Supporting Information

Synthesis of α-Enaminones from Cyclic Ketones and Anilines using Oxoammonium Salt as an Oxygen Transfer

Reagent

Biping Xu, ^{a,b}Yaping Shang, ^{*a} Xiaoming Jie, ^a Xiaofeng Zhang, ^a Jian Kan, ^a Subhash Laxman Yedage, ^a Weiping Su^{*a}

*E-mail: wpsu@fjirsm.ac.cn, shangyaping@fjirsm.ac.cn

^aState Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Table of Contents

General Information	S1
Synthesis of the Staring Materials	S2
Reaction Condition Screening	S5
Mechanistic Studies	S6
General Procedures and Product Characterization	S11
X-ray Data	S46
Supplementary References	S48
¹ H-NMR and ¹³ C-NMR Spectra	S49

General Information

All reactions were conducted under an atmosphere of nitrogen with dry solvents. Unless otherwise noted, chemical reagents were purchased from commercial supplies (Sigma-Aldrich, J&K Chemicals, Acros Organics, Alfa Aesar and Adamas-beta®, Innochem, Aladdin, TCI, Accela, Sinocompound, Laajoo, Bidepharm and 3A Chemicals) and used directly without further purification. Toluene, DME, dioxane, and THF were distilled from metal Na and stored under nitrogen atmosphere. DMF, DMSO, CH₃CN, DCE, tert-amyl alcohol and 1,2-dichlorobenzene were distilled over CaH₂ and stored under nitrogen atmosphere. 3Å and 4Å molecular sieve was dried at 150°C overnight and stored in the nitrogen-filled glove-box. GC data were recorded on Agilent 7820A. Flash chromatography was performed with Sepaflash columns produced by Santai Technologies. NMR spectra were recorded on a Bruker AVANCE 400 spectrometer using CDCl₃ as solutions (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz, ¹⁹F NMR: 377 MHz). The chemical shift δ was calibrated using TMS (0 ppm for ¹H NMR) and residual undeuterated solvent CDCl₃ (77.0 ppm for ¹³C NMR). HRMS (High resolution mass spectra) were performed by the Shanghai Institute of Organic Chemistry, Chinese Academic of Sciences (Instrument Themo Fisher Scientific LTQFT Ultra, Operated Mode: DART Positive)

Synthesis of the staring materials

Typical Procedure for preparing TEMPO oxoammonium salts

To a solution of TEMPO (2,2,6,6-Tetramethylpiperidinooxy) (16.0g, 100 mmol) in Et_2O (80 mL, 2M) was added dropwise 42% aqueous HBF₄ (18.6 mL, 120 mol) at room temperature. After the solution became to amber color, the aqueous NaOCl solution (36.0 mL, 51 mmol) was added dropwise at 0 °C. When it finished, the reaction mixture stirred for additional 1 h at 0 °C. Finally, the reaction mixture was filtered and the yellow crystalline precipitate was washed with ice-cold 5% aqueous NaHCO₃ (30 ml), water (60.0 mL), and ice-cold ether (60.0 mL). The bright orange solid was dried at 50 °C in vacuo over 24 h to gain the TEMPO⁺BF₄⁻ (18.9 g, 78 %).¹

Synthesis of 1-tosylpiperidin-4-one (1u)

According to the literature², Piperidin-4-one hydrochloride (3.12 g, 15 mmol) was dissolved in a biphasic solvent H₂O (15 mL)/CHCl₃ (15 mL) in a 100 mL roundbottom flask with a magnetic stir-bar. K₂CO₃ (2.76 g, 20 mmol) was added and the reaction was allowed to stir for 30 min. Then TsCl (3.12 g, 10 mmol) was added portion wisely. No special precautions were taken to exclude moisture or oxygen. The reaction mixture was stirred at room temperature for 10 h, and then the reaction was quenched by the addition of saturated aqueous NaHCO₃. The aqueous layer was separated and extracted with CH₂Cl₂ (3×20 mL), and the combined organic extracts were dried (Na₂SO₄). The solvent was removed under reduced pressure and product **1u** was recrystallized with ethyl acetate/n-hexane as white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H),

3.38 (t, J = 6.2 Hz, 4H), 2.54 (t, J = 6.2 Hz, 4H), 2.44 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 205.5, 144.1, 133.2, 129.8, 127.5, 45.8, 40.6, 21.5.
HRMS (ESI): Calcd. for C₁₂H₁₆O₃NS ([M+H]⁺): 254.0845, found: 254.0846.

Typical Procedure for preparing β-substituted cyclo-ketone (1z)

According to the literature³, in a nitrogen-filled glovebox, the Schlenk tube was charged with (4-(tert-butyl)phenyl)boronic acid (5.34 g, 30 mmol), cyclopent-2-en-1-one (820 mg, 10 mmol), Pd(OAc)₂ (112 mg, 0.5 mmol), bpy (156 mg, 1 mmol). The tube was fitted with a rubber septum and move out of the glove box. Then HOAc (10 mL), THF (5 mL) and H₂O (3 mL) was added to the tube, and the septum was replaced with a Teflon screwcap under nitrogen flow. The reaction mixture was stirred at 40 °C for 3 days. After the reaction mixture was cooled to room temperature, the reaction mixture was filtered through a pad of silica gel and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (eluent = petroleum ether/EtOAc = 10:1) obtained the product **1z** as white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 (d, *J* = 7.9 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 3.43 - 3.34 (m, 1H), 2.65 (dd, *J* = 18.2, 7.5 Hz, 1H), 2.48 - 2.26 (m, 4H), 2.03 - 1.92 (m, 1H), 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 218.0, 149.2, 139.8, 126.2, 125.3, 45.6, 41.5, 38.6, 34.2, 31.2, 31.0.

HRMS (ESI): Calcd. for C₁₅H₂₁O ([M+H]⁺): 217.1587, found: 217.1588.

Synthesis of 2-((4-chlorophenyl)amino)cyclohexan-1-one (5b)

literature⁴, 4-chloroaniline (1.27 According to the g, 10 mmol), 2chlorocyclohexanone (1.32 g, 10 mmol), quinoline (0.26 g, 2 mmol), sodium carbonate (1.59 g, 15 mmol) and 20 mL 2-methoxyethanol were added to a 40mL pressure tube and the resulting reaction mixture was heated to reflux overnight. The reaction mixture was cooled to room temperature. The reaction mixture was filtered through a pad of silica gel and washed with chloroform. The filtrate was concentrated under reduced pressure to give crude product. Pure racemic 2-((4chlorophenyl)amino)cyclohexan-1-one was obtained by recrystallization from DCM/n-hexane as an off-white microcrystalline powder.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.14 (d, *J* = 8.8 Hz, 2H), 6.57 (d, *J* = 8.6 Hz,

2H), 5.33 (brs, 1H), 3.99 (dd, *J* = 12.2, 5.7 Hz, 1H), 2.68 - 2.59 (m, 2H), 2.45 (tdd, *J* = 13.3, 6.2, 1.4 Hz, 1H), 2.23 - 2.17 (m, 1H), 1.99 - 1.94 (m, 1H), 1.89 - 1.67 (m, 2H), 1.46 (qd, *J* = 12.8, 3.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 208.0, 145.0, 129.1, 122.0, 114.0, 61.6, 41.1, 35.4, 28.0, 23.9.

