Supporting Information for

Pd@COF-QA: A phase transfer composite catalyst for aqueous Suzuki-Miyaura coupling reaction

Jian-Cheng Wang, ^{a‡} Cong-Xue Liu, ^{a‡} Xuan Kan, ^a Xiao-Wei Wu, ^b Jing-Lan Kan, ^a Yu-Bin Dong ^{a*}

^a College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China. E-mail: yubindong@sdnu.edu.cn (Y.B. Dong).

^b School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.

Contents

- 1. General information
- 2. Synthesis and characterization of L-QA and L-Me
- 3. Synthesis and characterization of COF-QA
- 4. Synthesis and characterization of Pd@COF-QA
- 5. Synthesis and characterization of COF-Me
- 6. Synthesis and characterization of Pd@COF-Me
- 7. Synthesis and characterization of Pd@COF-Et
- 8. GC analysis for optimization of reaction conditions for the model Suzuki-Miyaura coupling reaction in water (Table 1)
- 9. GC analysis for ten catalytic runs of the coupling reactions and the characterization of Pd@COF-QA after ten catalytic runs
- 10. Leaching test for Suzuki-Miyaura coupling reaction catalyzed by Pd@COF-QA
- 11. GC analysis for the products catalyzed by Pd@COF-QA (Table 2)
- 12. Fabrication and application of Pd@COF-QA-based hybrid aerogel
- 13. Structural characterization for all coupling products catalyzed by Pd@COF-QA
- 14. Summary of the reported catalysts for PhBr-PhB(OH)₂ and PhI-PhB(OH)₂ Suzuki-Miyaura coupling reaction
- 15. Reference

1. General Information

All the chemicals were obtained from commercial sources and used without further purification. **A** and **B** (Scheme 1) were synthesized according to literature method.¹ Infrared (IR) spectrums were obtained in the 400-4000 cm⁻¹ range using a Bruker ALPHA FT-IR Spectrometer. Elemental analyses were performed on a Perkin-Elmer model 2400 analyzer. ¹H NMR data were collected on an AM-300 and Varian Advance 600 spectrometer. Chemical shifts are reported in δ relative to TMS. HR-TEM (High Resolution Transmission Electron Microscopy) analysis was performed on a JEOL 2100 Electron Microscope at an operating voltage of 200 kV. GC analysis was performed on a 7890B gas chromatograph (Agilent Technologies, CA, USA) equipped with a flame ionization detector (FID) and a split/splitless injector. The GC capillary column (DB-WAX, 30 m length×0.53 mm; HP-5, 30 m length × 0.32 mm) was purchased from the Agilent Technologies. XPS spectra were obtained from THI5300 (PE). ICP measurement was performed on an IRIS Interpid (II) XSP and NU AttoM. Thermogravimetric analyses were carried out on a TA Instrument Q5 simultaneous TGA under flowing nitrogen at a heating rate of 10°C/min. PXRD patterns was obtained on D8 Advance X-ray powder diffractometer with Cu K α radiation ($\lambda = 1.5405$ Å).

2. Synthesis and Characterization of L-QA and L-Me

Scheme S1. Synthesis of L-QA and L-Me.

Synthesis of C. A mixture of **B** (1.20 g , 3.00 mmol), N, N-dimethyldodecylamine (1.07 g, 5.00 mmol) in acetonitrile (50 mL) was refluxed at 82 °C for 24h (monitored by TLC). The product was purified by S2

column on silica gel (methylene dichloride and methanol) to afford 1.35 g white crystline solids in 80% yield. IR (KBr pellet cm⁻¹): 3009.2(vs), 2922.9(vw), 2851.8(w), 2654.7(vs), 1726.7(vw), 1716.1(vw), 1606.7(s), 1482.6(s), 1469.0(s), 1435.2(s), 1403.2(vs), 1275.0(s), 1191.5(s), 1180.0(s), 1110.4(w), 1017.0(vs), 1004.6(vs), 954.5(vs), 919.3(vs), 863.0(s), 838.1(s), 784.7(vs), 771.7(s), 701.0(vs). ¹H NMR (300 MHz, DMSO, 25°C, TMS, ppm): δ = 8.21 (d, *J* = 1.8 Hz, 1H), 8.11 (dd, *J* = 8.3 Hz, 4H), 8.05 (dd, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 1H), 4.71 (s, 2H), 3.90 (d, *J* = 1.8 Hz, 6H), 2.76 (s, 6H), 1.24 (s, 25H).

