63 (m, 1H), 7.49-

7.52 (m, 2H), 7.28-7.31 (m, 2H), 6.98-7.00 (m, 1H), 6.94-6.96 (m, 2H), 5.28 (s, 2H) ppm.

Synthesis of 2-phenoxy-1-phenylethanol (1): The compound 1a (1.06 g, 5 mmol) was dissolved with THF (20 mL) and H₂O (5 mL) and stirred at ice-water bath. NaBH₄ (0.38g, 10 mmol) was added portion wise, then the mixture was warmed to room temperature and stirred for 4 hours. Saturated NH₄Cl aq. was added (pH = 5-6) and stirred for 1 hour. The resulting mixture was extracted with EA and then combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuum and the residue was crystallization with EA and n-hexane to afford white solid 0.9 g, yield: 84.0%. ¹H NMR (600 MHz, CDCl₃) δ : 7.46 (d, J=6.0 Hz, 2H), 7.38-7.41 (m, 2H), 7.33-7.35 (m, 1H), 7.28-7.30 (m, 2H), 6.97 (t, J=7.3 Hz, 1H), 6.97 (d, J=12.0 Hz, 2H), 5.12-5.14 (m, 1H), 4.11 (dd, J=12.0, 6.0 Hz, 1H), 4.01 (t, J=9.4 Hz, 1H), 2.77 (d, J=2.5 Hz, 1H) ppm.

Synthesis of 2-(2-methoxyphenoxy)-1-phenylethanol (2)

Synthesis of 2-(2-methoxyphenoxy)-1-phenylethanone (**2a**): The reaction procedure was performed in the same way as **1a** except for 2-methoxylphenol was used instead of phenol. Yield: 81%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 8.01 (d, J=6.0 Hz, 2H), 7.61 (t, J=6.0 Hz, 1H), 7.50 (t, J=7.8 Hz, 2H), 6.96-6.99 (m, 1H), 6.91-6.93 (m, 1H), 6.84-6.87 (m, 2H), 5.36 (s, 2H), 3.89 (s, 3H) ppm.

Synthesis of 2-(2-methoxyphenoxy)-1-phenylethanol (2): The reaction procedure was performed in the same way as 1 except for 2a was used instead of 1a. Yield: 98%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.43 (d, J=6.0 Hz, 2H), 7.37 (t,

J=6.0 Hz, 2H), 7.30-7.32 (m, 1H), 6.98-7.01 (m, 1H), 6.89-6.96 (m, 3H), 5.10-5.12 (m, 1H), 4.19 (dd, J=12.0, 6.0 Hz, 1H), 3.98 (t, J=9.8 Hz, 1H), 3.89 (s, 3H), 3.41 (d, J=6.0 Hz, 1H) ppm.

Synthesis of 1-(4-methoxyphenyl)-2-phenoxyethanol (3)

Synthesis of 1-(4-methoxyphenyl)-2-phenoxyethanone (**3a**): The reaction procedure was performed in the same way as **1a** except for 2-bromo-1-(4methoxyphenyl)ethanone was used instead of 2-bromoacetophenone. Yield: 90%. White solid. ¹HNMR (600 MHz, CDCl₃) δ : 8.01 (d, J=6.0 Hz, 2H), 7.28 (q, J=18.0 Hz, 6.0 Hz, 2H), 6.94-6.99 (m, 5H), 5.22 (s, 2H), 3.88 (s, 3H) ppm.

Synthesis of 1-(4-methoxyphenyl)-2-phenoxyethanol (**3**): The reaction procedure was performed in the same way as **1** except for **3a** was used instead of **1a**. Yield: 98%. White solid. ¹H NMR (600 MHz, CDCl₃) δ: 7.38 (d, J=6.0 Hz, 2H), 7.27-7.30 (m, 2H), 6.96-6.98 (m, 1H), 6.92-6.93 (m, 4H), 5.06-5.08 (m, 1H), 4.07 (dd, J=12.0, 6.0 Hz, 1H), 4.00 (t, J=6.0 Hz, 1H), 3.82 (s, 3H), 2.72 (d, J=2.4 Hz, 1H) ppm.

