Supporting Information

Thermally Regulated Molybdate-based Ionic Liquids Toward Molecular Oxygen

Activation for One-pot Oxidative Cascade Catalysis

Zhibin Song,^a Wei Huang,^a Yan Zhou,^a Zi-Qi Tian,^b Zhang-Min Li,^a Duan-Jian Tao^{*,a}

^aKey Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 China.

^bNingbo Institute of Materials Technology & Engineering, Chinese Academy of

Sciences, Ningbo, Zhejiang 315201 China.

*Corresponding Author: E-mail: djtao@jxnu.edu.cn.

Characterization results

 $\left[\underbrace{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right]_{2} \left[MoO_{4} \right]$

[**Bmim**]₂[**MoO**₄]: ¹H NMR (400 MHz, D₂O): $\delta = 8.67$ (s, 2 H), 7.42 (s, 2 H), 7.38 (s, 2 H), 4.15 (t, J = 7.2 Hz, 4 H), 3.84 (s, 6 H), 1.76-1.83 (m, 4 H), 1.23-1.29 (m, 4 H), 0.87 (t, J = 7.2 Hz, 6 H) ppm. ¹³C NMR (101 MHz, D₂O): $\delta = 136.0$, 123.6, 122.3, 49.3, 35.8, 31.4, 18.9, 12.9 ppm. ESI-MS: 139.1217 for [Bmim] (calculated: 139.1235), 161.9016 for [MoO₄] (calculated: 161.8851). Elemental analysis (%), calculated: C 43.84, H 6.90, N 12.78, Mo 21.89, found: C 44.24, H 7.20, N 11.89, Mo 20.75.

[Hmim]₂[MoO₄]: ¹ H NMR (400 MHz, D₂O): $\delta = 8.80$ (s, 2 H), 7.55 (s, 2 H), 7.52 (s, 2 H), 4.24-4.27 (m, 4 H), 3.96 (s, 6 H), 1.91-1.92 (m, 4 H), 1.34 (s, 12 H), 0.88-0.89 (m, 6 H) ppm. ¹³C NMR (101 MHz, D₂O): δ 135.9, 123.6, 122.3, 49.6, 35.7, 30.4, 29.2, 25.1, 21.8, 13.3 ppm. ESI-MS: 167.1567 for [Hmim] (calculated: 167.1548), 161.9016 for [MoO₄] (calculated: 161.8851). Elemental analysis (%), calculated: C 48.58, H 7.75, N 11.33, Mo 19.40, found: C 49.16, H 8.18, N 10.49, Mo 18.52.

 $[Omim]_2[MoO_4]$: ¹H NMR (400 MHz, D₂O): $\delta = 8.85$ (s, 2 H), 7.54-7.55 (m, 4 H), 4.24-4.28 (m, 4 H), 3.97-3.98 (m, 6 H), 1.90-1.93 (m, 4 H), 1.28-1.34 (m, 20 H), 0.86-0.88 (m, 6 H) ppm. ¹³C NMR (100 MHz, D₂O): $\delta = 136.0$, 123.7, 122.2, 49.6, 35.8, 31.3, 29.4, 28.5, 28.4, 25.6, 22.2, 13.6 ppm. ESI-MS: 195.1858 for [Omim] (calculated: 195.1861), 161.9016 for [MoO₄] (calculated: 161.8851). Elemental analysis (%), calculated: C 52.35, H 8.42, N 10.18, Mo 17.43, found: C 54.02, H 9.73, N 9.81, Mo 16.75.

$\left[\begin{array}{c} \downarrow \\ N^+ \\ - \end{array}\right]_2 [MoO_4]$

 $[N_{2222}]_2[MoO_4]$: slight yellow solid, ¹H NMR (400 MHz, D₂O): $\delta = 3.18$ (q, J = 6.8, 16 H), 1.17 (t, J = 6.8 Hz, 24 H) ppm. ¹³C NMR (100 MHz, D₂O): $\delta = 52.1$, 6.8 ppm. ESI-MS: 130.1613 for $[N_{2222}]$ (calculated: 130.1596), 161.9016 for $[MoO_4]$ (calculated: 161.8851). Elemental analysis (%), calculated: C 45.71, H 9.59, N 6.66, Mo 22.82, found: C 46.44, H 10.21, N 6.29, Mo 21.93.