Synthesis of L-QA. The intermediate C (1.0 g) was added to methanol (30 mL). After dissolution, hydrazine hydrate (0.78 mL, 12.8 mmol) was added to the mixture for 24h at 65 °C. The solvent is removed by vacuum evaporation to afford yellow solid 0.70g in 70% yield. IR (KBr pellet cm⁻¹): 3307.4(w), 3032.0(s), 2923.9(vw), 2853.00(w), 1644.9(w), 1069.9(w), 1539.8(s), 1483.7(w), 1377.4(s), 1328.6(s), 1188.9(vs), 1114.2(vs), 965.5(vs), 861.1(s), 832.0(s), 766.0(vs), 626.3(vs). ¹H NMR (300 MHz, DMSO, 25 °C, TMS, ppm): δ = 9.89 (t, *J* = 16.0 Hz, 2H), 8.16 (d, *J* = 1.4 Hz, 1H), 8.05 – 7.83 (m, 7H), 7.54 (dd, *J* = 8.1 Hz, 3H), 4.70 (s, 6H), 2.99 – 2.92 (m, 1H), 2.73 (s, 5H), 1.24 (s, 25H). HR-MS (ESI⁺): *m/z*: found 572.4075, calcd. for C₃₅H₅₀N₅O₂ [M⁺] 572.3959.

ESI-MS spectrum of L-QA

Synthesis of L-Me. The intermediate **A** (1.0 g) was added to THF (30.0 mL). After dissolution, hydrazine hydrate (1.0 mL) was added to the mixture for 24h at 65 °C. The product was isolated by filtration and washed with plenty of methanol. White solids were obtained by drying in oven (0.8 g, 80% yield). IR (KBr pellet cm⁻¹): 3300.4(s), 3220.1(s), 3062.7(vs), 1705.1(vs), 1673.9(s), 1626.3(vs), 1542.7(w), 1515.8(s), 1483.2(s), 1445.5(vs), 1385.8(vs), 1333.4(s), 1309.3(s), 1288.0(s), 1173.9(vs), 1112.4(s), 1005.2(vs), 967.8(s), 890.0(vs), 856.8(s), 820.6(s), 765.0(vs), 723.6(vs), 650.1(s), 637.1(s), 598.0(vs), 449.6(vs). ¹H NMR (300 MHz, DMSO, 25 °C, TMS, ppm): δ = 9.84 (s, 2H), 7.92 (d, *J* = 8.4 Hz, 4H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.72 – 7.60 (m, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 1H), 4.52 (s, 4H), 2.33 (s, 3H).

3. Synthesis and Characterization of COF-QA

Synthesis of COF-QA. A 1,4-dioxane/mesitylene (0.4/1.6 mL) solution of **L-QA** (29.0 mg, 0.045 mmol), tribenzaldehyde (4.8 mg, 0.03 mmol), and acetic acid (0.3 mL, 6.0 M) in a pyrex tube was flash frozen in a liquid nitrogen bath anddegassed. Upon warming to room temperature, the tightly capped tubewas heated at 120°C for 3 days. The obtained precipitate was collected by centrifugation and separately washed with methanol and acetone. Then the collected solids were dried in vacuum overnight to generate **COF-QA** (28 mg, 85% yield).

Fig. S1 IR spectrums of **COF-QA**. A strong peak at 1623 cm⁻¹ was shown by Fourier transform infrared (FT-IR) spectrum, which corresponds to the characteristic stretching vibration of imine bonds. The intensities of the bands corresponding to C=O and $-NH_2$ are attenuated significantly in comparison with those in the spectra of 1, 3, 5-triformylbenzene and **L-QA**, suggesting the almost complete conversion of the original monomers.

Fig. S2 Solid-state ¹³C-MAS NMR spectrum of **COF-QA**, δ (ppm): 183.9, 166.4, 143.9, 132.0, 79.6, 64.5, 53.8, 31.8, 25.2, 16.5. The formation of **COF-QA** was verified by solid-state ¹³C cross polarization magic angle spinning (CP-MAS) NMR, which revealed the existence of the keto, acylhydrazinyl, phenyl, alkylated chains, methyl and methylene species ² in **COF-QA** through the corresponding resonances at 184.0, 166.4, 130.2, ~55–13, 74.5 and 79.7 ppm, respectively.

Table S1 Fractional atomic coordinates for the unit cell of COF-QA

COF-QA AA stacking mode, space group: P3

a = 44.4 Å, b = 44.4 Å, c = 5.6 Å

., .,				
Atom	Х	у	Ζ	
C1 -0.32536		0.30653	2.12266	
C2	-0.29795	0.34143	2.12239	
C3	-0.1245	0.39408	2.25886	
C4	-0.08821	0.41313	2.22989	