Synthesis of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol (4)

Synthesis of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone (**4a**): The reaction procedure was performed in the same way as **1a** except for 2-bromo-1-(4-methoxyphenyl)ethanone and 2-methoxylphenol were used instead of 2-bromoacetophenone and phenol, respectively. Yield: 88%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 8.02 (d, J=12.0 Hz, 2H), 6.94-6.97 (m, 3H), 6.92 (d, J=6.0 Hz, 1H), 6.88-6.95 (m, 5H), 5.04-5.06 (m, 1H), 3.89 (d, J=6 Hz, 6H) ppm.

Synthesis of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol (4): The reaction procedure was performed in the same way as 1 except for 4a was used instead of 1a. Yield: 95%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.35 (d, J=6.0 Hz, 2H), 6.98-7.01 (m, 1H), 6.92 (d, J=6.0 Hz, 1H), 6.83-6.87 (m, 2H), 5.14 (dd, J=12.0 Hz, 6.0 Hz, 1H), 3.95-3.98 (m, 1H), 3.89 (s, 3H), 3.81 (s, 3H) ppm.

Synthesis of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanol (5)

Synthesis of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone (**5a**): The reaction procedure was performed in the same way as **1a** except for 2-bromo-1-(3,4-dimethoxyphenyl)ethanone and 2-methoxylphenol were used instead of 2-bromoacetophenone and phenol, respectively. Yield: 95%. Light yellow solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.68 (dd, J=8.4 Hz, 1.8 Hz, 2H), 7.6 (d, J=2.4 Hz, 1H), 6.95-6.98 (m, 1H), 6.91 (t, J=8.4 Hz, 2H), 6.85-6.86 (m, 2H), 5.29 (s, 2H), 3.95 (d, J=10.84 Hz, 6H), 3.89 (s, 3H) ppm.

Synthesis of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanol (5): The reaction procedure was performed in the same way as 1 except for 5a was used instead of 1a. Yield: 90%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 6.99-7.02(m, 2H), 6.89-6.96 (m, 4H), 6.86 (d, J=8.4 Hz, 1H), 5.05 (dd, J=9.6 Hz, 3.0 Hz, 1H), 4.17 (dd, J=10.0 Hz, 3.0 Hz, 1H), 3.97 (t, J=9.6 Hz, 1H), 3.90 (d, J=4.8 Hz, 6H), 3.88 (s, 3H), 3.44 (br s, 1H) ppm.

Synthesis of 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol (6)

Synthesis of 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone (6a): The reaction procedure was performed in the same way as 1a except for 2-bromo-1-(4-

methoxyphenyl)ethanone and 2,6-dimethoxylphenol were used instead of 2bromoacetophenone and phenol, respectively. Yield: 90%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 8.07 (d, J=9.0 Hz, 2H), 7.0 (t, J=8.4 Hz, 1H), 6.94 (d, J=9.0 Hz, 2H), 6.58 (t, J=8.4 Hz, 2H), 5.13 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H) ppm.

Synthesis of 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol (6): The reaction procedure was performed in the same way as 1 except for **6a** was used instead of **1a**. Yield: 93%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.31 (d, J=8.4 Hz, 2H), 7.04 (t, J=8.4 Hz, 1H), 6.87 (d, J=9.0 Hz, 2H), 6.61 (d, J=12.0 Hz, 2H), 4.91 (dd, J=10.2 Hz, 2.4 Hz, 1H), 4.49 (s, 1H), 4.37 (dd, J=10.2 Hz, 2.4 Hz, 1H), 3.88 (s, 6H), 3.79 (s, 3H), 3.70 (t, J=10.2 Hz, 1H) ppm.