$\left[\overbrace{}^{+} N \right]_{2} \left[MoO_{4} \right]$

[**Bpy**]₂[**MoO**₄]: slight yellow solid, ¹H NMR (400 MHz, D₂O): $\delta = 8.92-8.93$ (m, 4 H), 8.59-8.63 (m, 2 H), 8.13-8.15 (m, 4 H), 4.68 (t, J = 8.8 Hz, 4 H), 2.02 – 2.06 (m, 4 H), 1.435-1.44 (m, 4 H), 0.97 (t, J = 7.6 Hz, 6 H) ppm. ¹³C NMR (100 MHz, D₂O): $\delta =$ 145.6, 144.3, 128.3, 61.8, 32.6, 18.8, 12.8 ppm. ESI-MS: 136.1137 for [Bpy] (calculated: 136.1126), 161.9016 for [MoO₄] (calculated: 161.8851). Elemental analysis (%), calculated: C 50.00, H 6.53, N 6.48, Mo 22.19, found: C 51.18, H 7.31, N 6.08, Mo 21.66.

Flavone: ¹H NMR (400 MHz, CDCl₃): δ = 8.24-8.26 (m, 1 H), 7.93-7.96 (m, 2 H), 7.69-7.74 (m, 1 H), 7.58-7.60 (m, 1 H), 7.54-7.55 (m, 3 H), 7.42-7.46 (m, 1 H), 6.86 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =178.5, 163.5, 156.3, 133.8, 131.8, 131.6, 129.1, 126.3, 125.7, 124.0, 118.1, 107.6 ppm.

Benzyl benzoate: ¹H NMR (400 MHz, CDCl₃): δ = 8.07-8.09 (m, 2 H), 7.52-7.56 (m, 1 H), 7.32-7.46 (m, 7 H), 5.39 (s, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 136.1, 133.1, 130.2, 129.8, 128.7, 128.4, 128.3, 128.2, 66.7 ppm.

N-benzylideneaniline: ¹H NMR (400 MHz, CDCl₃): δ = 8.46 (s, 1 H), 7.92-7.94 (m, 2 H), 7.49-7.55 (m, 6 H), 7.11-7.13 (m, 2 H) ppm.

Figure S1. FT-IR spectra of five Mo-ILs catalysts.

Figure S2. TG curves of five Mo-ILs catalysts.

Table S1. Th	hermal properties	of five Mo-ILs
--------------	-------------------	----------------

Mo-ILs	$T_{\rm m}(^{\circ}{\rm C})$	$T_{\rm d}(^{\circ}{\rm C})$
[Bmim] ₂ [MoO ₄]	NA ^[a]	200
[Hmim] ₂ [MoO ₄]	NA ^[a]	207
[Omim] ₂ [MoO ₄]	NA ^[a]	221
[N ₂₂₂₂] ₂ [MoO ₄]	69	173
[Bpy] ₂ [MoO ₄]	47	175

[a] NA: not available.

Table S2. Aerobic oxidative tandem reactions for synthesis of flavone using the Mo-IL [Bmim]2[MoO4] catalyst under different reaction conditions.^a

۲ ۱a	о он + Рh он 2а	IL catalyst	о ОН За	Ph C	O O Ph 4a	0 0 5a	Ph
Entry	Catalyst	Temperature	Solvent	Time (h)		Yield (%)	
Liitiy	loading	(°C)	Solvent Time (3a	4a	5a
1	0.6	110	<i>n</i> -HeOH	21	n.d.	17	65
2	0.6	120	<i>n</i> -HeOH	11	1	n.d.	82
3	0.6	130	<i>n</i> -HeOH	8	n.d.	6	88
4	0.2	140	<i>n</i> -HeOH	6	14	37	43
5	0.4	140	<i>n</i> -HeOH	4	n.d.	7	87
6	0.6	140	<i>n</i> -HeOH	3	n.d.	n.d.	98
7	0.6	140	Glycol	3	8	30	34
8	0.6	140	DMSO	3	5	12	79
9	0.6	140	DMF	3	1	1	85
10	0.6	140	DMAC	3	7	15	70
11	0.6	140	<i>n</i> -BuOH	3	n.d.	3	91
12	0.6	140	THFA ^b	3	n.d.	4	94

^a Reaction conditions: **1a** (2.0 mmol), **2a** (2.0 mmol), [Bmim]₂[MoO₄] as catalyst, solvent (1 mL), under an air atmosphere, determined by GC and GC-MS analysis. ^b THFA (tetrahydrofurfuryl alcohol).

Scheme S1. The direct oxidative dehydrogenation of 4a by [Bmim]₂[MoO₄].