 $\alpha = 90.0^{\circ}, \beta = 90.0^{\circ}, \gamma = 120.0^{\circ}$

C5	-0.0733	0.43695	2.03986	
C6	-0.0953	0.44109	1.87817	
C7	-0.13156	0.42212	1.90824	
C8	-0.14686	0.39838	2.09972	
С9	-0.0369	0.45645	2.01351	
C10	-0.02129	0.44037	1.88654	
C11	0.01477	0.45752	1.85354	
C12	0.03614	0.49104	1.94814	
C13	0.02018	0.50693	2.07446	
C14	-0.01629	0.49074	2.10915	
C15	0.0726	0.50823	1.91744	
C16	0.09161	0.4914	1.97215	
C17	0.12793	0.50868	1.94505	
C18	0.14678	0.54348	1.86266	
C19	0.12748	0.56002	1.80534	
C20	0.09116	0.5428	1.83263	
C21	-0.18326	0.3795	2.1311	
O22	-0.1968	0.34994	2.22458	
N23	-0.20281	0.39378	2.06566	
N24	-0.23644	0.38067	2.07045	
C25	-0.26321	0.3487	2.123	
N26	0.20246	0.59608	1.8353	
O27	0.19817	0.54307	1.8291	
C28	0.18342	0.56081	1.84049	
C29	0.26337	0.61141	1.80656	
N30	0.23603	0.61679	1.82195	
C31	0.30633	0.67433	1.80151	
C32	0.29802	0.63915	1.8022	
N33	0.98183	0.54356	0.34866	
C34	0.95177	0.54743	0.45047	
C35	0.95921	0.58322	0.55372	
C36	0.92921	0.58015	0.71379	
C37	0.93822	0.61462	0.84184	
C38	0.90855	0.61064	1.00865	
C39	0.91808	0.64436	1.1489	
C40	0.88831	0.64008	1.31588	
C41	0.89792	0.6735	1.46028	

C42	0.86799	0.66916	1.62583	
C43	0.87758	0.70246	1.77173	
C44	0.84764	0.69799	1.93756	
C45	0.85712	0.73102	2.08397	
C46	0.5418	1.03452	0.23585	
H47	-0.31947	0.287	2.12341	
H48	-0.1344	0.37718	2.39946	
H49	-0.07277	0.4096	2.34907	
H50	-0.08511	0.45802	1.73814	
H51	-0.14667	0.42577	1.78698	
H52	-0.03603	0.41595	1.81634	
Н53	0.02525	0.44527	1.75888	
H54	0.03615	0.53093	2.14124	
H55	0.0792	0.46641	2.03474	
Н56	0.14049	0.49543	1.98879	
H57	0.13954	0.58491	1.74148	
H58	0.07837	0.55582	1.78875	
Н59	-0.18992	0.41752	2.00826	
H60	-0.25834	0.32906	2.16033	
H61	0.18931	0.60804	1.84558	
H62	0.25899	0.58659	1.80035	
Н63	0.28665	0.68001	1.80163	
C64	1.00077	0.57176	0.16577 0.59083	
Н65	0.93887	0.52794		
H66	0.93194	0.54106	0.3129	
H67	0.96298	0.6009	0.40642	
H68	0.98307	0.595	0.65775	
H69	0.92319	0.5603	0.84994	
H70	0.90603	0.57174	0.60384	
H71	0.94349	0.63458	0.70821	
H72	0.96178	0.62318	0.94796	
H73	0.9025	0.58976	1.13639	
H74	0.8853	0.60326	0.9016	
H75	0.92415	0.66535	1.02231	
H76	0.9413	0.65163	1.25595	
H77	0.88199	0.61878	1.44041	
H78	0.86522	0.63317	1.2084	

H79	0.90442	0.69487	1.33617
H80	0.9209	0.68028	1.56866
H81	0.86139	0.64768	1.74916
H82	0.84506	0.66253	1.51721
H83	0.88406	0.72394	1.64856
H84	0.90055	0.70916	1.88006
H85	0.84098	0.67654	2.06119
H86	0.82465	0.69151	1.83003
H87	0.86246	0.75262	1.96527
H88	0.88	0.73824	2.19399
H89	0.8355	0.72625	2.20073
H90	0.53829	1.04962	0.3763
H91	0.55928	1.0532	0.1033
C92	1.00572	1.54679	0.55116
Н93	0.98295	0.57017	0.02649
H94	1.02192	0.57045	0.07956
Н95	1.01239	0.59768	0.24451
H96	0.9911	1.52899	0.69534
H97	1.0194	1.57302	0.62466
H98	1.02567	1.54082	0.50028

4. Synthesis and Characterization of Pd@COF-QA

A mixture of **COF-QA** (120 mg) and palladium acetate (92 mg, 0.41 mmol) was stirred in dichloromethane (20 mL) for 24 h at room temperature. Then, triethylamine was added to the system and the system was stirred for additional 24 h at 50 °C. The product was isolated by filtration and separately washed with dichloromethane and acetone. The crystalline was dried in vacuum overnight to afford **Pd@COF-QA**. IR (KBr pellet cm⁻¹): 3308.1(w), 3031.0(s), 2854.00(w), 1645.9(w), 1069.1(w), 1537.8(s), 1483.1(w), 1376.9(s), 1327.9(s), 1188.9(vs), 1115.1(s), 963.9(s), 861.0(s), 831.7(s), 767.0(s), 626.3(s).