HRMS (ESI): Calcd. for C₁₂H₁₅ONCl ([M+H]⁺): 224.0837, found: 224.0839.

Reaction Condition Screening

A. The optimization of *a*-amino-enone formation from primary amine.^{*a*}

B.	$\begin{array}{c} O \\ \downarrow \\ T_{Bu} \end{array} + \begin{array}{c} NH_2 \\ \downarrow \\ CI \end{array} - \begin{array}{c} - \\ CI \end{array}$ 1a 2a	catalyst oxidant(1.2 eo solvent, MS(400 rt, N ₂ , 24 h	<u>ק)</u> mg)	HN ^t Bu 3a
Entry	Additives (mol%)	Oxidant	Solvent	yield of 3a (%) ^b
1		ТЕМРО	toluene	5
2		TEMPO ⁺ BF ₄ ⁻	toluene	31
3	NH ₂	TEMPO ⁺ BF ₄ ⁻	MeCN	63
4		TEMPO ⁺ BF ₄ ⁻	o-DCB	42
5	(10)	TEMPO ⁺ BF ₄ ⁻	Et ₂ O	49
6		TEMPO ⁺ BF ₄ ⁻	DCM	59
7		TEMPO ⁺ BF ₄ ⁻	DCE	68
8	-	TEMPO ⁺ BF ₄ ⁻	DCE	70
9	$Cu(OAc)_2(10)$	TEMPO ⁺ BF ₄ ⁻	DCE	56
10	Cu(OTf) ₂ (10)	TEMPO ⁺ BF ₄ ⁻	DCE	49
11	Sc(OTf) ₃ (10)	TEMPO ⁺ BF ₄ ⁻	DCE	66
12	Yb(OTf) ₃ (10)	TEMPO ⁺ BF ₄ ⁻	DCE	62
13	$B(C_6F_5)_3(10)$	TEMPO ⁺ BF ₄ ⁻	DCE	77
14	TsOH(10)	TEMPO ⁺ BF ₄ -	DCE	70
15	$AgNO_3(10)$	TEMPO ⁺ BF ₄ ⁻	DCE	72
16°	AgBF ₄ (10)	TEMPO ⁺ BF ₄ -	DCE	80
17	$AgPF_6(10)$	TEMPO ⁺ BF ₄ -	DCE	81
18	AgClO ₄ (10)	TEMPO ⁺ BF ₄ -	DCE	80
19	$AgSbF_6(10)$	TEMPO ⁺ BF ₄ -	DCE	86
20	$AgSbF_6(10)$	TEMPO ⁺ ClO ₄ -	DCE	73
21	$AgSbF_6(10)$	TEMPO ⁺ TfO ⁻	DCE	74
22	$AgSbF_6(10)$	TEMPO ⁺ PF ₆ ⁻	DCE	98(91)
23°	$AgSbF_6(10)$	TEMPO ⁺ PF ₆ ⁻	DCE	80

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), additive (10 mol%), 3Å molecular sieves (400 mg), Oxoammonium Salt (1.2 eq), solvent (1.0 mL), N₂, room temperature for 24 h. ^{*b*} Yields were determined by GC analysis using n-dodecane as an internal standard, and isolated yield is listed in parentheses. ^{*c*} Using 4Å MS (400 mg) instead of 3Å MS (400 mg).

Mechanistic Studies

A. Controlling Experiment that verified Molecular sieves is essential for this transformation.

In a nitrogen-filled glovebox, a 25 mL pressure tube equipped with a stir bar was charged with 4-chloroaniline (0.0254g, 0.2 mmol), AgSbF₆ (0.0069 g, 0.02 mmol, 10 mol%), TEMPO⁺PF₆⁻ (0.0722g, 0.24 mmol). The tube was covered with a rubber septum and moved out of the glove box. Then cyclohexanone (31.0 ul, 0.3 mmol) and DCE (1.0 mL) was added to the pressure tube through the rubber septum using syringes, and then the rubber septum was replaced with a Teflon screwcap under nitrogen flow. The reaction mixture was stirred at room temperature for 24 h. After reaction finished, reaction mixture was filtered through silica column, washed with 10 mL of EA. The yield of **3b** was determined by GC (gas chromatograph) using n-dodecane as an internal standard. 5% yield of **3b** proved that molecular sieves are indispensable in this α -enaminones synthesis.

B. Excluding the possibility that diketone is the intermediate of this reaction.

In a nitrogen-filled glovebox, a 25 mL pressure tube equipped with a stir bar was charged with 1,2-cyclohexanedione(0.0336g, 0.3 mmol), 4-chloroaniline (0.0254g, 0.2 mmol), AgSbF₆ (0.0069 g, 0.02 mmol, 10 mol%). The tube was covered with a rubber septum and moved out of the glove box. Then DCE (1.0 mL) was added to the pressure tube through the rubber septum using syringes, and then the rubber septum was replaced with a Teflon screwcap under nitrogen flow. The reaction mixture was stirred at room temperature for 24 h. After reaction finished, reaction mixture was

filtered through silica column, washed with 10 mL of EA. The yield of **3b** was determined by GC (gas chromatograph) using n-dodecane as an internal standard. 5% yield of **3b** proved that this reaction is less likely to go through α -oxidation of cyclic ketone then enamine condensation pathway.

C. Excluding the possibility that α-arylamino cyclic ketone is the intermediate of this reaction.

In a nitrogen-filled glovebox, a 25 mL pressure tube equipped with a stir bar was charged with 2-((4-chlorophenyl)amino)cyclohexan-1-one (**5b**) (0.0446g, 0.2 mmol), AgSbF₆ (0.0069 g, 0.02 mmol, 10 mol%), TEMPO⁺PF₆⁻ (0.0722g, 0.24 mmol). The tube was covered with a rubber septum and moved out of the glove box. Then DCE (1.0 mL) was added to the pressure tube through the rubber septum using syringes, and then the rubber septum was replaced with a Teflon screwcap under nitrogen flow. The reaction mixture was stirred at room temperature for 24 h. After reaction finished, reaction mixture was filtered through silica column, washed with 10 mL of EA. The yield of **3b** was determined by GC (gas chromatograph) using n-dodecane as an internal standard. Trace yield of **3b** proved that this reaction is less likely to go through α -arylamination of cyclic ketone then oxidative dehydrogenation pathway.