Table S3. The Raman frequencies of various molybdenum species calculated at B3LYP/6-31+G(d)/LANL2DZ level. For comparison, the experimental peak of Mo-IL $[Bmim]_2[MoO_4]$ is at 890 cm⁻¹. The neutral carbene after 2-H migration is labeled as $[Bmim_{-H}]$ in the Table.

Species	Raman / cm ⁻¹
[MoO ₄] ²⁻	868.95
[Bmim] ₂ [MoO ₄]	885.72
[HMoO ₄] ⁻	949.15
[Bmim][Bmim_H][HMoO4]	944.31
H_2MoO_4	1022.05

Table S4. Synthesis of various flavone derivatives via selective aerobic cascade oxidation catalyzed by Mo-IL [Bmim]₂[MoO₄].^a

$R_{1} + R_{2} + R_{2} + R_{2} + R_{2} + R_{1} + R_{1} + R_{1} + R_{2} + R_{2$						
Entry	Aldehyde	Ketone	Products	Time (h)	Yield ^b (%)	
1	СНО	O U OH		3	87	
2	CHO	O OH		3	75	
3	F CHO	O OH	O O O F	3	50	
4	CHO	MeO OH	MeO O	5	66	
5	СНО	O OH		6	76	

^a Reaction conditions: aldehyde (2.0 mmol), ketone (3.0 mmol), [Bmim]₂[MoO₄] (0.6 mmol), n-hexanol (1 mL), 140 °C, under an air atmosphere, determined by GC-MS analysis. ^bGC yield.

Table S5. Synthesis of various imine derivatives via selective aerobic cascade oxidation catalyzed by Mo-IL [Bmim]₂[MoO₄].^a

	$R_1 \rightarrow OH +$	R_2	mim]₂[MoO₄] ► R ₁ ^[]	N N	₹ ₂
Entry	Alcohol	Amine	Product	Time (h)	Yield ^b (%)
1	ОН	NH ₂	N	12	91
2	ОН	NH ₂	N	6	89
3	ОН	NH ₂ OMe	N OMe	6	60
4	ОН	Cl NH2	N	6	59
5	ОН	Br NH2	Br N	8	63
6	ОН	NH ₂	N V	6	78

^a Reaction conditions: alcohol (2.0 mmol), amine (2.0 mmol), [Bmim]₂[MoO₄] (0.6 mmol), 100 °C, under an air atmosphere, determined by GC-MS analysis. ^b GC yield.

Table S6. Synthesis of various benzyl benzoate derivatives via selective aerobic cascade oxidation catalyzed by Mo-IL [Bmim]₂[MoO₄].^a

	R ₁ ^{II} OH	$[Bmim]_2[MoO_4] \longrightarrow R_1 \stackrel{(i)}{\smile} O$	JR ₁
Entry	Alcohol	Product	Yield ^b (%)
1	ОН		78
2	ОН		79
3	O ₂ N	O ₂ N NO ₂	60
4	Н3СО	H ₃ CO OCH ₃	62

^a Reaction conditions: alcohol (10.0 mmol), [Bmim]₂[MoO₄] (0.6 mmol), 110 °C, 48 h, under an air atmosphere, determined by GC-MS analysis. ^b GC yield.

Figure S3. The recycle test of the Mo-based IL [Bmim]₂[MoO₄] catalyst.

Figure S4. Raman spectra of (a) reused [Bmim]₂[MoO₄] and (b) fresh [Bmim]₂[MoO₄].

Figure S5. ¹H NMR spectra of [Bmim]₂[MoO₄] at 25 °C and 70 °C.

Figure S6. ¹³C NMR spectra of [Bmim]₂[MoO₄] at 25 °C and 70 °C

Figure S7. EPR spectra of experimental (black line: no catalyst, [Bmim][Tf₂N]; blue line: [Bmim]₂[MoO₄]) and simulated spectrum (wine red line). The simulated spectrum of [Bmim]₂[MoO₄] (wine red line) was composed of DMPO-OOH (red line), DMPO-OH (blue line), DMPOX (pink line) and DMPO-degradation (green line) radicals in a ratio roughly 1:0.3:0.2:0.2. Detection conditions: 70 °C, DMPO 10 μ L, Mo-IL catalyst 25 mg, *n*-hexanol 30 mL, 1 mL of the solution was collected and detected by room-temperature EPR.

NMR spectra of Mo-ILs

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

NMR spectra of products

¹³C NMR spectra of benzyl benzoate