Fig. S3 PXRD patterns of COF-QA and Pd@COF-QA, the PXRD indicated that during the loading of palladium and in situ reduction, the crystal structures of Pd@COF-QA were maintained.

Table S2 ICP measurement of Pd@COF-QA

	1	2	3	
element	Pd	Pd∙	Pd∙	
unit	mg/L	mg/L	mg/L	
average	8.86	9.31	9.30	

Fig. S4 TGA trace of Pd@COF-QA

5. Synthesis and Characterization of COF-Me. A *n*-butanol/mesitylene (1/1 mL) solution of L-Me (16.0 mg, 0.045 mmol), tribenzaldehyde (4.8 mg, 0.03 mmol), and acetic acid (0.3 mL,6.0 M) in a pyrex tube. The detailed synthesis method is the same as that of COF-QA. The obtained precipitate was collected by centrifugation and separately washed with methanol and acetone. Then the collected solids were dried in vacuum overnight to generate COF-Me (17 mg, 86% yield).

Fig. S5 IR spectrums of **COF-Me**. The characteristic N–H stretching (3299 cm⁻¹) in **L-Me** and the carbonyl stretching band (1695 cm⁻¹) in 1, 3, 5-triformylbenzene disappeared after the reaction. Meanwhile, the strong peaks at 1625 cm⁻¹ due to the C-N stretching, indicated the successful condensation reaction.

Fig. S6 Solid-state ¹³C-MAS NMR spectrum of **COF-Me**, *δ* (ppm): 186.9, 166.5, 143.9, 130.0, 73.2.

Table S3 Fractional atomic coordinates for the unit cell of COF-Me

COF-Me AA stacking mode, space group: P3

a = 44.11 Å, b = 44.11 Å, c = 4.0 Å

 $\alpha = 90.0^{\circ}, \beta = 90.0^{\circ}, \gamma = 120.0^{\circ}$

Atom	Х	У	Z
C1	0.68486	0.31491	0.82292
C2	0.70346	0.35158	0.82312
C3	0.87872	0.41669	0.99062
C4	0.91442	0.43488	0.91625
C5	0.92914	0.46628	0.73469
C6	0.90704	0.47829	0.61679
C7	0.87127	0.45995	0.68712
C8	0.85662	0.42909	0.87944
C9	0.96693	0.48491	0.64586
C10	0.9811	0.46539	0.5082
C11	0.01539	0.48177	0.39016
C12	0.03691	0.5182	0.413
C13	0.02329	0.53778	0.56055
C14	0.98879	0.52166	0.68024
C15	0.07351	0.53575	0.28568
C16	0.09353	0.51904	0.30507
C17	0.12794	0.53564	0.18778
C18	0.14333	0.56955	0.05502
C19	0.12342	0.58622	0.03157
C20	0.08888	0.56949	0.14513

C21	0.81843	0.40865	0.95253	
O22	0.80623	0.37924	1.06829	
N23	0.79699	0.42253	0.89894	
N24	0.76014	0.40278	0.9035	
C25	0.74195	0.37017	0.81356	
N26	0.20213	0.62228	0.0335	
O27	0.19163	0.57134	-0.19914	
C28	0.18045	0.58766	-0.04685	
C29	0.25813	0.62589	0.0274	
N30	0.23879	0.64026	-0.00526	
C31	0.31381	0.68372	0.00084	
C32	0.29654	0.64699	0.00212	
C33	0.97705	0.54463	0.84796	
H34	0.69906	0.30074	0.81914	
H35	0.86843	0.3928	1.1352	
H36	0.93053	0.4243	1.00046	
H37	0.91728	0.50149	0.46292	
H38	0.8553	0.46968	0.57988	
H39	0.96522	0.43727	0.48261	
H40	0.02468	0.46581	0.27315 0.58901	
H41	0.03974	0.56582		
H42	0.08299	0.49345	0.41847	
H43	0.14296	0.52242	0.21065	
H44	0.13441	0.61205	-0.07774	
H45	0.07416	0.58294	0.11922	
H46	0.80797	0.44953	0.87396	
H47	0.7547	0.35622	0.72317	
H48	0.19129	0.63655	0.13472	
H49	0.24656	0.59855	0.09423	
H50	0.29881	0.69707	0.00818	
H51	0.95349	0.52948	1.00405	
Н52	0.97163	0.55943	0.65563	
H53	0.99795	0.56361	1.01649	

6. Synthesis and Characterization of Pd@COF-Me

The **COF-QA** was replaced by **COF-Me**. The detailed synthesis method is the same as synthesis of **Pd@COF-QA**. The product was isolated by filtration and separately washed with dichloromethane and acetone. The crystalline was dried in vacuum overnight to afford **Pd@COF-Me**. IR (KBr pellet cm⁻¹): S10

3300.4(s), 3221.1(s), 3061.7(vs), 1705.0(vs), 1674.9(s), 1625.3(vs), 1543.5(w), 1515.1(s), 1485.2(s), 1446.5(vs), 1384.8(vs), 1334.4(s), 1287.0(s), 1175.9(vs), 1113.8(s), 1004.9(vs), 967.8(s), 878.0(s), 825.6(s), 766.0(vs), 725.6(s), 649.1(s), 637.1(s), 598.0(vs), 449.6(s).

