Multi-component solvent-free cascade reaction of 2-cyanoacetamides with ketones and acetone: highly regioselective synthesis of functionalized pyridin-2-ones bearing quaternary centers

Lingbin Kong, Rong Huang, Haodan He, Yunxiang Fan, Jun Lin* and Shengjiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents:

General Information	S3
General Procedure for the Preparation of 2 and 4	S3
General Procedure for the Preparation of 3 and 5	S4
Spectroscopic Data of 2–6	S4
X-ray Structure and Data of 2a and 4a.	S16
Figure S1. X-Ray crystal structure of 2a	S16
Table S1. Crystal data and structure refinement for 2a	S16
Table S2. Bond lengths [A] and angles [deg] for 2a	S17
Figure S2. X-Ray crystal structure of 4a	S18
Table S3. Crystal data and structure refinement for 4a	S18
Figure S3. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 2a	S19
Figure S4. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 2a	S20
Figure S5. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 2b	S21
Figure S6. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 2b	S22
Figure S7. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 2c	S23
Figure S8. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 2c	S24
Figure S9. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 2d	S25
Figure S10. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 2d	S26
Figure S11. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 2e	S27
Figure S12. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 2e	S28
Figure S13. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 2f	S29
Figure S14. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 2f	
Figure S15. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 2g	S31
Figure S16. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 2g	S32

Figure S17.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3a	S33
Figure S18.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3a	S34
Figure S19.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3b	S35
Figure S20.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3b	S36
Figure S21.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3c	S37
Figure S22.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3c	S38
Figure S23.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3d	S39
Figure S24.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3d	S40
Figure S25.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3e	S41
Figure S26.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3e	S42
Figure S27.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3f	S43
Figure S28.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3f	S44
Figure S29.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3g	S45
Figure S30.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3 g	S46
Figure S31.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3h	S47
Figure S32.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3h	S48
Figure S33.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3i	S49
Figure S34.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3i	S50
Figure S35.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3j	S51
Figure S36.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3 j	S52
Figure S37.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4a	S53
Figure S38.	¹³ C NMR (150MHz, CDCl ₃) spectra of compound 4a	S54
Figure S39.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4b	S55
Figure S40.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 4b	S56
Figure S41.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4c	S57
Figure S42.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 4c	S58
Figure S43.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4d	S59
Figure S44.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 4e	S60
Figure S45.	¹³ C NMP (150 MHz, CDCl ₃) spectra of compound 4e	501
Figure S40. Figure S47	¹ H NMR (600 MHz, CDCl ₂) spectra of compound 5 a	S63
Figure S48.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 5a	S64
Figure S49.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 5b	S65
Figure S50.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 5b	S66
Figure S51.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 5c	S67
Figure S52.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 5 c	S68
Figure S53.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 5d	S69
rigure 854.	¹	5/U 871
Figure S55.	¹³ C NMR (150 MHz, CDCl ₂) spectra of compound 6a	S72
Figure S57.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 6b	S73
Figure S58.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 6b	S74
Figure S59.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 6c	S75
Figure S60.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 6c	S76
References	and Notes	S77

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 & DRX600. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated CDCl₃ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument. Materials used were purchased from Adamas-beta Corporation Limited.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh). The 2-cyanoacetamide **1a–1c** were commercially available reagents, and 2-cyanoacetamide **1d–1g** were prepared according to the literature.¹

General Procedure for the Preparation of 2 and 4

First, cyanoacetamide **1** (1.0 mmol) and acetone (5 ml) were charged into a round-bottom flask. Then, piperidine (0.5 mmol) was added to the mixture. The mixture was stirred at 50 °C for about 8 hours and monitored by TLC until the The intermediate was completely consumed.. The reaction mixture was poured into 20 mL of water and 10 mL of ethyl acetate for extraction and separation. The crude product was purified by column chromatography (petroleum ether/EtOAc =6:1), and a series of compounds **2** or **4** were obtained with 71–95% yield.

First, cyanoacetamide 1 (1.0 mmol) and cyclic ketone (0.5 mL) were charged into a round-bottom flask. Then, piperidine (0.5 mmol) was added to the mixture. The mixture was stirred at 50 °C for about 2 hours. Next, acetone (1.0 mL) was charged into the reaction mixture. The mixture was continually stirred at 50 °C for 6 hours and monitored by TLC until the intermediate of the condensation reaction substrate was completely consumed. The reaction mixture was poured into 20 mL of water and 10 mL of ethyl acetate for extraction and separation. The crude product was purified by column chromatography (petroleum ether/EtOAc =10:1), and a series of compounds **3** or **5** were obtained with 68–90% yield.