D. Identification of *α*-TEMPO-Substituted Imine as Intermediate by NMR

In order to directly observe the formation of α -TEMPO-substituted imine intermediate 5c, the reaction was conducted reaction with cyclohexanone (1b) (31.0

ul, 0.3 mmol), 4-chloroaniline (**2a**) (0.0254g, 0.2 mmol), AgSbF₆ (0.0069 g, 0.02 mmol, 10 mol%), 3Å molecular sieve (400 mg), TEMPO⁺PF₆⁻ (0.0722g, 0.24 mmol) in DCE (1.0 mL) at room temperature. After 15 min, 15 % aqueous HCl solution (2.0 mL) was added to the reaction mixture and stirred for 4 h at room temperature. When the reaction was finished, the reaction mixture was quenched with water (15 mL) and extracted with ethyl acetate (15 mL) three times. The combined organic layer was dried with anhydrous NaSO₄, followed by evaporation under reduced pressure to remove the solvent. The residue was purified by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:2) to obtain 5.5 mg of isolated product **5c** as white solid (11%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 4.17 - 4.15 (m, 1H), 2.76 (ddd, *J* = 12.3, 9.5, 5.3 Hz, 1H), 2.29 - 2.23 (m, 1H), 2.15 - 2.08 (m, 1H), 2.01 (m, 1H), 1.95 - 1.86 (m, 2H), 1.82 - 1.74 (m, 1H), 1.65 - 1.51 (m, 2H), 1.45 - 1.44 (m, 4H), 1.32 (s, 1H), 1.17 (s, 6H), 1.14 (s, 3H), 0.99 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 211.6, 89.1, 59.7, 59.5, 40.8, 40.1, 34.7, 33.8, 33.4, 28.3, 22.0, 20.1, 17.0.

HRMS (ESI): Calcd. for C₁₅H₂₈O₂N ([M+H]⁺): 254.2115, found: 254.2118.

- E. The ¹⁸O-Labeling Experiment
- a. Synthesis of TEMPO¹⁸PF₆

- (1) In a nitrogen-filled 100 mL pear shaped flask equipped with magnetic stir bar and a rubber septum was added Na (0.42 g, 18 mmol), 2 mL H₂¹⁸O was added via a syringe dropwisly with 0°C ice bath.
- (2) To the solution of TEMP¹⁸O⁺PF₆⁻ (0.9710g, 4 mmol) in H₂O¹⁸ (1.7 mL) was

added concentrated Na¹⁸OH (12N, 1.5 mL H₂O¹⁸) at 0 °C for 2 h and the color of solution was changed from orange to slightly yellow. Then, 48% HPF₆ (0.2 mL) was added to the reaction mixture. When the color of reaction mixture became slightly yellow, the reaction mixture was filtrated and washed with ether. The orange solid is collected and dried at 50 °C in vacuo. ⁵

The ratio of TEMP¹⁸O⁺PF₆⁻/ TEMP¹⁶O⁺PF₆⁻ was 1:0.17 determined by EI analysis.

Figure S1. The EI and HRMS spectra of TEMP¹⁸O⁺PF₆⁻.

b. Tracing ¹⁸O-labeled product

In order to figure out the oxygen source of the α -amino enone, the ¹⁸O-labeling experiment reaction was conducted with 4-Phenylcyclohexanone (0.0522, 0.3 mmol), 4-iodoaniline (0.0440g, 0.2 mmol), AgSbF₆ (0.0069g, 0.02 mmol), 3Å molecular sieve (400 mg) and TEMP¹⁸O⁺PF₆⁻ (0.0727g, 0.24 mmol) in DCE (1.0 mL) at room temperature for 24 h. After reaction finished, the reaction mixture was filtered through a pad of silica gel and washed with 10 mL of ethyl acetate. The filtrate was concentrated under reduced pressure and purified by flash chromatography on silica gel (eluent = PE/EA = 100:5), the desired ¹⁸O-enriched product of ¹⁸O-4d was obtained in 81% (63.2 mg). Isotopic distribution of ¹⁸O-4d and ¹⁶O-4d was analyzed by HRMS, with the ratio 1: 0.19.

Figure S2. The HRMS spectra of ¹⁸O-4d

General Procedures and Product Characterization

A.General Procedures

General Procedure A for *α*-amino-enone formation reaction.

In a nitrogen-filled glovebox, a 25 mL pressure tube equipped with a stir bar was charged with primary amine (0.2 mmol), cyclic ketone (0.3 mmol), AgSbF₆ (0.0069 g, 0.02 mmol, 10 mol%), TEMPO⁺PF₆⁻ (0.0722g, 0.24 mmol), molecular sieve (3Å MS 400 mg). The tube was covered with a rubber septum and moved out of the glove box. Then DCE (1.0 mL) was added to the pressure tube through the rubber septum using syringes, and then the rubber septum was replaced with a Teflon screwcap under nitrogen flow. The reaction mixture was stirred at room temperature for 24 h. After reaction finished, the mixture was filtered through a pad of silica gel and washed with 10 mL of ethyl acetate. The filtrate was concentrated under reduced pressure and purified by flash chromatography on silica gel to provide the corresponding product.

General Procedure B for *a*-amino-enone formation reaction.

In a nitrogen-filled glovebox, a 25 mL pressure tube equipped with a stir bar was charged with primary amine (0.2 mmol), cyclic ketone (0.3 mmol), AgSbF₆ (0.0069 g, 0.02 mmol, 10 mol%), molecular sieve (3Å MS 400 mg). The tube was covered with a rubber septum and moved out of the glove box, and then DCE (1.0 mL) was added to the pressure tube through the rubber septum using syringes. The reaction mixture was firstly stirred under room temperature for 1 hour. After 1 hour's pre-stirring, TEMPO⁺PF₆⁻ (0.0722g, 0.24 mmol) was added, and then the rubber septum was replaced with a Teflon screwcap under nitrogen flow after 3 times vacuum-and-refill with nitrogen. And reaction mixture was filtered through a pad of silica gel and washed with 10 mL of ethyl acetate. The filtrate was concentrated under reduced pressure and purified by flash chromatography on silica gel to provide the corresponding product.

General Procedure for *a*-amino-enone synthesis on 10 mmol scale

In a nitrogen-filled glovebox, a 250 mL round ground flask equipped with a stir bar was charged with 4-chloroaniline or 4-bromoaniline (10.0 mmol), Cyclohexanone (20.0 mmol), AgSbF₆ (0.3450 g, 1.0 mmol, 10 mol%), molecular sieve (3Å MS 20.0 g). The round ground flask was covered with a rubber septum and moved out of the glove box, and then DCE (50.0 mL) was added to the pressure tube through the rubber septum using syringes. The reaction mixture was firstly stirred under room temperature for 1 hour. After 1 hour's pre-stirring, TEMPO⁺PF₆⁻ (3.6120 g, 12 mmol) was added, and then the rubber septum was replaced with a Teflon screwcap under nitrogen flow after 3 times vacuum-and-refill with nitrogen. And The reaction mixture was filtered through a pad of silica gel and washed with 100 mL of ethyl acetate. The filtrate was concentrated under reduced pressure and purified by flash chromatography on silica gel to provide the corresponding product.

B. Product Characterization

5-tert-Butyl-2-(4-chlorophenylamino)cyclohex-2-enone (3a)

3a (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3a** was obtained in 90% yield (50.0 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.39 - 6.27 (m, 2H), 2.70 (d, *J* = 16.4 Hz, 1H), 2.57 - 2.43 (m, 1H), 2.35 - 2.16 (m, 2H), 1.91 - 1.82 (m, 1H), 0.93 (s, 9H). **¹³C NMR** (100 MHz, CDCl₃): δ 196.4, 140.6, 135.6, 129.2, 125.6, 119.5, 117.0, 45.3, 39.3, 32.2, 27.0, 26.1;

2-((4-chlorophenyl)amino)cyclohex-2-en-1-one (3b)

3b (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3b** was obtained in 81% yield (35.8 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.36 (m, 2H), 2.56 (t, *J* = 6.7 Hz, 2H), 2.45 (q, *J* = 5.7 Hz, 2H), 2.02 (p, *J* = 6.3 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 195.3, 140.5, 136.0, 129.1, 125.6, 119.6, 116.9, 37.6, 24.5, 22.8.