Fig. S7 PXRD patterns of COF-CH₃ and Pd@COF-Me, the PXRD indicated that during the loading of palladium and in situ reduction, the crystal structures of Pd@COF-Me were maintained.

Table S4 ICP measurement of Pd@COF-Me

	1	2	3	
element	Pd∙	Pd	Pd	
unit	mg/L	mg/L	mg/L	
average	3.34	3.25	3.27	

Fig. S8 a) The SEM images of COF-Me. b) The SEM images of Pd@COF-Me. c) HR-TEM image of Pd@COF-Me. d) Palladium nanoparticles size distribution curve of Pd@COF-Me. e) XPS spectra of Pd 3d in Pd@COF-Me.

Fig. S9 TGA trace of Pd@COF-Me.

Fig. S10 Left: N₂ adsorption isotherms for **COF-QA**, **Pd@COF-QA**, **COF-Me** and **Pd@COF-Me** at 77 K. Right: the pore width distribution of **COF-QA**, **Pd@COF-QA**, **COF-Me** and **Pd@COF-Me**.

7. Synthesis and characterization of Pd@COF-Et

Scheme S2. Synthesis of Pd@COF-Et. a) NBS, AIBN, CCl₄, 90 °C. b) Et₃N, MeCN, 78 °C. c) $Pd(OAc)_2/CH_2Cl_2/24$ h, TEA/50 °C/24h.

Synthesis of COF-CH₂Br. The mixture of **COF-Me** (200 mg), NBS (100 mg, 8.32 mmol), AIBN (7.4 mg, 0.69 mmol) in acetonitrile (30 mL) was refluxed at 90°C for 12h. Yield based ion chromatography is 55%. IR (KBr pellet cm⁻¹): 3486.9(s), 3225.2(w), 2580.8(w), 1633.2(vs), 1608.9(vs), 1482.9(s), 1443.5(s), 1384.9(s), 1341.8(w), 1262.8(vs), 1192.9(S), 1109.1(w), 1005.2(w), 824.7(w), 788.4(vs).

Fig. S11 ion-chromatography for COF-CH₂Br.

Synthesis of COF-Et. The mixture of **COF-CH₂Br** (200 mg), TEA (100 mg, 8.32 mmol) in acetonitrile (30 mL) was refluxed at 82°C for 24h. Yield based ion chromatography is 55%. IR (KBr pellet cm⁻¹): 3227.1(s), 2975.3(s), 1624.2(vs), 1586.8(vs), 1505.7(vs), 1435.4(s), 1005.8(w), 823.5(w), 700.6(vw).

Fig. S12 ion-chromatography for COF-Et.

Synthesis of Pd@COF-Et. A mixture of COF-Et (100 mg) and palladium acetate (64 mg, 0.27 mmol) was stirred in dichloromethane (20 mL) for 24 h at room temperature. Then, triethylamine was added to the system and the system was stirred for additional 24 h at 50 °C. The product was isolated by filtration and separately washed with dichloromethane and acetone. The crystalline solid was dried in vacuum overnight to afford Pd@COF-Et. IR (KBr pellet cm⁻¹): 3228(s), 2845.3(s), 1654.9(vs), 1545.2(vs), 1583.1(vs), 1435.4(s), 1327.9(s), 1188.9(vs), 963.8(w), 823.5(w), 626.3(w). ¹³C-MAS NMR, δ (ppm): 184.5, 159.9, 135.6, 125.4, 101.2, 66.6, 47.4, 25.3.

Fig. S13 Left: PXRD patterns of **COF-Me**, **COF-CH₂Br**, **COF-Et** and **Pd@COF-Et**. The PXRD patterns indicated that the crystal structures of COF was well maintained after a series of post-synthetic modifications. Right: Solid-state ¹³C-MAS NMR spectrum of **COF-QA-Et**. The existence of short alkylated chains in **COF-QA-Et** was confirmed by the resonances at 47.4 and 25.3 ppm, respectively.

Table S5 ICP measurement of Pd@COF-Et

Fig. S14 a) SEM and EDS images of Pd@COF-Et. b) HR-TEM image of Pd@COF-Et. c) XPS spectra of Pd 3d in Pd@COF-Et.