Spectroscopic Data of 2-6

4,4,6-Trimethyl-2-oxo-1,2,3,4-tetrahydropyridine-3-carbonitrile (2a)

White solid; Mp: 138.8–139.4 °C; IR (KBr): 3438, 2969, 1670, 1630, 1497, 1399, 1325, 1167, 1079, 762, 702, 664, 584, 527, 437 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.20$ (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.85 (s, 3H, CH₃), 3.46 (s, 1H, CH), 4.77 (s, 1H, CH), 8.42 (s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 18.6$, 23.2, 27.6, 35.1, 47.5, 111.4, 115.0, 131.2, 164.0. HRMS (TOF ES⁺): *m/z* calcd for C₉H₁₃N₂O [(M+H)⁺], 165.1022; found, 165.1025.

1,4,4,6-Tetramethyl-2-oxo-1,2,3,4-tetrahydropyridine-3-carbonitrile (2b)

White solid; Mp: 148.8–149.6 °C; IR (KBr): 3430, 1626, 1368, 1114, 760, 695,

607, 564 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.15 (s, 3H, CH₃), 1.23 (s, 3H, CH₃), 1.95 (s, 3H, CH₃), 3.15 (s, 3H, CH₃), 3.46 (s, 1H, CH), 4.92 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ = 19.0, 23.0, 27.2, 29.5, 33.7, 48.1, 114.5, 115.3, 134.6, 162.5. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₀H₁₅N₂O [(M+H)⁺], 179.1179; found, 179.1180.

1-Ethyl-4,4,6-trimethyl-2-oxo-1,2,3,4-tetrahydropyridine-3-carbonitrile (2c)

White solid; Mp: 83.7–84.5 °C; IR (KBr): 2974, 1668, 1625, 1390, 1262, 1119, 689, 610, 543 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.13$ (t, J = 6.4 Hz, 6H, CH₃), 1.23 (s, 3H, CH₃), 1.95 (s, 3H, CH₃), 3.45 (s, 1H, CH), 3.52–3.86 (m, 2H, CH₂), 4.95 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 13.6$, 18.6, 22.8, 27.1, 33.7, 37.4, 48.2, 115.4, 115.8, 133.9, 162.0. HRMS (TOF ES⁺): *m/z* calcd for C₁₁H₁₇N₂O [(M+H)⁺], 193.1335; found, 193.1334.

1-Benzyl-4,4,6-trimethyl-2-oxo-1,2,3,4-tetrahydropyridine-3-carbonitrile (2d)

White solid; Mp: 117.1–117.6 °C; IR (KBr): 3442, 2966, 2883, 2837, 1676, 1623, 1498, 1445, 1384, 1238, 1118, 750, 705, 660, 612, 564, 441 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.16$ (s, 3H, CH₃), 1.25 (s, 3H, CH₃), 1.91 (s, 3H, CH₃), 3.55 (s, 1H, CH), 4.63–5.11 (m, 2H, CH₂), 4.92 (d, J = 1.0 Hz, 1H, CH), 7.21–7.33 (m, 5H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 19.1$, 23.0, 27.4, 33.9, 45.8, 48.3, 115.4, 126.8, 127.0, 127.5, 128.8, 134.4, 137.3, 163.0. HRMS (TOF ES⁺): m/z calcd for C₁₆H₁₉N₂O [(M+H)⁺], 255.1492; found, 255.1496.

1-(4-Chlorobenzyl)-4,4,6-trimethyl-2-oxo-1,2,3,4-tetrahydropyridine-3-carbonitri le (2e)

White solid; Mp: 114.5–115.0 °C; IR (KBr): 3440, 2967, 1672, 1629, 1492, 1392, 1237, 1100, 1016, 832, 787, 714, 669, 605, 566, 516 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.15$ (s, 3H, CH₃), 1.25 (s, 3H, CH₃), 1.91 (s, 3H, CH₃), 3.55 (s, 1H, CH), 4.59–5.06 (m, 2H, CH₂), 4.92 (s, 1H, CH), 7.17 (d, J = 8.3 Hz, 2H, ArH), 7.29 (d, J = 6.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 19.1$, 23.0, 27.3, 33.9, 45.2, 48.2, 115.2, 115.7, 128.3, 128.5, 128.9, 129.0, 133.4, 134.0, 135.8, 163.0. HRMS (TOF ES⁺): m/z calcd for C₁₆H₁₈ClN₂O [(M+H)⁺], 289.1102; found, 289.1100.

4,4,6-Trimethyl-1-(4-methylbenzyl)-2-oxo-1,2,3,4-tetrahydropyridine-3-carbonitr ile (2f)

White solid; Mp: 100.7–101.3 °C; IR (KBr): 3443, 2966, 1668, 1627, 1388, 1234, 1116, 789, 673, 596, 539, 443 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.15 (s, 3H, CH₃), 1.24 (s, 3H, CH₃), 1.91 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 3.54 (s, 1H, CH), 4.58–5.08 (m, 2H, CH₂), 4.90 (s, 1H, CH), 7.17 (d, *J* = 8.3 Hz, 2H, ArH), 7.29 (d, *J* = 6.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 19.1, 21.1, 23.0, 27.4, 33.9, 45.6, 48.3, 115.3, 126.8, 127.0, 129.4, 134.3, 134.4, 137.2, 162.9. HRMS (TOF ES⁺): *m/z* calcd for C₁₇H₂₁N₂O [(M+H)⁺], 269.1648; found, 269.1651.