2-((4-chlorophenyl)amino)-5-methylcyclohex-2-en-1-one (3c)

3c (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3c** was obtained in 85% yield (40.0 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.23 - 7.19 (m, 2H), 6.98 - 6.94 (m, 2H), 6.33 (dd, *J* = 6.4, 3.1 Hz, 1H), 2.68 - 2.59 (m, 1H), 2.53 - 2.46(m, 1H), 2.30 - 2.11 (m, 3H), 1.09 (d, *J* = 5.8 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃): δ 195.4, 140.5, 135.7, 129.1, 125.5, 119.6, 116.0, 45.5, 32.8, 30.5, 21.1.

HRMS (ESI): Calcd. for C₁₃H₁₅ONCl ([M+H]⁺): 236.0837, found:236.0836.

2-((4-chlorophenyl)amino)-5-ethylcyclohex-2-en-1-one (3d)

3d (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3d** was obtained in 86% yield (43.0 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.34 - 6.25 (m, 2H), 2.67 (d, *J* = 16.5 Hz, 1H), 2.56 - 2.49 (m, 1H), 2.24 - 2.10 (m,

2H), 2.05 - 1.96 (m, 1H), 1.43 (p, *J* = 7.2 Hz, 2H), 0.94 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 195.6, 140.5, 135.8, 129.1, 125.5, 119.5, 116.1, 43.4, 36.9, 30.6, 28.4, 11.1.

HRMS (ESI): Calcd. for C₁₄H₁₇ONCl ([M+H]⁺): 250.0993, found: 250.0992.

2-((4-chlorophenyl)amino)-5-propylcyclohex-2-en-1-one (3e)

3e (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3e** was obtained in 90% yield (47.5 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.33 (m, 2H), 2.67 (d, *J* = 16.1 Hz, 1H), 2.56 - 2.47 (m, 1H), 2.24 - 2.10 (m, 3H), 1.36 (s, 4H), 1.00 - 0.82 (m, *J* = 6.6 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃): δ 195.6, 140.5, 135.8, 129.1, 125.5, 119.6, 116.1, 43.8, 37.8, 35.0, 30.9, 19.6, 14.1.

HRMS (ESI): Calcd. for C₁₅H₁₉ONCl ([M+H]⁺): 264.1150, found: 264.1148.

2-((4-chlorophenyl)amino)-5-(tert-pentyl)cyclohex-2-en-1-one (3f)

3f (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3f** was obtained in 99% yield (57.8 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.37 (dd, *J* = 6.9, 2.8 Hz, 1H), 6.32 (s, 1H), 2.66 - 2.61 (m, 1H), 2.47 - 2.39 (m, 1H), 2.28 - 2.20 (m, 2H), 2.00 - 1.92 (m, 1H), 1.34 - 1.28 (m, 2H), 0.86 (d, *J* = 2.6 Hz, 6H), 0.83 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 196.4, 140.5, 135.5, 129.1, 125.5, 119.4, 117.0, 42.7, 38.9, 34.5, 32.1, 25.7, 23.8, 23.7, 8.0.

HRMS (ESI): Calcd. for C₁₇H₂₃ONCl ([M+H]⁺): 292.1463, found: 292.1462.

2-((4-chlorophenyl)amino)-5-pentylcyclohex-2-en-1-one (3g)

3g (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ Et_2O = 100:10), the product **3g** was obtained in 87% yield (50.8 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.22 - 7.18 (m, 2H), 6.97 - 6.93 (m, 2H), 6.34 - 6.24 (m, 2H), 2.70 - 2.63 (m, 1H), 2.55 - 2.48 (m, 1H), 2.24 - 2.08 (m, 3H), 1.41 - 1.25 (m, 9H), 0.89 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 195.6, 140.5, 135.8, 129.1, 125.5, 119.6, 116.1, 43.8, 35.6, 35.3, 31.8, 31.0, 26.2, 22.6, 14.0.

HRMS (ESI): Calcd. for C₁₇H₂₃ONCl ([M+H]⁺): 292.1463, found: 292.1461.

4-((4-chlorophenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (3h)

3h (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3h** was obtained in 91% yield (54.2 mg, white solid).

¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 7.4 Hz, 2H), 7.25 - 7.21 (m, 5H), 6.99 (d, J = 8.3 Hz, 2H), 6.38 (s, 2H), 3.41 - 3.32 (m, 1H), 2.90 - 2.70 (m, 4H).
¹³C NMR (100 MHz, CDCl₃): δ 194.6, 143.0, 140.3, 136.0, 129.2, 128.7, 127.0, 126.6, 125.9, 119.9, 115.2, 44.0, 41.0, 32.5.

HRMS (ESI): Calcd. for C₁₈H₁₇ONCl ([M+H]⁺): 298.0993, found: 298.0991.

ethyl 4-((4-chlorophenyl)amino)-5-oxocyclohex-3-ene-1-carboxylate (3i)

3i (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ Et_2O = 100:10), the product **3i** was obtained in 82% yield (48.2 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.23 - 7.20 (m, 2H), 6.97 - 6.93 (m, 2H), 6.71 - 5.94 (m, 2H), 4.18 (q, *J* = 7.2, 6.6 Hz, 2H), 3.10 - 3.04 (m, 1H), 2.88 - 2.65 (m, 4H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 193.0, 172.9, 140.0, 135.9, 129.2, 126.0, 120.0, 113.0, 61.1, 39.7, 39.1, 26.9, 14.1.

HRMS (ESI): Calcd. for C₁₅H₁₇O₃NCl ([M+H]⁺): 294.0891, found: 294.0899.

ethyl 2-(4-((4-chlorophenyl)amino)-5-oxocyclohex-3-en-1-yl)acetate (3j)

3j (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl

acetate = 100:10), the product **3j** was obtained in 79% yield (48.6 mg, pale yellow oil). **¹H NMR** (400 MHz, CDCl₃): δ 7.21 (d, *J* = 8.8 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.34 - 6.20 (m, 2H), 4.16 (q, *J* = 7.0 Hz, 2H), 2.75 - 2.55 (m, 3H), 2.47 - 2.21 (m, 4H), 1.27 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃): δ 194.2, 171.5, 140.2, 135.9, 129.1, 125.8, 119.8,

114.8, 60.6, 43.1, 39.9, 32.0, 30.4, 14.2.

HRMS (ESI): Calcd. for C₁₆H₁₉O₃NCl ([M+H]⁺): 308.1048, found: 308.1046.

2-((4-chlorophenyl)amino)-5-(trifluoromethyl)cyclohex-2-en-1-one (3k)

CI

3k (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3k** was obtained in 88% yield (51.0 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.23 (d, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.34 (brs, 1H), 6.25 (dd, *J* = 6.7, 3.2 Hz, 1H), 2.93 - 2.79 (m, 2H), 2.72 - 2.52 (m, 3H). **¹³C NMR** (100 MHz, CDCl₃): δ 191.5, 139.7, 136.1, 126.2 (q, ^{*1*}*J* _{*C-F*}= 276.9 Hz), 129.3, 126.6, 120.4, 111.5, 39.1 (q, ²*J* _{*C-F*} = 28.1 Hz), 35.9 (q, ³*J* _{*C-F*} = 2.3 Hz), 23.1(q, ³*J* _{*C-F*} = 2.9 Hz)

¹⁹**F NMR** (377 MHz, CDCl₃): δ -73.63.