Synthesis of 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanol (7)

Synthesis of 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone (7a): The reaction procedure was performed in the same way as 1a except for 2-bromo-1-(3,4-dimethoxyphenyl)ethanone and 2,6-dimethoxylphenol were used instead of 2bromoacetophenone and phenol, respectively. Yield: 92%. White solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.73 (dd, J=8.4 Hz, 1.8 Hz, 1H), 7.65 (d, J=1.8 Hz, 1H), 7.01 (t, J=8.4 Hz, 1H), 6.90 (d, J=8.4 Hz, 1H), 6.59 (d, J=8.4 Hz, 2H), 5.15 (s, 2H), 3.95 (d, J=2.4 Hz, 6H), 3.82 (s, 6H) ppm.

Synthesis of 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanol (7): The reaction procedure was performed in the same way as 1 except for 7a was used instead of 1a. Yield: 98%. White solid. ¹H NMR (600 MHz, CDCl₃) δ: 7.05 (t, J=8.4 Hz, 1H), 6.97 (d, J=1.8 Hz, 1H), 6.90 (dd, J=7.8 Hz, 1.8 Hz, 1H), 6.83 (d, J=7.8 Hz,

1H), 4.91 (dd, J=10.2 Hz, 2.4 Hz, 1H), 4.53 (s, 1H), 4.40 (dd, J=10.2, 2.4 Hz, 1H), 3.86-3.89 (m, 12H), 3.70 (t, J=10.2 Hz, 1H) ppm.

Synthesis of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1,3-propanediol (8)³

Synthesis of 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1-propanone (8a): A mixture of 4a (1.36 g, 5.0 mmol) and K₂CO₃ (0.77 g, 5.55 mmol) in a EtOH and acetone (20 mL, v:v = 1:1) was stirred at room temperature and then aqueous formaldehyde solution (37%, 0.68 mL, 9.12 mmol) was added dropwise. The resulting mixture was stirred overnight. The reaction mixture was filtered, the filtrate was concentrated in vacuum. The residue was purified by column chromatography on silica gel (n-hexane: ethyl acetate, v:v = 2:1) to afford light yellow oil 1.2 g, yield: 80.0%. ¹H NMR (600 MHz, CDCl₃) δ : 8.07 (d, J=9.0 Hz, 2H), 6.99-7.02 (m, 1H), 6.94 (d, J=9.0 Hz, 2H), 6.89-6.92 (m, 2H), 6.818-6.84 (m, 1H), 5.37 (t, J=5.4 Hz, 1H), 4.06 (t, J=5.4 Hz, 2H), 3.87 (s, 3H), 3.86 (s, 3H), 3.08 (t, J=6.6 Hz, 1H) ppm.

Synthesis of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1,3-propanediol (8): The compound 8a (1.0 g, 3.3 mmol) was dissolved with THF (20 mL) and MeOH (10 mL) and stirred at ice-water bath. NaBH₄ (0.25g, 6.6 mmol) was added portion wise, then the mixture was warmed to room temperature and stirred overnight. Saturated NH₄Cl aq. was added (pH = 5-6) and stirred for 1 hour. The resulting mixture was extracted with CH₂Cl₂ and then combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂: MeOH, v:v = 40:1) to afford light yellow oil 0.92 g, yield: 92.0%. ¹H NMR (600 MHz, CDCl₃) δ : 7.37 (d, J=9.0 Hz, 0.73H, minor diastereomers), 7.31 (d, J=9.0 Hz, 1.27H, major diastereomers), 7.13 (dd, J=7.8 Hz, 1.2 Hz, 0.33H, minor diastereomers), 7.04-7.08 (m, 1H, both diastereomers), 6.88-6.98 (m, 4.69H, both diastereomers), 4.99-5.00 (m, 1H, both diastereomers), 4.15-4.17 (m, 0.63H, major diastereomers), 4.02-4.04 (m, 0.39H, minor diastereomers), 3.92 (s, 1.1H, minor diastereomers), 3.89 (s, 1.9H, major diastereomers), 3.80 (d, J=1.8 Hz, 3H, both diastereomers), 3.73-3.76 (m, 0.69H, majo diastereomers), 3.45-3.49 (m, 0.51H, minor diastereomers), 3.39 (br s, 0.41H, minor diastereomers), 2.70 (d, J=22.8 Hz, 0.96H, both diastereomers) ppm.