8. GC analysis for optimization of reaction conditions for the model Suzuki-Miyaura coupling reaction in water (Table 1)

15

9. GC analysis for ten catalytic runs of the coupling reactions and the characterization of Pd@COF-QA after ten catalytic runs

Fig. S15 PXRD pattern of Pd@COF-QA after ten catalytic runs.

Fig. S16 Top: SEM and HR-TEM images of Pd@COF-QA after ten catalytic runs. Bottom: SEM-EDX spectrum of Pd@COF-QA after ten catalytic runs.

After reaction, **Pd@COF-QA** was recovered by centrifugation, washed with water and ethanol, dried at 90 °C, and reused in the next run under the same conditions. The palladium-loading amount of **Pd@COF-QA** is 8.7 wt. % after ten runs based on ICP analysis (Table S5). The Pd loss based on ICP measurement is 5.4 % after ten catalytic runs.

	1	2	3	
element	Pd	Pd	Pd	
unit	mg/L	mg/L	mg/L	
average	8.89	8.67	8.54	

Table S6 ICP result of Pd@COF-QA after ten catalytic runs.

10. Leaching test for Suzuki-Miyaura coupling reaction catalyzed by Pd@COF-QA

Fig. S17 Reaction time examination (black line) and leaching test (red line) for the coupling reaction catalyzed by Pd@COF-QA. The result demonstrated that Pd@COF-QA is responsible for the catalytic activity.

11. GC analysis for the products catalyzed by Pd@COF-QA (Table 2)

time/min

Entry 10

Entry 27

12. Fabrication and application of Pd@COF-QA-based hybrid aerogel

The synthesis method referred to our previous work,³ through stirring a solution including 0.1 g of chitosan powder, 60 µL of acetic acid and 10 mL of deionized water, until it gets transparent. Then, 0.15 g of **Pd@COF-QA** was added into the chitosan solution with sharp stirring and ultrasonic shaking. After that, 240 µL of 1, 4-butanediol diglycidyl ether was added as the cross-linker. Following transferring into mold, the composite solution was standing for ca. 10 h until a stable hydrogel formed. Then, the obtained hydrogel was slowly transferred into a freezer for 10 h to generate the ice crystals. Finally, the frozen sample was freeze-dried at -50 °C for approximately 24 h in a lyophilizer to form the dry **Pd@COF-QA**@chitosan aerogel with 60 wt% of **Pd@COF-QA** loading. It is known from PXRD that the structure of **Pd@COF-QA** is not destroyed during the preparation of aerogel (Fig. S14).

Fig. S18 PXRD patterns of Pd@COF-QA and Pd@COF-QA@chitosan aerogel.

The Pd@COF-QA based chitosan aerogel exhibited highly developed interconnected 3D structure (Fig. S19a-b), in which a large quantity of Pd@COF-QA nanocrystals was densely packed in the texture of chitosan aerogel matrix (Fig. S19 a-b). As shown in Fig. S19 c-f, the uniform texture of the Pd NPs loaded hybrid aerogel was further supported by the evenly distributed Pd, C, N, and O elements based on the EDS measurement.

Fig. S19 a)-b). Cross-section SEM images of Pd@COF-QA@chitosan aerogel. c)-f). SEM-EDX elemental mapping of Pd@COF-QA@chitosan aerogel.

Fig. S20. The stability tests for hybrid Pd@COF-QA@chitosan aerogel in (A) water, (B) ethanol, and (C) acetone. As shown in the Figures, the obtained Pd@COF-QA based chitosan aerogel is very stable in water and common organic solvents such as ethanol and acetone, which would facilitate many reactions in different solvents.

Fig. S21 Top: Photograph of reaction device based on a continuous flow-through reactor. Bottom: Diagram of the continuous-flow reaction device.

Fig. S22 a) Catalytic cycle. b) PXRD patterns of the Pd@COF-QA@chitosan aerogel and it after three catalytic runs.

13. Structural characterization for all coupling products catalyzed by Pd@COF-QA

Aryl halides (0.2 mmol), phenylboronic acid or its derivatives (0.24 mmol), triethylamine (0.4 mmol), Pd@COF-QA (0.83 % mol) and deionized water (2 mL) was stirred at 50 °C for 6 h. After reaction, the catalyst was filtered out by toluene extraction. After removal of the solvent, the products were purified by column on silica gel to afford the corresponding products.