HRMS (ESI): Calcd. for C₁₃H₁₂ONF₃Cl ([M+H]⁺): 290.0554, found: 290.0551.

4-((4-chlorophenyl)amino)-5-oxocyclohex-3-ene-1-carbonitrile (31)

31 (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:20), the product **31** was obtained in 74% yield (36.5 mg, yellow solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.26 - 7.23 (m, 2H), 6.99 - 6.95 (m, 2H), 6.34 (brs, 1H), 6.19 (t, *J* = 4.9 Hz, 1H), 3.32 - 3.25 (m, 1H), 2.95 - 2.78 (m, 4H). **¹³C NMR** (100 MHz, CDCl₃): δ 190.0, 139.2, 136.4, 129.3, 127.0, 120.8, 119.9, 110.4, 39.3, 27.4, 25.8.

HRMS (ESI): Calcd. for C₁₃H₁₂ON₂Cl ([M+H]⁺): 247.0633, found: 247.0634.

2-(4-((4-chlorophenyl)amino)-5-oxocyclohex-3-en-1-yl)isoindoline-1,3-dione (3m)

Cl

3m (0.2 mmol scale) was synthesized following *the procedure A* with slight modifications: DCE 5 mL is used as solvent instead of 1 mL. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:50), the product **3m** was obtained in 93% yield (68.0 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.87 - 7.84 (m, 2H), 7.77 - 7.74 (m, 2H), 7.24 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 6.32 (dd, *J* = 6.9, 3.0 Hz, 2H), 4.87 - 4.79 (m, *J* = 13.6, 11.1, 4.6 Hz, 1H), 3.63 (dd, *J* = 16.5, 13.7 Hz, 1H), 3.35 (ddd, *J* = 17.5, 11.3, 3.0 Hz, 1H), 2.77 (dd, *J* = 16.5, 3.4 Hz, 1H), 2.56 (dt, *J* = 17.3, 5.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 192.9, 167.9, 139.9, 136.2, 134.3, 131.6, 129.2, 126.3, 123.4, 120.3, 113.0, 45.8, 40.6, 28.2.

HRMS (ESI): Calcd. for C₂₀H₁₆O₃N₂Cl ([M+H]⁺): 367.0844, found: 367.0841.

tert-butyl (4-((4-chlorophenyl)amino)-5-oxocyclohex-3-en-1-yl)carbamate (3n)

3n (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:15), the product **3n** was obtained in 88% yield (59.3 mg, pale yellow solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.22 (d, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 2H), 6.37 (brs, 1H), 6.22 - 6.09 (m, 1H), 4.86 (d, *J* = 8.2 Hz, 1H), 4.18 (s, 1H), 2.90 - 2.73 (m, 2H), 2.60 - 2.53 (m, 1H), 2.44 - 2.30 (m, 1H), 1.45 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 193.1, 154.8, 139.9, 136.2, 129.2, 129.1, 126.1, 120.1, 112.1, 79.7, 46.4, 43.8, 31.2, 28.3, 28.1.

HRMS (ESI): Calcd. for C₁₇H₂₂O₃N₂Cl ([M+H]⁺): 337.1313, found: 337.1311.

tert-butyl (4-((4-chlorophenyl)amino)-5-oxocyclohex-3-en-1yl)(methyl)carbamate (30)

30 (0.2 mmol scale) was synthesized following the procedure A. After concentration

and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:15), the product **30** was obtained in 75% yield (52.6 mg, pale yellow oil).

¹**H NMR** (400 MHz, CDCl₃): δ 7.21 (d, *J* = 8.5 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 6.33 - 6.27 (m, 2H), 4.59 (s, 1H), 2.83 (s, 3H), 2.74 - 2.60 (m, 3H), 2.52 - 2.45 (m, 1H), 1.47 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 193.9, 155.1, 140.0, 135.9, 129.1, 126.0, 120.0, 113.9, 80.1, 51.0, 41.5, 29.2, 28.3.

HRMS (ESI): Calcd. for C₁₈H₂₄O₃N₂Cl ([M+H]⁺): 351.1470, found: 351.1467.

2-((4-chlorophenyl)amino)cyclopent-2-en-1-one (3p)

CI

3p (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3p** was obtained in 63% yield (26.2 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.69 (t, *J* = 3.3 Hz, 1H), 6.26 (s, 1H), 2.65 (q, *J* = 3.7 Hz, 2H), 2.48 - 2.46 (m, 2H). **¹³C NMR** (100 MHz, CDCl₃): δ 204.4, 140.3, 139.8, 129.2, 125.5, 124.9, 117.7, 32.3, 23.9.

2-((4-chlorophenyl)amino)-5,5-dimethylcyclohex-2-en-1-one (3q)

3q (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl

acetate = 100:10), the product **3q** was obtained in 91% yield (45.4 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.21 (t, *J* = 4.8 Hz, 1H), 2.41 (s, 2H), 2.35 (d, *J* = 4.8 Hz, 2H), 1.09 (s, 6H). **¹³C NMR** (100 MHz, CDCl₃): δ 195.3, 140.6, 135.2, 129.1, 125.5, 119.5, 114.2, 50.9, 38.4 33.9, 28.2.

HRMS (ESI): Calcd. for C₁₄H₁₇ONCl ([M+H]⁺): 250.0993, found: 250.0992.

2-((4-chlorophenyl)amino)-4,4-dimethylcyclohex-2-en-1-one (3r)

3r (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:15), the product **3r** was obtained in 78% yield (39.0 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.21 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.22 (brs, 1H), 6.07 (s, 1H), 2.61 (t, *J* = 6.7 Hz, 2H), 1.88 (t, *J* = 6.8 Hz, 2H), 1.20 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 195.0, 140.5, 133.6, 129.1, 127.0, 125.6, 119.7, 35.7, 33.6, 32.4, 29.0.

HRMS (ESI): Calcd. for C₁₄H₁₇ONCl ([M+H]⁺): 250.0993, found: 250.0992.

4-((4-chlorophenyl)amino)-3-oxo-3,6-dihydro-[1,1'-biphenyl]-1(2*H*)-carbonitrile (3s)

3s (0.2 mmol scale) was synthesized following the procedure A. After concentration

and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:10), the product **3s** was obtained in 87% yield (56.2 mg, white solid); ¹H NMR (400 MHz, CDCl₃): δ 7.52 - 7.38 (m, 5H), 7.27 - 7.24 (m, 2H), 7.04 - 7.00 (m, 2H), 6.41 (s, 1H), 6.24 (dd, *J* = 6.0, 3.7 Hz, 1H), 3.24 - 3.00 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 190.0, 139.3, 137.4, 136.6, 129.3, 128.9, 127.0, 125.6, 121.8, 121.0, 109.5, 46.6, 43.7, 36.1.

HRMS (ESI): Calcd. for C₁₉H₁₆ON₂Cl ([M+H]⁺): 323.0946, found: 323.0944.