2. Crystallographic data and structure refinements

Name	NENU-MV-5
Empirical formula	$C_{20}H_{30}O_{14}N_8Cu_2V_5$
Formula weight	988.30
Temperature (K)	294.9
Wave length (Å)	0.71073
Crystal system	Monoclinic
Space group	C 1 2/c 1
a (Å)	22.7662(11)
b (Å)	12.1453(5)
c (Å)	24.9282(11)
α (deg)	90
β (deg)	98.796(2)
γ (deg)	90
Volume (Å ³)	6811.6(5)
$Z, D_{calc} (Mg/m^3)$	8, 1.928
Absorption coefficient (mm ⁻¹)	2.610
F (000)	3928
Crystal size (mm ³)	0.220 x 0.210 x 0.200
θ range (deg)	2.257 to 25.742°
index range (deg)	-27 = < h = < 27, -14 = < k = < 14, -30 = < 1 = < 30
Reflections collected / unique	34966 / 6490 [R(int) = 0.0426]
Data / restraints / parameters	6490 / 220 / 574
Goodness-of-fit on F ²	1.095
$\mathbf{R}_1,\mathbf{w}\mathbf{R}_2(I>2\sigma(I))$	0.0455, 0.0971
R_1 , w R_2 (all data)	0.0600, 0.1034
Largest diff. peak and hole (e Å ⁻³)	0.671, -0.525

 Table S1. Crystallographic data and structure refinements of NENU-MV-5

 $\overline{R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|} \cdot wR_2 = \left[\sum [w (F_o^2 - F_c^2)^2] / \sum [w (F_o^2)^2]\right]^{1/2}$

3. Characterization of NENU-MV-5

Figure S1. (a) The FTIR spectrum of NENU-MV-5 and (b) the TGA curve of NENU-MV-5.

Figure S2. (a) PXRD patterns of NENU-MV-5. (b) The photograph of NENU-MV-5 crystals.

The phase purity of NENU-MV-5 was evidenced by as-prepared PXRD, which matched well with the simulated pattern from crystallographic studies.

Figure S3. The XPS results for oxidative states of cuprous ions (a) and vanadium ions (b) in NENU-MV-5.

4. 3D supramolecular framework of NENU-MV-5

Figure S4. 3D supramolecular framework of NENU-MV-5. Hydrogen atoms and lattice water molecule are omitted for clarity.

5. BVS results

	1, 0	/1 1.	•	1 .	•	• •	TTNTT	3 63 7	· -
lahla VZ RVV t	reculte tor	the vanaduu	n 10ng 9n(1 cumric	1000	ın N		- 1\/I\/	- 5
1 abic 52. D v S I	counts 101	une vanauru	II IOIIS and	a cupite	IUIIS .	III 1	ILINU-	TAT A	-9.

V site	BVS cacl. for V (IV)	BVS cacl. for V (V)	Assigned O.S.
V1	4.905	5.163	5
V2	4.993	5.256	5
V3	4.456	4.689	4
V4	4.938	5.198	5
V5	4.948	5.209	5
V6	4.367	4.596	4

BVS results for the vanadium ions in NENU-MV-5

Cu site	BVS cacl. for Cu (I)	BVS cacl. for Cu (II)	Assigned O.S.
Cu1	1.012	1.036	1
Cu2	0.961	0.961	1

BVS results for the cuprous ions in NENU-MV-5

6. BET analysis of NENU-MV-5 powder

Figure S5. BET analysis of NENU-MV-5 powder. The N₂ absorption / desorption isotherms of NENMU-MV-5 powder at 77K ($P_0 = 101$ kPa).