 $\overline{}$

a, ¹H NMR (400 MHz, CDCl₃, 25°C, TMS, ppm): δ =7.59 (d, J = 2.8 Hz, 4H), 7.44 (d, J = 10.4, 4.8 Hz, 4H), 7.37 - 7.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS, ppm) δ: 141.27, 128.75, 127.25, 127.17.

b, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.47 (t, *J* = 8.3 Hz, 4H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS, ppm) δ : 156.46, 138.54, 130.91, 129.77, 129.56, 128.69, 128.00, 126.94, 120.83, 111.20, 55.56.

c, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.73 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.40 – 7.37 (m, 3H), 7.32 (d, *J* = 4.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS, ppm) δ : 141.46, 140.10, 131.16, 131.30, 129.10, 129.09, 127.90, 127.75, 127.54, 126.19, 126.15.

d, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): $\delta = 8.36$ (s, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.52 (dd, J = 10.1 Hz, 3H), 7.41 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS, ppm) δ : 148.76, 142.90, 138.69, 133.05, 129.73, 129.19, 127.18, 122.01.

e, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): $\delta = 8.25 - 8.18$ (m, 2H), 7.68 - 7.62 (m, 2H), 7.54 (d, J = 3.5 Hz, 2H), 7.45 - 7.33 (m, 3H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS, ppm) δ : 146.60, 146.06, 137.74, 128.13, 127.89, 126.76, 126.35, 123.07.

f, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): $\delta = 8.04$ (d, J = 8.3 Hz, 2H), 7.57 (dd, J = 14.8 Hz, 4H), 7.36 (d, J = 7.3 Hz, 3H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS, ppm) δ : 167.04, 145.65, 140.02, 130.12, 128.92, 128.17, 127.31, 127.07, 126.58, 52.18.

g, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): *δ* = 7.65 – 7.55 (m, 1H), 7.53 – 7.44 (m, 1H), 7.43 – 7.29 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS, ppm) *δ*: 145.69, 139.18, 132.76, 129.40 – 128.83, 128.83, 127.75, 127.25, 118.97, 110.94.

h, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.50 – 7.45 (m, 2H), 7.34 (dd, *J* = 10.3, 2H), 7.29 – 7.19 (m, 2H), 7.09 (d, *J* = 7.7 Hz, 1H), 6.99 – 6.96 (m, 2H), 6.76 – 6.70 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25°C, TMS, ppm) δ : 155.83, 143.08, 140.76, 130.01, 128.77, 127.51, 127.13, 119.85, 114.23, 114.15.

i, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.68 (dd, J = 1.0 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.49 – 7.46 (m, 2H), 7.45 – 7.32 (m, 5H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS,

ppm) δ: 144.46, 137.11, 132.78, 131.78, 129.05, 127.70, 126.55, 117.68, 110.25.

j, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): *δ* = 8.23 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.47 – 7.34 (m, 3H). ¹³C NMR (100 MHz, CDCl₃, 25^oC, TMS, ppm) *δ*: 141.0, 136.9, 136.5, 130.4, 129.2, 128.5, 128.0, 127.9, 127.6, 124.4.

k, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.52 (d, J = 7.5 Hz, 2H), 7.41 – 7.24 (m, 4H), 7.14 – 7.04 (m, 2H), 6.83 (d, J = 8.1 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, C DCl₃, 25 °C, TMS, ppm) δ : 161.08 – 157.22, 142.80, 141.12, 129.75, 128.73, 127.42, 127.21, 11 9.70, 112.92, 112.69, 55.32.

I, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.58 (d, J = 7.8 Hz, 2H), 7.48 – 7.36 (m, 4H), 7.36 – 7.23 (m, 1H), 6.78 (t, J = 10.2 Hz, 2H), 3.74 (s, 2H). ¹³C NMR (100 MHz, C DCl₃, 25 °C, TMS, ppm) δ : 145.86, 141.20, 131.63, 128.66, 128.02, 126.42, 126.26, 115.40.

m, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): $\delta = 8.38$ (d, J = 18.2 Hz, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.4 Hz, 2H), 7.59 (t, J = 7.7 Hz, 1H), 7.5 1 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS, pp m) δ :171.77, 141.70, 139.97, 132.43, 129.83, 128.95, 127.86, 127.19.

n, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): $\delta = 10.16 - 9.95$ (m, 1H), 8.01 - 7.96 (m, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.69 - 7.64 (m, 2H), 7.55 - 7.41 (m, 3H). ¹³C NMR (100 MHz,C DCl₃, 25 °C, TMS, ppm) δ : 191.86, 147.23, 139.76, 135.26, 130.26, 129.02, 128.47, 127.70, 127. 38.

o, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.53 (d, J = 7.2 Hz, 2H), 7.47 (d, J = 7.9 Hz, 2H), 7.41 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 6.9 Hz, 1H), 6.90 (d, J = 7.9 Hz, 2H), 4.8 4 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS, ppm) δ: 155.06, 140.78, 134.11, 128.74, 1

p, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS, ppm): δ = 7.46 (t, *J* = 8.4 Hz, 4H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 6.90 (d, *J* = 8.7 Hz, 2H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS, ppm) δ : 159.16, 140.85, 133.80, 128.75, 128.19, 126.77, 126.69, 114.22, 55.37.