8-((4-chlorophenyl)amino)-1,4-dioxaspiro[4.5]dec-8-en-7-one (3t)

CI

3t (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:10), the product **3t** was obtained in 68% yield (37.2 mg, yellow oil). **¹H NMR** (400 MHz, CDCl₃): δ 7.21 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 6.22 (t, *J* = 4.8 Hz, 2H), 4.00 (s, 4H), 2.86 (s, 2H), 2.74 (d, *J* = 4.8 Hz, 2H). **¹³C NMR** (100 MHz, CDCl₃): δ 192.8, 140.0, 135.8, 129.1, 126.1, 120.3, 111.3, 108.4, 64.7, 47.6, 35.4.

HRMS (ESI): Calcd. for C₁₄H₁₅O₃NCl ([M+H]⁺): 280.0735, found: 280.0734.

4-((4-chlorophenyl)amino)-1-tosyl-1,6-dihydropyridin-3(2H)-one (3u)

3u (0.2 mmol scale) was synthesized following *the procedure A* slight modifications:

the reaction time is 16h instead of 24 h. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:15), the product **3u** was obtained in 63% yield (47.5 mg, white solid).

¹H NMR (400 MHz, CDCl3): δ 7.67 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H),
7.22 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.17 (s, 1H), 6.06 (t, J = 4.4 Hz, 1H), 4.06 (d, J = 3.8 Hz, 2H), 3.97 (s, 2H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl3): δ 188.0, 144.4, 139.0, 135.0, 133.1, 130.0, 129.3, 127.7, 127.1, 120.5, 109.7, 52.7, 44.1, 21.5.

HRMS (ESI): Calcd. for C₁₈H₁₈O₃N₂ClS ([M+H]⁺): 377.0721, found: 377.0719.

tert-butyl 4-((4-chlorophenyl)amino)-3-oxo-3,6-dihydropyridine-1(2*H*)carboxylate (3v)

3v (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:10), the product **3v** was obtained in 53% yield (34.2 mg, orange oil). **¹H NMR** (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.7 Hz, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 6.31 (d, *J* = 20.1 Hz, 2H), 4.32 (d, *J* = 4.3 Hz, 2H), 4.27 (s, 2H), 1.49 (s, 9H). **¹³C NMR** (100 MHz, CDCl₃): δ 189.9, 153.9, 139.5, 134.6, 129.3, 126.7, 120.3, 116.2, 81.1, 51.5, 41.7, 28.3.

HRMS (ESI): Calcd. for C₁₆H₁₉O₃N₂ClNa ([M+Na]⁺): 345.0976, found: 345.0975.

4-((4-chlorophenyl)amino)-2H-pyran-3(6H)-one (3w)

3w (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3w** was obtained in 66% yield (29.5 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.25 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 6.35 - 6.28 (m, 2H), 4.52 (d, *J* = 3.0 Hz, 2H), 4.30 (s, 2H). **¹³C NMR** (100 MHz, CDCl₃): δ 191.1, 139.4, 134.0, 129.4, 126.7, 120.2, 112.4, 71.9, 65.0.

HRMS (ESI): Calcd. for C₁₁H₁₁O₂NCl ([M+H]⁺): 224.0473, found: 224.0474.

2-((4-chlorophenyl)amino)-4-methylcyclopent-2-en-1-one (3x)

3x (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:1), the product **3x** was obtained in 60% yield (26.7 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 2H), 6.60 (d, *J* = 3.1 Hz, 1H), 6.20 (s, 1H), 3.03 - 2.99 (m, *J* = 6.0, 2.1 Hz, 1H), 2.71 (dd, *J* = 19.3, 6.2 Hz, 1H), 2.02 (dd, *J* = 19.3, 1.9 Hz, 1H), 1.23 (d, *J* = 7.0 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃): δ 204.3, 140.2, 139.0, 130.7, 129.3, 125.6, 117.8, 41.1, 31.2, 21.7.

HRMS (ESI): Calcd. for C₁₂H₁₃ONCl ([M+H]⁺): 222.0680, found: 222.0679.

2-((4-chlorophenyl)amino)-5-methylcyclopent-2-en-1-one (3x')

3x' (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:1), the product 3x' was obtained in 21% yield (9.2 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 6.62 (t, *J* = 3.3 Hz, 1H), 6.22 (s, 1H), 2.91 (ddd, *J* = 17.9, 6.4, 3.3 Hz, 1H), 2.49 - 2.45 (m, 1H), 2.23 (dt, *J* = 17.9, 2.7 Hz, 1H), 1.24 (d, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 207.1, 140.4, 138.7, 129.3, 125.5, 123.4, 117.7, 37.9, 33.3, 16.4.

HRMS (ESI): Calcd. for C₁₂H₁₃ONCl ([M+H]⁺): 222.0680, found: 222.0681.

2-((4-chlorophenyl)amino)-4-methylcyclohex-2-en-1-one (3y)

3y (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:1), the product **3y** was obtained in 73% yield (34.3 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.22 (d, *J* = 8.3 Hz, 2H), 6.96 (d, *J* = 8.3 Hz, 2H), 6.19 (brs, 2H), 2.72 - 2.62 (m, 2H), 2.51 - 2.43 (m, 1H), 2.13 - 2.06 (m, 1H), 1.70 - 1.60 (m, 1H), 1.17 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 195.3, 140.4, 134.9, 129.1, 125.6, 122.7, 119.8, 36.3, 30.8, 30.4, 21.8.

HRMS (ESI): Calcd. for C₁₃H₁₅ONCl ([M+H]⁺): 236.0837, found: 236.0836.

2-((4-chlorophenyl)amino)-6-methylcyclohex-2-en-1-one (3y')

3y' (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:1), the product **3y'** was obtained in 20% yield (9.5 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.33 (t, *J* = 4.8 Hz, 1H), 2.56 - 2.41 (m, 3H), 2.11 - 2.04 (m, 1H), 1.82 - 1.72 (m, 1H), 1.22 (d, *J* = 6.8 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃): δ 198.2, 140.7, 135.5, 129.1, 125.6, 119.7, 116.2, 41.3,

30.9, 23.5, 15.4.

HRMS (ESI): Calcd. for C₁₃H₁₅ONCl ([M+H]⁺): 236.0837, found: 286.0833.

4-(4-(*tert*-butyl)phenyl)-2-((4-chlorophenyl)amino)cyclopent-2-en-1-one (3z)

3z (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:1), the product 3z was obtained in 75% yield (51.0 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 (d, *J* = 8.3 Hz, 2H), 7.22 (d, *J* = 8.9 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 6.67 (d, *J* = 3.1 Hz, 1H), 6.37 (s, 1H), 4.13 - 4.10 (m, 1H), 2.98 (dd, *J* = 19.5, 6.7 Hz, 1H), 2.39 (dd, *J* = 19.5, 2.2 Hz, 1H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 204.3, 150.0, 140.2, 140.0, 139.4, 129.2, 127.9, 126.7, 125.8, 125.7, 117.9, 42.4, 41.6, 34.4, 31.3.

HRMS (ESI): Calcd. for C₂₁H₂₃ONCl ([M+H]⁺): 340.1463, found: 340.1460.