7. Oxidative cleavage of lignin model compound 1 with NENU-MV-5

	OH 0	MeO	ENU-MV-5 H, 0.4 MPa			+ U		рон с + (OOMe
Entry	Substrate	Solvent	T (°C)	P (MPa)	Conv. (%)	1a	Pro 1b Yiel	ducts 1c ld° (%)	1d
1	1	МеОН	100	0.4	>99	<1	60.0	9.5	90.0
2	1	ACN	100	0.4	<1	n.d.	n.d.	n.d.	n.d.
3ª	1a	MeOH	100	0.4	>99	_	72.0	13.0	83.0
4 ^a	1	MeOH	100	0.4	30	6	20.1	12.0	11.5.0
5 ^b	1	МеОН	100	0.4	<1	n.d.	n.d.	n.d.	n.d.
6 ^b	1a	МеОН	100	0.4	<1	_	n.d.	n.d.	n.d.

Table S3. Oxidative cleavage of lignin model compound 1 with NENU-MV-5.

n.d.= not detected. Reaction conditions: 0.5 mmol substrate, 0.01 mmol NENU-MV-5, 2 mL solvent, 12 hours, 0.4

MPa O₂. ^{*a*} 2 hours. ^{*b*} 0.4 MPa N₂. ^{*c*} Yield was determined by GC using biphenyl as internal standard.

8. Esterification reaction of benzoic acid and MeOH with NENU-MV-5

		СООН	NENU-MV-5 MeOH	COOMe 1d		
Entry	Substrate	solvent	T (°C)	P (MPa)	Conv. (%)	Yield ^a (%)
1	1c	МеОН	100	0.4 N ₂	>99	>99
2	1c	МеОН	100	0.4 O ₂	>99	>99

Table S4. Esterification reaction of benzoic acid and MeOH with NENU-MV-5.

Reaction conditions: 0.5 mmol benzoic acid, 0.01 mmol NENU-MV-5, 2 mL MeOH, 12 hours. ^a Yield was

determined by GC using biphenyl as internal standard.

9. PXRD patterns of (Et₄N)₄(V₁₀O₂₆)·H₂O

Figure S6. The PXRD patterns of $(Et_4N)_4(V_{10}O_{26}) \cdot H_2O$.

Figure S7. DMPO spin trapping EPR spectra for DMPO $-O_2^-$ radical species in acetonitrile.

11. Two types of broken bonds of 2-phenoxy-1-phenylenthanone (1a)

Scheme S1. The intermediates and products of 2-phenoxy-1-phenylenthanone (1a) preferentially breaking C_{α} - C_{β} bond or C_{β} -O bond.

12. Catalytic oxidation of methyl benzoylformate with NENU-MV-5

Scheme S2. Catalytic oxidation of methyl benzoylformate with NENU-MV-5.

n.d.= not detected. Reaction conditions: 0.5 mmol methyl benzoylformate, 0.01 mmol NENU-MV-5, 2 mL MeOH,

2 hours, 100 °C, 0.4 MPa O₂.

13. Detection of reaction gas phase product CO_2

Limewater images before (left) and after (right) introduction of the reaction gas phase

Figure S8. Detection of reaction gas phase product CO₂.

14. The reaction equation of CO₂ and limewater

 $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$ limewater

Scheme S3. The reaction equation of CO_2 and limewater.

15. The carbon balance of oxidative cleavage of lignin model compound 1

NENU-MV-5.