1-(4-Fluorobenzyl)-4,4,6-trimethyl-2-oxo-1,2,3,4-tetrahydropyridine-3-carbonitri le (2g)

White solid; Mp: 88.9–89.3 °C; IR (KBr): 3432, 2972, 1683, 1619, 1512, 1435, 1388, 1227, 1152, 1101, 842, 808, 675, 611, 545, 485 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.13$ (s, 3H, CH₃), 1.24 (s, 3H, CH₃), 1.92 (s, 3H, CH₃), 3.55 (s, 1H, CH), 4.59–5.07(m, 2H, CH₂), 4.94 (s, 1H, CH), 6.99–7.28 (m, 4H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 19.0$, 23.0, 27.3, 33.9, 45.2, 48.2, 115.2, 115.7 (t, J = 10.5 Hz), 115.2, 128.9 (d, J = 9.0 Hz), 133.1, 134.1, 161.3, 162.9. HRMS (TOF ES⁺): m/z calcd for C₁₆H₁₈FN₂O [(M+H)⁺], 273.1398; found, 273.1395.

White solid; Mp: 87.4–88.3 °C; IR (KBr): 3434, 2974, 1664, 1625, 1374, 1196, 1118, 770, 670, 610, 441 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.18–1.34 (m, 2H, CH₂), 1.43–1.67 (m, 8H, CH₂), 1.82 (d, *J* = 9.0 Hz, 3H, CH₃), 3.35 (s, 1H, CH), 4.97 (s, 1H, CH), 8.23 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃): δ =19.2, 21.5, 21.8, 25.2, 29.4, 32.1, 34.3, 36.4, 48.5, 111.3, 115.4, 134.8, 162.5 HRMS (TOF ES⁺): *m/z* calcd for C₁₂H₁₇N₂O [(M+H)⁺], 205.1335; found, 205.1331.

3,4-Dimethyl-2-oxo-3-azaspiro[5.5]undec-4-ene-1-carbonitrile (3b)

White solid; Mp: 100.9–101.4 °C; IR (KBr): 3422, 2923, 1618, 1384, 1331, 1115, 784, 654, 615 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.14-1.35$ (m, 2H, CH₂), 1.39–1.45 (m, 4H, CH₂), 1.51–1.57 (m, 4H, CH₂), 1.92 (s, 3H, CH₃), 3.07 (s, 3H, CH₃), 3.38 (s, 1H, CH), 5.09 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 19.2$, 21.5, 21.8, 25.2, 29.4, 32.1, 34.3, 36.4, 47.8, 111.3, 115.4, 134.8, 162.5. HRMS (TOF ES⁺): *m/z* calcd for C₁₃H₁₉N₂O [(M+H)⁺], 219.1492; found, 219.1490.

3-Ethyl-4-methyl-2-oxo-3-azaspiro[5.5]undec-4-ene-1-carbonitrile (3c)

White solid; Mp: 99.7–100.3 °C; IR (KBr): 3435, 2934, 2855, 1675, 1622, 1451, 1392, 1260, 1119, 770, 677, 605, 554 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.13 (t, *J* =7.1 Hz, 3H, CH₃), 1.25–1.42 (m, 2H, CH₂), 1.47–1.52 (m, 4H, CH₂), 1.58–1.72 (m, 4H, CH₂), 1.98 (s, 3H, CH₃), 3.42 (s, 3H, CH₃), 3.60–3.76 (m, 2H, CH₂), 5.16 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ =13.6, 18.9, 21.6, 21.8, 25.2, 32.3, 34.3, 36.5, 37.4, 47.8, 112.7, 115.4, 134.1, 162.0. HRMS (TOF ES⁺): *m/z* calcd for C₁₄H₂₁N₂O [(M+H)⁺], 233.1648; found, 233.1649.

4,9-Dimethyl-2-oxo-3-azaspiro[5.5]undec-4-ene-1-carbonitrile (3d)

White solid; Mp: 107.7–108.1 °C; IR (KBr): 3429, 3229, 3170, 3113, 2931, 2867, 1708, 1684, 1620, 1452, 1376, 1119, 829, 679, 504 cm⁻¹; ¹H NMR (600 MHz, CDCl₃₆): $\delta = 0.94$ (d, J = 1.8 Hz, 3H, CH₃), 0.95–1.17 (m, 2H, CH₂), 1.34–1.50 (m, 2H, CH₂), 1.56–1.72 (m, 4H, CH₂), 1.88 (s, 3H, CH₃), 2.00–2.02 (m, 1H, CH), 3.61 (s, 1H, CH), 4.78 (s, 1H, CH), 8.50 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 18.7$, 20.7, 28.8, 29.0, 30.2, 31.0, 32.3, 37.5, 42.1, 110.4, 115.3, 131.6, 163.8. HRMS (TOF ES⁺): *m/z* calcd for C₁₃H₁₉ClN₂O [(M+H)⁺], 219.1492; found, 219.1490.