3z' (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:1), the product **3z'** was obtained in 7% yield (4.7 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 (d, *J* = 7.9 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 8.3 Hz, 2H), 6.81 (s, 1H), 6.29 (s, 1H), 3.63 (d, *J* = 6.5 Hz, 1H), 3.19 (ddd, *J* = 18.2, 6.9, 3.3 Hz, 1H), 2.75 (d, *J* = 18.2 Hz, 1H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 204.1, 150.0, 140.2, 138.9, 136.0, 129.3, 127.2, 125.8, 125.7, 124.2, 117.9, 48.9, 34.5, 34.3, 31.3.

HRMS (ESI): Calcd. for C₂₁H₂₃ONCl ([M+H]⁺): 340.1463, found: 340.1462.

2-((4-chlorophenyl)amino)-3-methylcyclohex-2-en-1-one (3aa)

3aa (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:1), the product **3aa** was obtained in 12% yield (5.6 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.15 (d, *J* = 8.8 Hz, 2H), 6.55 (d, *J* = 8.8 Hz, 2H), 5.51 (brs, 1H), 2.55 - 2.52 (m, 4H), 2.04 (p, *J* = 6.2 Hz, 2H), 1.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.0, 146.6, 143.4, 133.3, 128.7, 123.8, 116.6, 37.1, 32.0, 21.6, 21.1

HRMS (ESI): Calcd. for C₁₃H₁₅ONCl ([M+H]⁺): 236.0837, found: 236.0834.

2-((4-chlorophenyl)amino)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3ab)

3ab (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3ab** was obtained in 40% yield (23.8 mg, yellow oil).

¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 7.2 Hz, 2H), 7.19 (t, J = 7.4 Hz, 2H), 7.14
- 7.11 (m, 1H), 6.86 (d, J = 8.7 Hz, 2H), 6.39 (d, J = 8.7 Hz, 2H), 2.86 (t, J = 6.0 Hz, 2H), 2.64 (t, J = 6.6 Hz, 2H), 2.15 (p, J = 6.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 196.7, 141.1, 139.0, 137.8, 132.2, 128.3, 128.2, 128.0, 127.2, 124.1, 117.6, 37.2, 31.1, 21.8.

HRMS (ESI): Calcd. for C₁₈H₁₇ONCl ([M+H]⁺): 298.0993, found: 298.0992.

(5*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-3-((4-chlorophenyl)amino)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-1,5,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-2*H*cyclopenta[*a*]phenanthren-2-one (3ac)

3ac (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **3ac** was obtained in 95% yield (96.9 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.19 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.37 (s, 1H), 5.88 (d, *J* = 2.7 Hz, 1H), 2.70 (d, *J* = 16.3 Hz, 1H), 2.45 (dt, *J* = 13.0, 3.1 Hz, 1H), 2.15 (d, *J* = 16.0 Hz, 1H), 2.00 (d, *J* = 12.6 Hz, 1H), 1.86 - 1.74 (m, 2H), 1.65 - 1.24 (m, 12H), 1.17 - 0.98 (m, 9H), 0.92 - 0.90 (m, 6H), 0.87 (dd, *J* = 6.7, 1.9 Hz, 6H), 0.66 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 195.7, 140.5, 134.8, 129.1, 125.4, 119.5, 119.4, 56.2, 56.1, 53.0, 51.3, 45.8, 42.6, 41.0, 39.6, 39.4, 36.1, 35.7, 34.5, 31.8, 28.1, 28.0, 27.5, 24.0, 23.8, 22.8, 22.5, 21.0, 18.6, 12.7, 12.0.

HRMS (ESI): Calcd. for C₃₃H₄₉ONCl ([M+H]⁺): 510.3497, found: 510.3496.

4-(phenylamino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4a)

4a (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4a** was obtained in70% yield (36.8 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 (t, J = 7.5 Hz, 2H), 7.30 - 7.24 (m, 5H), 7.06 (d, J = 8.3 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.45 - 6.40 (m, 2H), 3.42 - 3.33 (m, , 1H), 2.90 - 2.59 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.8, 143.2, 141.7, 136.3, 129.3, 128.7, 126.9, 126.7, 121.3, 118.8, 114.6, 44.1, 41.1, 32.6.

HRMS (ESI): Calcd. for C₁₈H₁₈ON ([M+H]⁺): 264.1383, found: 264.1381.

4-((4-fluorophenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4b)

4b (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4b** was obtained in 76% yield (42.8 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.37 - 7.33 (m, 2H), 7.28 - 7.24 (m, 3H), 7.04 - 6.96 (m, 4H), 6.26 (dd, J = 6.1, 3.5 Hz, 2H), 3.40 - 3.32 (m, 1H), 2.90 - 2.57 (m, 4H). **¹³C NMR** (100 MHz, CDCl₃): δ 194.7, 157.9 (d, ¹*J* _{*C-F*}= 240.9 Hz), 143.2, 137.7 (d, ⁴*J* _{*C-F*}= 2.5 Hz), 137.0, 128.7, 127.0, 126.7, 121.3(d, ³*J* _{*C-F*}= 7.8 Hz), 115.9 (d, ²*J* _{*C-F*}= 22.4 Hz), 113.6, 44.1, 41.2, 32.5. **¹⁹F NMR** (377 MHz, CDCl₃): δ -121.42..

HRMS (ESI): Calcd. for C₁₈H₁₇ONF ([M+H]⁺): 282.1289, found: 282.1285.

4-((4-bromophenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4c)

4c (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4c** was obtained in 91% yield (62.3 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.37 - 7.33 (m, 4H), 7.28 - 7.24 (m, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.39 (dd, *J* = 6.3, 3.4 Hz, 1H), 3.41 - 3.33 (m, 1H), 2.90 - 2.59 (m, 4H). **¹³C NMR** (100 MHz, CDCl₃): δ 194.6, 143.0, 140.8, 135.8, 132.1, 128.7, 126.9, 126.6, 120.1, 115.4, 113.0, 43.9, 40.9, 32.5.

HRMS (ESI): Calcd. for C₁₈H₁₇ONBr ([M+H]⁺): 342.0488, found: 342.0484.

4-((4-iodophenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4d)

4d (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ Et_2O = 100:5), the product **4d** was obtained in 82% yield (63.8 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (d, *J* = 8.7 Hz, 2H), 7.38 - 7.34 (m, 2H), 7.29 - 7.26 (m, 3H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.42 (dd, *J* = 6.2, 3.3 Hz, 2H), 3.42 - 3.34 (m, 1H), 2.91 - 2.60 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.7, 143.0, 141.5, 138.0, 135.7, 128.7, 127.0, 126.7, 120.4, 115.8, 82.9, 44.0, 40.1, 32.6.

HRMS (ESI): Calcd. for C₁₈H₁₇ONI ([M+H]⁺): 390.0349, found: 390.0346.

4-((4-(trifluoromethyl)phenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4e)

4e (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4e** was obtained in 89% yield (59.0 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.38 - 7.34 (m, 2H), 7.31 - 7.24 (m, 3H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.58 - 6.51 (m, 2H), 3.43 - 3.35 (m, 1H), 2.92 - 2.64 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃): δ 194.5, 145.9, 142.8, 135.1, 128.7, 127.1, 126.62, 126.55 (q, ³*J* _{*C-F*}= 3.8 Hz), 124.4 (q, ^{*I*}*J* _{*C-F*}= 270.9 Hz), 122.2 (q, ²*J* _{*C-F*}= 32.7 Hz), 117.9, 116.8, 43.9, 40.8, 32.6.