OH 1	MENU-MV-5 MeOH, 0.4 MPa O	$\begin{array}{c} OH \\ \bullet \\ 1b \\ 1b \\ 1c \\ 1 \end{array} + \begin{array}{c} COOH \\ \bullet \\ \bullet \\ 1 \\ 1 \\ 1 \\ 1 \end{array} + \begin{array}{c} COOH \\ \bullet \\ \bullet \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	cooMe + CO ₂
F /		Product	
Entry	1b	(1c + 1d)	CO ₂
Theoretical yield (mmol)	0.5 mmol (100%)	0.5 mmol (100%)	0.5 mmol (100%)
Actual yield (mmol)	0.3 mmol (60%)	0.4975 mmol (99.5%)	1.65 mmol ^{<i>d</i>} (330%)
Difference value ^{<i>a</i>}	-0.2 mmol ^b	-0.0025 mmol	+1.15 mmol ^c

Table S5. The carbon balance of oxidative cleavage of lignin model compound 1 with

```
Reaction conditions: 0.5 mmol 1, 0.01 mmol NENU-MV-5, 2 mL MeOH, 12 hours, 100 °C, 0.4 MPa O<sub>2</sub>. <sup>a</sup> Difference value = Actual yield - Theoretical yield. <sup>b</sup> The reduced amount of phenol. <sup>c</sup> The amount of extra CO<sub>2</sub>. <sup>d</sup> The actual yield of CO<sub>2</sub> was determined by weighing CaCO<sub>3</sub> (165 mg, 1.65 mmol) produced by the reaction of CO<sub>2</sub> with limewater.
```

The amount of extra CO_2 (1.15 mmol equivalent to 0.19 mmol phenol) which was comparable to the reduced phenol (0.2 mmol) indicated that part of the phenol generated by oxidative cleavage of **1** was oxidized to CO_2 and H_2O .

16. The mechanism of oxidation of phenol to CO_2 and H_2O^4

Scheme S4. The mechanism of oxidation of phenol to CO₂ and H₂O.

17. Catalytic systems for the oxidative cleavage of β -O-4 lignin model compounds

Table S6. Catalytic systems for the oxidative cleavage of β -O-4 lignin model compounds.

					Condition		Com	
Entry Catalyst	co- catalyst	System Type	Step	Temp. (°C)	Time (h)	- Conv. (%)	Ref.	
2-phen	oxy-1-phenylethanol	(1) as substrate	:					
1	VO(acac) ₂	АсОН	Homo.	One-Step	80	8	89.2	[5]
2	(dipic)V(O) ⁱ Pr	_	Homo.	One-Step	100	168	95	[6]
3	RuHCl(CO)(PPh ₃) ₃	КОН	Homo.	One-Step	125	12	99	[7]
4	VOSO ₄ /	TEMPO/	Homo.	Two-Step	100	24	75.8	[8]
	Cu(OAc) ₂	1,10-Phen			/80	/6		
5	Pd/CeO ₂	_	Heter.	One-Step	185	24	70	[9]
6	VB ₁₂ @C-900	K ₂ CO ₃	Heter.	One-Step	100	24	96	[10]
7	Co-N-C	NaOH	Heter.	One-Step	150	4	93	[11]
8	NENU-MV-5	_	Heter.	One-Step	100	12	>99	This
								work
2-phen	oxy-1-phenylethanol	with methoxyl	and C_{γ} -OH	groups (struct	ure is simil	ar to 8) as	substrate	
9	AcNH-TEMPO	HNO ₃ -HCl	Homo.	Two-Step	45	24	96	[12]
	$/H_2O_2$	/NaOH			/50	/10		
10	AcNH-TEMPO	DIPEA-	Homo.	Two-Step	25	18	100	[13]
	/[Ir(ppy) ₂ (dtbbpy)]PF ₆	НСООН				/20		
11	DDQ-t-BuONO	NH ₄ Cl	Homo.	Two-Step	80	14	100	[14]
	/Zn					/0.25		
12	NENU-MV-5	_	Heter	One-Step	120	18	>99	This
12	NENU-MV-5	-	Heter	One-Step	120	18	>99	This work

Homo. = Homogeneous phase. Heter. = Heterogeneous phase.

¹H-NMR spectrum of bbi. (DMSO derives from residual solvent)

78.02 78.02 79.05 70

-5.28

¹H-NMR spectrum of 2-phenoxy-1-phenylethanone (**1a**).

¹H-NMR spectrum of 2-(2-methoxyphenoxy)-1-phenylethanone (2a).