14. Summary of the reported catalysts for PhBr-PhB(OH)₂ and PhI-PhB(OH)₂ Suzuki-Miyaura coupling reaction

Table S7 Summary of the reported COFs, MOFs, HOFs and POPs-based catalysts for PhBr-PhB(OH)₂ and PhI-PhB(OH)₂ Suzuki-Miyaura coupling reactions

catalyst	substrate	base	solvent	т (°С)	t (h)	yield (%)	Ref.
Pd@PVI-PVCL	PhBr	K ₂ CO ₃	EtOH/H₂O	80	4	95	4
Pd/MIL-53(AI)-NH ₂	PhI	Na ₂ CO ₃	EtOH/H₂O	40	0.5	99	5
Pd@UiO-66	PhI	K ₂ CO ₃	EtOH/H₂O	30	0.5	95	6
Pd/H₂P-Bph-COF	PhBr	K ₂ CO ₃	toluene	110	8	22	7
Pd@COF-300	PhBr	K ₂ CO ₃	MeOH/H ₂ O	70	0.3	99	8
MOF-5-NPC-900-Pd	PhBr	K ₂ CO ₃	EtOH/H₂O	25	1	98	9
Pd/thio-COF	PhI	K ₂ CO ₃	DMF/H ₂ O	50	3	99	10
Pd-Ho-MOF	PhI	кон	DMF	100	1	99	11
Pd@M28	PhBr	K ₂ CO ₃	xylene	150	3	98	12
Pd@Cu(1,2,3-btc) (bpe)	PhI	Cs ₂ CO ₃	THF	60	24	99	13
Pd/COF-LZU1	PhBr	K ₂ CO ₃	<i>p</i> -xylene	150	2.5	98	14
Pd@COF-QA	PhBr	TEA	H ₂ O	50	6	99	This work
Pd@COF-QA	PhI	TEA	H ₂ O	50	6	99	This work

15. Reference

1. Y.-H. Hu, C.-X. Liu, J.-C. Wang, X.-H. Ren, X. Kan and Y.-B. Dong, *Inorg. Chem.*, 2019, **58**, 4722-4730.

(a) D.-B. Shinde, G. Sheng, X. Li, M. Ostwal, A.-H. Emwas, K.-W. Huang, Z. Lai, *J. Am. Chem. Soc.*, 2018, 140, 14342-14349.
(b) L.-G. Ding, B. Yao, F. Li, S.-C. Shi, N. Huang, H. Yin, Q. Guan, Y.-B. Dong, *J. Mater. Chem. A*, 2019, 7, 4689-4698.
(c) X. Wu, X. Han, Q. Xu, Y. Liu, C. Yuan, S. Yang, Y. Liu, J. Jiang, Y. Cui, *J. Am. Chem. Soc.*, 2019, 141, 7081-7089.

3. F. Li, L.-G. Ding, B.-J. Yao, N. Huang, J.-T. Li, Q.-J. Fu, Y.-B. Dong, J. Mater. Chem. A, 2018, 6, 11140-11146.

4. A. V. Selivanova, V. S. Tyurin and I. P. Beletskaya, ChemPlusChem, 2014, 79, 1278-1283.

5. Y. Huang, Z. Zheng, T. Liu, J. Lü, Z. Lin, H. Li and R. Cao, Catal. Commun., 2011, 14, 27-31.

6. W. Dong, C. Feng, L. Zhang, N. Shang, S. Gao, C. Wang and Z. Wang, Catal. Lett., 2015, 146, 117-

125.

7. Y. Hou, X. Zhang, J. Sun, S. Lin, D. Qi, R. Hong, D. Li, X. Xiao and J. Jiang, *Micropor. Mesopor. Mat.*, 2015, **214**, 108-114.

8. R. S. B. Gonçalves, A. B. V. de Oliveira, H. C. Sindra, B. S. Archanjo, M. E. Mendoza, L. S. A. Carneiro, C. D. Buarque and P. M. Esteves, *ChemCatChem*, 2016, **8**, 743-750.

9. L. Z. Wenhuan Dong, Chenhuan Wang, Cheng Feng, Ningzhao Shang, Shutao Gao and Chun Wang *RSC Adv.*, 2016, **6**, 37118.

10. S. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H. Gu and W. Zhang, J. Am. Chem. Soc., 2017, 139, 17082-17088.

11. D. Dong, Z. Li, D. Liu, N. Yu, H. Zhao, H. Chen, J. Liu and D. Liu, *New J. Chem.*, 2018, **42**, 9317-9323.

12. Z. Liu, H. Wang, J. Ou, L. Chen and M. Ye, J. Hazard. Mater., 2018, 355, 145-153.

13. S. A. Adalikwu, V. S. Mothika, A. Hazra and T. K. Maji, Dalton Trans, 2019, 48, 7117-7121.

14. S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su and W. Wang, *J. Am. Chem. Soc.*, 2011, **133**, 19816-19822.