Supporting information for:

Enhancing electrocatalytic activity of CoO for oxidation of 5-

hydroxymethylfurfural by introducing oxygen vacancy

Xin Huang,^{*a,b*} Jinliang Song,^{*a,c**} Manli Hua,^{*a,b*} Zhenbing Xie,^{*a,b*} Shuaishuai Liu,^{*a,b*} Tianbin Wu,^{*a*} Guanying Yang^{*a,c*} and Buxing Han ^{*a,b,c**}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mails: songjl@iccas.ac.cn, hanbx@iccas.ac.cn.

^bSchool of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

^cPhysical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China.

Fig. S1. The EDX spectrum of the as-prepared CoO/CoSe₂.

Fig. S2. TEM images for the prepared CoO (a) and $CoSe_2$ (c), and SEM images for the prepared CoO (b) and $CoSe_2$ (d).

Fig. S3. LSV curves at a scan rate of 10 mV/s in 1 M of KOH with and without 10 mM HMF. (a) CoO and (b) CoSe₂.

	Dotontial	Pagation time	HMF	FDCA	EE	TOF
Catalyst	(V)	(min)	conversion (%)	yield (%)	(%)	(min ⁻
	(*)	(mm)			(70)	¹)
CoO-	1.43	57	100	99	97.9	2.74
CoSe ₂						
CoO-	1.33	220	91	90	99.0	0.65
CoSe ₂						
CoO-	1.53	35	100	96	69.8	4.47
CoSe ₂						
CoO	1.43	540	54	42	57.9	0.15
CoSe ₂	1.43	120	88	75	77.8	1.10

Table S1. Electrochemical oxidation of HMF over various catalysts under different conditions.

Fig. S4. The relative Gibbs free energy diagrams for HMF oxidation to FDCA in Path I and II.

Table S2. Reaction rate of the electrochemical oxidation of HMF to FDCA over different catalysts.

CatalystApplied potentialReaction rate $(mmol \cdot g^{-1} min^{-1})$	
---	--

CoO-CoSe ₂	1.43 V vs. RHE	36.6
CoO	1.43 V vs. RHE	2.0
CoSe ₂	1.43 V vs. RHE	14.7

Fig. S5. XRD patterns and XPS spectra of the prepared CoO-CoSe₂ electrode before and after five electrolysis cycles. (b) XRD patterns, (b) Co 2p spectrum, (c) Se 3d spectrum, and (d) O1s spectrum of CoO-CoSe₂.

Fig. S6. CV curves in the presence of HMF at different scan rates with the range of 30-100 mV/s. (a) CoO and (b) CoSe₂.