3,4,9-Trimethyl-2-oxo-3-azaspiro[5.5]undec-4-ene-1-carbonitrile (3e)

White solid; Mp: 109.3–109.9 °C; IR (KBr): 3436, 2935, 1669, 1624, 1441, 1371, 1111, 778, 657, 607, 557 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 0.93$ (q, J = 3.2 Hz, 3H, CH₃), 1.08–1.14 (m, 2H, CH₂), 1.31–1.45 (m, 2H, CH₂), 1.58–1.72 (m, 4H, CH₂), 1.99 (s, 4H, CH₃, CH), 3.13 (s, 3H, CH₃), 3.68 (s, 1H, CH), 4.90 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 19.1$, 20.9, 28.0, 29.1, 29.5, 30.3, 31.0, 32.5, 36.1, 42.4, 113.9, 115.6, 135.0, 162.2. HRMS (TOF ES⁺): *m/z* calcd for C₁₄H₂₁N₂O [(M+H)⁺], 233.1648; found, 233.1650.

3-Ethyl-4,9-dimethyl-2-oxo-3-azaspiro[5.5]undec-4-ene-1-carbonitrile (3f)

White solid; Mp: 110.0–110.5 °C; IR (KBr): 3437, 2936, 2893, 1675, 1624, 1459, 1391, 1265, 1215, 1119, 780, 664, 604 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 0.93$ (d, J = 6.7 Hz, 3H, CH₃), 1.08–1.15 (m, 5H, CH₂, CH₃), 1.31–1.44 (m, 2H, CH₂), 1.57–1.65 (m, 4H, CH₂), 1.99 (s, 3H, CH₃), 2.00(s, 1H, CH), 3.50 (q, J = 0.93 (d, J = 0.9

7.0 Hz, 1H, CH₂), 3.65 (s, 1H, CH), 3.84 (q, J = 7.1 Hz, 1H, CH₂), 4.92 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 13.4$, 18.7, 20.9, 28.8, 29.1, 29.7, 30.6, 30.9, 32.6, 36.2, 37.3, 42.5, 115.0, 115.7, 134.2, 161.7. HRMS (TOF ES⁺): m/z calcd for C₁₅H₂₃N₂O [(M+H)⁺], 247.1805; found, 247.1803.

9-Ethyl-3,4-dimethyl-2-oxo-3-azaspiro[5.5]undec-4-ene-1-carbonitrile (3g)

White solid; Mp: 131.7–132.0 °C; IR (KBr): 3422, 3231, 2923, 2899, 1618, 1384, 1331, 1115, 615 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 0.89$ (t, J = 7.4 Hz, 3H, CH₃), 1.00–1.27 (m, 4H, CH₂), 1.43–1.58 (m, 6H, CH₂), 1.66–1.72 (m, 1H, CH), 1.98 (s, 3H, CH₃), 3.14 (s, 3H, CH₃), 3.39 (s, 1H, CH), 5.17 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 11.4$, 19.3, 28.0, 28.2, 29.5, 31.9, 34.7, 36.5, 38.4, 48.4, 111.0, 115.3, 134.8, 162.6. HRMS (TOF ES⁺): m/z calcd for C₁₅H₂₃N₂O [(M+H)⁺], 247.1805; found, 247.1803.

9-Ethyl-4-methyl-2-oxo-3-azaspiro[5.5]undec-4-ene-1-carbonitrile (3h)

White solid; Mp: 148.8–149.3 °C; IR (KBr): 3431, 3236, 3121, 2934, 2865, 1688, 1624, 1450, 1373, 1123, 816, 549, 509 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.7 Hz, 3H, CH₃), 1.12–1.19 (m, 2H, CH₂), 1.29–1.37 (m, 4H, CH₂), 1.44–1.49 (m, 1H, CH), 1.66–1.72 (m, 3H, CH₂), 1.88 (s, 3H, CH₃), 2.00–2.02 (m, 1H, CH₂), 3.61 (s, 1H, CH), 4.79 (s, 1H, CH), 8.43 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 11.6$, 18.7, 26.5, 26.7, 27.7, 31.1, 32.4, 37.1, 37.8, 42.1, 110.5, 115.3, 131.5, 163.8. HRMS (TOF ES⁺): m/z calcd for C₁₄H₂₁N₂O [(M+H)⁺], 233.1648; found, 233.1649.