¹H-NMR spectrum of 1-(4-methoxyphenyl)-2-phenoxyethanone (**3a**).

¹H-NMR spectrum of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone (4a).

¹H-NMR spectrum of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone (**5a**).

¹H-NMR spectrum of 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone (6a).

¹H-NMR spectrum of 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone (7a).

¹H-NMR spectrum of 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1-

propanone (8a).

¹H-NMR spectrum of 2-phenoxy-1-phenylethanol (1).

¹H-NMR spectrum of 2-(2-methoxyphenoxy)-1-phenylethanol (2).

¹H-NMR spectrum of 1-(4-methoxyphenyl)-2-phenoxyethanol (**3**).

7,7,7,36 (6,99)

¹H-NMR spectrum of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol (4).

7,26 7,000 7,000 7,0

3.88

¹H-NMR spectrum of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanol (5).

7.31 7.20 6.61 6.61 6.61 7.20 6.63 6.63 6.64 4.92 4.32 4.32 4.33 3.373 3.373 3.373 3.373 3.373

$\begin{array}{c} 77.26\\ 77.05\\ 77.05\\ 6.97\\ 6.6.97\\ 6.6.97\\ 6.6.92\\ 6.6.89\\ 6.6.82\\ 6.6.$

¹H-NMR spectrum of 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanol (7).

diastereomers

¹H-NMR spectrum of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1,3-propanediol

(8). (CH₂Cl₂ derives from residual eluent)

19. References

- 1 C. Li, L. Zhao, J. Li, X. Ding, S. Chen, Q. Zhang, Y. Yu and X. Jia, *Chem. Commun.*, 2010, 46, 9016-9018.
- 2 M. Dawange, M. V. Galkin and J. S. M. Samec, ChemCatChem, 2015, 7, 401-404.
- 3 Y. Song, J. K. Mobley, A. H. Motagamwala, M. Isaacs, J. A. Dumesic, J. Ralph, A. F. Lee, K. Wilson and M. Crocker, *Chem. Sci.*, 2018, 9, 8127-8133.
- 4 X. Zhong, Y. Lu, F. Luo, Y. Liu, X. Li and S. Liu, Chem. Eur. J., 2018, 24, 3045-3051.
- 5 Y. Ma, Z. Du, J. Liu, F. Xia and J. Xu, Green Chem., 2015, 17, 4968-4973.
- 6 S. K. Hanson, R. T. Baker, J. C. Gordon, B. L. Scott and D. L. Thorn, *Inorg. Chem.*, 2010, 49, 5611-5618.
- 7 W. Huo, W. Li, M. Zhang, W. Fan, H.-m. Chang and H. Jameel, Catal. Lett., 2014, 144, 1159-1163.
- 8 M. Wang, J. Lu, X. Zhang, L. Li, H. Li, N. Luo and F. Wang, ACS Catal., 2016, 6, 6086-6090.
- 9 W. Deng, H. Zhang, X. Wu, R. Li, Q. Zhang and Y. Wang, Green Chem., 2015, 17, 5009-5018.
- 10 H. Luo, L. Wang, G. Li, S. Shang, Y. Lv, J. Niu and S. Gao, *ACS Sustainable Chem. Eng.*, 2018, 6, 14188-14196.
- 11 S. Liu, L. Bai, A. P. van Muyden, Z. Huang, X. Cui, Z. Fei, X. Li, X. Hu and P. J. Dyson, *Green Chem.*, 2019, 21, 1974-1981.
- 12 A. Rahimi, A. Azarpira, H. Kim, J. Ralph and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 6415-6418.
- 13 J. D. Nguyen, B. S. Matsuura and C. R. J. Stephenson, J. Am. Chem. Soc., 2014, 136, 1218-1221.
- 14 C. S. Lancefield, O. S. Ojo, F. Tran and N. J. Westwood, Angew. Chem. Int. Ed., 2015, 54, 258-262.