9-Methyl-7-oxo-8-azaspiro[4.5]dec-9-ene-6-carbonitrile (3i)

White solid; Mp: 165.2–165.8 °C; IR (KBr): 3281, 2960, 2870, 1672, 1447, 1385, 1264, 1114, 786, 611 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.63-1.74$ (m, 8H, CH₂), 1.81 (s, 3H, CH₃), 3.50 (s, 1H, CH), 4.82 (s, 1H, CH), 8.38 (s, 1H, NH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 18.6$, 23.9, 24.2, 36.0, 37.3, 44.8, 45.2, 111.5, 115.6, 131.1, 164.1. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₁H₁₅N₂O [(M+H)⁺], 191.1179; found, 191.1183.

8,9-Dimethyl-7-oxo-8-azaspiro[4.5]dec-9-ene-6-carbonitrile (3j)

White solid; Mp: 144.2–144.9 °C; IR (KBr): 3434, 2962, 1679, 1626, 1447, 1370, 1259, 1121, 774, 658, 609, 566 cm⁻¹; ¹H NMR (600 MHz, CDCl₃₆): δ = 1.65–1.86 (m, 8H, CH₂), 1.96 (s, 3H, CH₃), 3.15 (s, 3H, CH₃), 3.55 (s, 1H, CH), 5.05 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ =19.0, 23.9, 24.1, 29.5, 35.9, 37.0, 44.0, 45.3, 114.9, 115.9, 134.5, 162.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₂H₁₇N₂O [(M+H)⁺], 205.1335; found, 205.1335.

4,4-Dimethyl-6-methylene-2-oxo-1-phenylpiperidine-3-carbonitrile (4a)

White solid; Mp: 166.6–166.9 °C; IR (KBr): 3435, 2968, 2836, 1668, 1628, 1498, 1375, 1325, 1123, 762, 700, 600 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.29 (s, 6H, CH₃), 2.55–2.66 (m, 2H, CH₂), 3.62 (s, 1H, CH), 3.81 (s, 1H, CH₂), 4.23 (s, 1H, CH₂), 7.13 (d, *J* = 7.6 Hz, 2H, ArH), 7.40–7.48 (m, 3H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 22.8, 27.6, 32.7, 42.3, 48.7, 97.6, 115.3, 128.4, 128.6, 129.8, 137.7, 142.4, 161.2. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₅H₁₇N₂O [(M+H)⁺], 241.1335; found, 241.1335.

1-(4-Chlorophenyl)-4,4-dimethyl-6-methylene-2-oxopiperidine-3-carbonitrile (4b)

White solid; Mp: 179.2–179.9 °C; IR (KBr): 3442, 2961, 1676, 1628, 1487, 1372, 1291, 1096, 843, 792, 724, 599, 517 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.28 (s, 3H, CH₃), 1.29 (s, 3H, CH₃), 2.55–2.66 (m, 2H, CH₂), 3.62 (s, 1H, CH), 3.83 (s, 1H, CH₂), 4.26 (s, 1H, CH₂), 7.08 (d, *J* = 8.5 Hz, 2H, ArH), 7.45 (d, *J* = 8.5 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 22.8, 27.7, 32.8, 42.2, 48.7, 97.8, 115.1, 129.9, 130.1, 134.6, 136.1, 142.3, 161.3. HRMS (TOF ES⁺): *m/z* calcd for C₁₅H₁₆ClN₂O [(M+H)⁺], 275.0946; found, 275.0940.

4,4-Dimethyl-6-methylene-2-oxo-1-(p-tolyl)piperidine-3-carbonitrile (4c)

White solid; Mp: 188.1–188.8 °C; IR (KBr): 3442, 2971, 2835, 1625, 1510, 1366, 1120, 768, 660, 602, 554, 522, 498, 436 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.28 (s, 6H, CH₃), 2.39 (s, 3H, CH₃), 2.54–2.65 (m, 2H, CH₂), 3.60 (s, 1H, CH), 3.85 (s, 1H, CH₂), 4.22 (s, 1H, CH₂), 7.00 (d, *J* = 8.2 Hz, 2H, ArH), 7.27 (d, *J* = 8.0 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 21.2, 22.8, 27.7, 32.7, 42.2, 48.7, 97.5, 115.4, 128.0, 130.4, 135.0, 138.5, 142.5, 161.2. HRMS (TOF ES⁺): *m/z* calcd for C₁₆H₁₉N₂O [(M+H)⁺], 255.1492; found, 255.1490.

1-(4-Fluorophenyl)-4,4-dimethyl-6-methylene-2-oxopiperidine-3-carbonitrile (4d)

White solid; Mp: 182.6–183.0 °C; IR (KBr): 3442, 2966, 1626, 1513, 1370, 1114, 836, 766, 688, 601, 533 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.28 (s, 3H, CH₃),

1.29 (s, 3H, CH₃), 2.56–2.66 (m, 2H, CH₂), 3.62 (s, 1H, CH), 3.82 (s, 1H, CH₂), 4.26 (s, 1H, CH₂), 7.10–7.27 (m, 4H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 22.8, 27.7, 32.8, 42.2, 48.7, 97.6, 116.8 (d, J = 22.5 Hz), 130.2 (d, J = 9.0 Hz), 133.4, 142.5, 161.4 (d, J = 12.0 Hz), 163.1. HRMS (TOF ES⁺): m/z calcd for C₁₅H₁₆FN₂O [(M+H)⁺], 259.1241; found, 259.1240.

1-(4-Methoxyphenyl)-4,4-dimethyl-6-methylene-2-oxopiperidine-3-carbonitrile (4e)

White solid; Mp: 144.4–144.8 °C; IR (KBr): 3441, 2964, 1677, 1624, 1512, 1369, 1255, 1111, 867, 768, 660, 606, 556 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.28 (s, 6H, CH₃), 2.54–2.64 (m, 2H, CH₂), 3.61 (s, 1H, CH), 3.86 (s, 3H, OCH₃), 4.23 (s, 1H, CH₂), 6.97 (d, *J* = 8.8 Hz, 2H, ArH), 7.03 (d, *J* = 8.8 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 22.8, 27.7, 32.7, 42.2, 48.7, 55.5, 97.5, 115.0, 115.4, 129.3, 130.2, 142.6, 159.4, 161.4. HRMS (TOF ES⁺): *m/z* calcd for C₁₆H₁₉N₂O₂ [(M+H)⁺], 271.1441; found, 271.1439.

4-Methylene-2-oxo-3-phenyl-3-azaspiro[5.5]undecane-1-carbonitrile (5a)

White solid; Mp: 162.4–162.8 °C; IR (KBr): 3440, 2962, 2931, 2877, 1674, 1627, 1477, 1364, 1266, 1199, 1124, 799, 723, 690, 606, 528, 436 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.26-1.71$ (m, 10H, CH₂), 2.49–3.01 (m, 2H, CH₂), 3.66 (s, 1H, CH), 3.82 (s, 1H, CH₂), 4.27 (s, 1H, CH₂), 7.13 (d, J = 7.5 Hz, 2H, ArH), 7.39–7.49 (m, 3H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.3$, 21.5, 25.3, 31.9, 34.6, 35.2, 36.9, 97.8, 115.3, 128.4, 128.6, 129.8, 137.7, 142.1, 161.1. HRMS (TOF ES⁺): m/z calcd for C₁₈H₂₁N₂O [(M+H)⁺], 281.1648; found, 281.1644.

3-(4-Fluorophenyl)-4-methylene-2-oxo-3-azaspiro[5.5]undecane-1-carbonitrile (5b)

White solid; Mp: 167.9–168.6 °C; IR (KBr): 3439, 2937, 1631, 1508, 1368, 1214, 1119, 672, 605, 543 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.30-1.70$ (m, 10H, CH₂), 2.45–3.01 (m, 2H, CH₂), 3.65 (s, 1H, CH), 3.83 (s, 1H, CH₂), 4.28 (s, 1H, CH₂), 7.01 (d, J = 8.2 Hz, 2H, ArH), 7.26 (t, J = 4.0 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.2$, 21.3, 21.5, 25.3, 31.9, 34.5, 35.1, 36.9, 48.1, 97.6, 115.4, 128.0, 130.4, 135.0, 138.5, 142.1, 161.1. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₂₀FN₂O [(M+H)⁺], 299.1554; found, 299.1549.

4-Methylene-2-oxo-3-(p-tolyl)-3-azaspiro[5.5]undecane-1-carbonitrile (5c)

White solid; Mp: 174.4–174.7 °C; IR (KBr): 3441, 2936, 2867, 1677, 1630, 1514, 1454, 1372, 1302, 1112, 836, 767, 706, 661, 602, 558 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.52$ –1.70 (m, 10H, CH₂), 2.39 (s, 3H, CH₃), 2.44–2.99 (m, 2H, CH₂), 3.64 (s, 1H, CH), 3.85 (s, 1H, CH₂), 4.25 (s, 1H, CH₂), 7.10–7.18 (m, 4H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.3$, 21.4, 25.3, 31.9, 34.6, 35.2, 36.9, 48.1, 97.8, 115.1, 116.8 (d, J = 22.5 Hz), 130.2 (d, J = 7.5 Hz), 133.4, 142.1, 161.4 (d, J = 30.0 Hz), 163.1. HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₂₃N₂O [(M+H)⁺], 295.1805; found, 295.1800.

3-(4-Methoxyphenyl)-4-methylene-2-oxo-3-azaspiro[5.5]undecane-1-carbonitrile (5d)

White solid; Mp: 171.9–172.3 °C; IR (KBr): 3436, 2972, 1683, 1614, 1512, 1435, 1390, 1342, 1276, 1227, 1154, 841, 808, 761, 671, 544 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.52-1.70$ (m, 10H, CH₂), 2.44–2.99 (m, 2H, CH₂), 3.64 (s, 1H, CH), 3.83 (s, 3H, OCH₃), 3.87 (s, 1H, CH₂), 4.26 (s, 1H, CH₂), 6.97 (d, J = 8.8 Hz, 2H, ArH), 7.04 (t, J = 8.9 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.3$, 21.5, 25.3, 31.9, 34.5, 35.1, 36.9, 48.1, 55.5, 97.6, 115.0, 115.3, 129.3, 130.2, 142.3, 159.4, 161.3. HRMS (TOF ES⁺): m/z calcd for C₁₉H₂₃N₂O₂ [(M+H)⁺], 311.1754; found, 311.1746.

6-Methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile (6a)

White solid; Mp: 162.2–163.7 °C; IR (KBr): 3434, 3235, 3172, 3121, 2962, 1678, 1622, 1389, 1273, 1193, 1121, 767, 700, 612, 561, 521 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.96 (s, 3H, CH₃), 3.93 (t, *J* =5.6 Hz, 1H, CH), 3.98 (d, *J* =6.8 Hz, 1H, CH), 5.13 (d, *J* =5.2 Hz, 1H, CH), 7.26–7.38 (m, 5H, ArH), 7.92 (s, 1H, NH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 19.0, 41.1, 41.4, 103.7, 114.8, 128.0, 128.4, 129.1, 134.1, 136.9, 162.7. HRMS (TOF ES⁺): *m/z* calcd for C₁₃H₁₃N₂O [(M+H)⁺], 213.1022; found, 213.1024.

6-Methyl-2-oxo-4-(p-tolyl)-1,2,3,4-tetrahydropyridine-3-carbonitrile (6b)

White solid; Mp: 160.5–161.0 °C; IR (KBr): 3439, 3233, 1618, 1457, 1339, 1145, 675 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 1.93$ (s, 3H, CH₃), 2.34 (d, J = 9.0 Hz, 3H, CH₃), 3.65 (t, J = 12.0 Hz, 1H, CH), 3.96 (d, J = 11.9 Hz, 1H, CH), 4.94 (s, 1H, CH), 7.17–7.18 (m, 4H, ArH), 7.50 (s, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 18.9$, 21.1, 42.7, 42.8, 104.3, 115.9, 127.5, 129.7, 129.8, 133.8, 136.5, 138.0, 163.3. HRMS (TOF ES⁺): m/z calcd for C₁₄H₁₅N₂O [(M+H)⁺], 227.1179; found, 227.1180.

1,6-Dimethyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile (6c)

White solid; Mp: 102.5–103.1 °C; IR (KBr): 3440, 1671, 1454, 1371, 1134, 771, 710, 668, 508 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.06 (d, *J* =1.2 Hz, 3H, CH₃), 3.20 (t, *J* =3.6 Hz, 3H, CH₃), 3.71 (d, *J* =11.6 Hz, 1H, CH), 3.90 (d, *J* =11.6 Hz, 1H, CH), 5.13 (d, *J* =1.3 Hz, 1H, CH), 7.27 (q, *J* =2.7 Hz, 2H, ArH), 7.30–7.33 (m, 1H, ArH), 7.37 (t, *J* =7.5 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 19.4, 29.8, 41.7, 43.2, 107.2, 116.0, 127.5, 128.2, 129.2, 137.3, 139.2, 161.8. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₄H₁₅N₂O [(M+H)⁺], 227.1179; found, 227.1181.

X-ray Structure and Data² of 2a and 4a.

Figure S1. X-Ray crystal structure of 2a

 Table S1. Crystal data and structure refinement for 2a

Identification code	1	
Empirical formula	C9 H12 N2 O	
Formula weight	164.21	
Temperature	293.15 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic, P2(1)/c	
Space group	P 1 21/c 1	
Unit cell dimensions	$a = 6.4219(12) \text{ Å} \qquad \alpha = 90^{\circ}.$	
	$b = 10.741(2) \text{ Å} \qquad \beta = 95.887(3)^{\circ}.$	
	$c = 13.507(3) \text{ Å} \qquad \gamma = 90^{\circ}.$	
Volume	926.8(3) Å ³	
Z	4	
Density (calculated)	1.177 Mg/m ³	
Absorption coefficient	0.079 mm ⁻¹	
F(000)	352	
Theta range for data collection	3.032 to 24.972°.	
Index ranges	-7<=h<=7, -11<=k<=12, -15<=l<=15	
Reflections collected	5110	
Independent reflections	1621 [R(int) = 0.0704]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.981324 and 0.401939	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1621 / 0 / 113	
Goodness-of-fit on F ²	0.900	
Final R indices [I>2sigma(I)]	R1 = 0.0500, wR2 = 0.1048	
R indices (all data)	R1 = 0.1226, wR2 = 0.1279	
Extinction coefficient	0.034(5)	
Largest diff. peak and hole	0.123 and -0.149 e.Å ⁻³	

Cl(1)-C(14)	1.353(5)	C(4)-N(1)-C(1)	112.4(3)
O(1)-C(2)	1.224(5)	O(2)-N(2)-O(3)	121.1(4)
O(2)-N(2)	1.235(4)	O(2)-N(2)-C(3)	119.9(4)
O(3)-N(2)	1.256(5)	O(3)-N(2)-C(3)	119.0(4)
N(1)-C(4)	1.324(5)	C(4)-N(3)-C(11)	129.1(4)
N(1)-C(1)	1.455(5)	C(3)-C(2)-C(1)	105.2(3)
N(2)-C(3)	1.392(5)	N(2)-C(3)-C(2)	125.4(4)
N(3)-C(4)	1.327(5)	N(2)-C(3)-C(4)	124.8(4)
N(3)-C(11)	1.429(5)	C(2)-C(3)-C(4)	109.5(4)
C(1)-C(5)	1.513(6)	N(1)-C(4)-N(3)	125.3(4)
C(1)-C(2)	1.534(6)	N(1)-C(4)-C(3)	109.3(3)
C(2)-C(3)	1.424(6)	N(3)-C(4)-C(3)	125.4(4)
C(3)-C(4)	1.425(6)	C(6)-C(5)-C(10)	118.5(4)
C(5)-C(6)	1.382(7)	C(6)-C(5)-C(1)	122.5(4)
C(5)-C(10)	1.386(6)	C(10)-C(5)-C(1)	118.9(4)
C(6)-C(7)	1.403(6)	C(5)-C(6)-C(7)	120.6(5)
C(7)-C(8)	1.356(8)	C(8)-C(7)-C(6)	120.2(5)
C(8)-C(9)	1.399(8)	C(7)-C(8)-C(9)	120.3(5)
C(9)-C(10)	1.390(6)	C(10)-C(9)-C(8)	119.0(5)
C(11)-C(12)	1.373(6)	C(5)-C(10)-C(9)	121.3(5)
C(11)-C(16)	1.387(6)	C(12)-C(11)-C(16)	119.8(4)
C(12)-C(13)	1.379(6)	C(12)-C(11)-N(3)	118.2(4)
C(13)-C(14)	1.369(7)	C(16)-C(11)-N(3)	121.9(4)
C(14)-C(15)	1.362(7)	C(11)-C(12)-C(13)	121.1(4)
C(15)-C(16)	1.391(6)	C(14)-C(13)-C(12)	118.1(4)
N(1)-C(1)-C(5)	114.1(3)	Cl(1)-C(14)-C(15)	118.8(4)
N(1)-C(1)-C(2)	103.2(3)	Cl(1)-C(14)-C(13)	118.6(4)
C(5)-C(1)-C(2)	110.8(3)	C(15)-C(14)-C(13)	122.5(4)
O(1)-C(2)-C(3)	131.9(4)	C(14)-C(15)-C(16)	119.0(4)
O(1)-C(2)-C(1)	122.9(4)	C(11)-C(16)-C(15)	119.5(4)

Table S2. Bond lengths [A] and angles [deg] for 2a

Figure S2. X-Ray crystal structure of 4a

Table 55. Crystal data and structure refinement for 4	Table S3.	Crystal data and	structure refinement for	4a
--	-----------	------------------	--------------------------	----

-	
dentification code	180908ysj_0m
Empirical formula	C15 H16 N2 O
Formula weight	240.30
Temperature	296.15 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 1 21/c 1
Unit cell dimensions	$a = 7.3319(11) \text{ Å}_{a}$
	b = 11.5409(16) Å
	c = 16.169(2) Å
Volume	1350.8(3) Å ³
Z	4
Density (calculated)	1.182 Mg/m ³
Absorption coefficient	0.075 mm ⁻¹
F(000)	512
Crystal size	0.15x 0.12x 0.10 mm ³
Theta range for data collection	2.552 to 27.783°.
Index ranges	-9<=h<=9, -10<=k<=14, -21<=l<=18
Reflections collected	8001
Independent reflections	3095 [R(int) = 0.0300]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6809
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3095 / 0 / 165
Goodness-of-fit on F^2	1.020
Final R indices [I>2sigma(I)]	R1 = 0.0473, $wR2 = 0.1176$
R indices (all data)	R1 = 0.0799, wR2 = 0.1354
Extinction coefficient	n/a

Figure S3. ¹H NMR (500 MHz, CDCl₃) spectra of compound 2a

S20

Figure S7. ¹H NMR (600 MHz, CDCl₃) spectra of compound **2c**

Figure S21. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3c

Figure S27. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3f

Figure S33. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3i

DEPT135

S68

Figure S55. 1 H NMR (600 MHz, CDCl₃) spectra of compound 6a

6			
		101	
		ل، بور _{م م} رور ورور بور بور بور بور بور بور بور بور	

Figure S57. ¹H NMR (600 MHz, CDCl₃) spectra of compound 6b

Tren

ppm

20

190

180

References and Notes

1. K. M. Al-Zaydi, R. M. Borik and M. H. Elnagdi. Green Chemistry Letters and Reviews 2012, 5, 241-250.