HRMS (ESI): Calcd. for C₁₉H₁₇ONF₃ ([M+H]⁺): 332.1257, found: 332.1255.

4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2*H*)-one (4f)

4f (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4f** was obtained in 80% yield (62.3 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.38 - 7.34 (m, 2H), 7.29 - 7.26 (m, 3H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.55 (dd, *J* = 6.4, 3.3 Hz, 1H), 3.42 - 3.35 (m, 1H), 2.91 - 2.63 (m, 4H), 1.33 (s, 12H). **¹³C NMR** (100 MHz, CDCl₃): δ194.7, 144.5, 143.1, 136.2, 135.5, 128.7, 127.0, 126.7, 116.8, 116.6, 83.5, 44.1, 40.9, 32.7, 24.8.

HRMS (ESI): Calcd. for C₂₄H₂₉O₃NB ([M]⁺): 389.2271, found: 389.2268.

4-((4-(tert-butyl)phenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4g)

4g (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4g** was obtained in 86% yield (54.9 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.35 - 7.24 (m, 7H), 7.03 - 7.00 (m, 2H), 6.39 (dd, *J* = 6.1, 3.5 Hz, 1H), 3.41 - 3.33 (m, 1H), 2.90 - 2.58 (m, 4H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 194.9, 144.4, 143.3, 139.1, 136.6, 128.7, 126.9, 126.7, 126.0, 119.0, 113.8, 44.2, 41.2, 34.2, 32.6, 31.4.

HRMS (ESI): Calcd. for C₂₂H₂₆ON ([M+H]⁺): 320.2009, found: 320.2005.

4-((4-acetylphenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4h)

4h (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:10), the product 4h was obtained in 75% yield (45.8 mg, white solid).
¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.6 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.32 - 7.26 (m, 3H), 7.06 (d, *J* = 8.5 Hz, 2H), 6.87 - 6.60 (m, 2H), 3.44 - 3.37 (m, 1H), 2.93 - 2.72 (m, 4H), 2.54 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 196.3, 194.4, 146.3, 142.7, 134.7, 130.3, 129.4, 128.7, 127.0, 126.6, 119.3, 115.9, 43.8, 40.7, 32.6, 26.1.

HRMS (ESI): Calcd. for C₂₀H₂₀O₂N ([M+H]⁺): 306.1489, found: 306.1485.

ethyl 4-((3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)amino)benzoate (4i)

4i (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ Et₂O = 100:5), the product **4i** was obtained in 81% yield (54.3 mg, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.7 Hz, 2H), 7.37 - 7.34 (m, 2H), 7.31 - 7.25 (m, 3H), 7.04 (d, J = 8.7 Hz, 2H), 6.83 - 6.76 (m, 1H), 6.69 - 6.53 (m, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.42 - 3.34 (m, 1H), 2.91 - 2.58 (m, 4H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.5, 166.2, 146.0, 142.8, 134.9, 131.2, 128.7, 127.0, 126.6, 122.0, 118.6, 116.0, 60.5, 43.9, 40.7, 32.6, 14.3.

HRMS (ESI): Calcd. for C₂₁H₂₂O₃N ([M+H]⁺): 336.1594, found: 336.1590.

4-((4-(pyridin-2-yl)phenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4j)

4j (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ Et_2O = 100:5), the product **4j** was obtained in 80% yield (54.5 mg, orange solid).

¹**H NMR** (400 MHz, CDCl₃): δ 8.64 (d, *J* = 4.8 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.71 - 7.64 (m, 2H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 6.6 Hz, 3H), 7.14 (d, *J* = 8.3 Hz, 3H), 6.60 (s, 1H), 6.53 (dd, *J* = 6.4, 3.3 Hz, 1H), 3.42 - 3.33 (m, 1H), 2.90 - 2.61 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.6, 156.8, 149.4, 143.0, 142.5, 136.6, 135.6, 131.7, 128.6, 127.8, 126.9, 126.6, 121.3, 119.5, 118.0, 115.9, 43.9, 40.9, 32.6.

HRMS (ESI): Calcd. for C₂₃H₂₁ON₂ ([M+H]⁺): 341.1648, found: 341.1646.

4k (0.2 mmol scale) was synthesized following the procedure B. After concentration
and purification by flash chromatography on silica gel (eluent = petroleum ether/ Et_2O = 100:5), the product **4k** was obtained in 79% yield (48.9 mg, yellow solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.34 (t, *J* = 7.5 Hz, 2H), 7.26 - 7.22 (m, 5H), 7.00 (d,

J = 8.5 Hz, 2H), 6.36 (dd, J = 6.3, 3.4 Hz, 1H), 3.39 - 3.31 (m, 1H), 2.88 - 2.58 (m, 4H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 194.6, 143.1, 139.7, 136.1, 129.5, 129.4, 128.6, 126.9, 126.6, 119.4, 114.7, 44.0, 41.0, 32.5, 17.5.

HRMS (ESI): Calcd. for C₁₉H₂₀ONS ([M+H]⁺): 310.1260, found: 310.1256.

4-((4-((trifluoromethyl)thio)phenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2*H*)one (4l)

41 (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **41** was obtained in 73% yield (53.0 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.3 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 3H), 7.10 (d, *J* = 8.4 Hz, 2H), 6.71 (s, 1H), 6.63 (dd, *J* = 6.3, 3.3 Hz, 1H), 3.48 - 3.40 (m, 1H), 2.96 - 2.69 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.5, 144.6, 142.8, 138.0, 135.0, 129.6 (q, ¹J _{C-F}= 308.8 Hz), 128.7, 127.1, 126.6, 118.2, 117.7, 113.9, 43.9, 40.8, 32.6.

¹⁹**F NMR** (377 MHz, CDCl₃): δ -43.87.

HRMS (ESI): Calcd. for C₁₉H₁₇ONSF₃ ([M+H]⁺): 364.0977, found: 364.0978.

4-((3-(trifluoromethoxy)phenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2*H*)-one (4m)

4m (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4m** was obtained in 86% yield (59.7 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.38 - 7.34 (m, 2H), 7.29 - 7.24 (m, 4H), 6.95 - 6.93 (m, 2H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.48 (dd, *J* = 6.3, 3.3 Hz, 1H), 3.43 - 3.35 (m, 1H), 2.92 - 2.63 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃): δ 194.6, 150.0 (q, ³*J*_{*C-F*}= 1.8 Hz), 143.3, 142.9, 135.5, 130.3, 128.7, 127.0, 126.6, 120.4 (q, ^{*l*}*J*_{*C-F*}= 257.1 Hz), 116.6, 116.4, 112.8, 110.3, 44.0, 40.9, 32.5.

¹⁹**F NMR** (377 MHz, CDCl₃): δ -57.60.

HRMS (ESI): Calcd. for C₁₉H₁₆O₂NF₃ ([M+H]⁺): 348.1206, found: 348.1211.

4-((3-methoxyphenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4n)

4n (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4n** was obtained in 76% yield (44.6 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 - 7.33 (m, 2H), 7.28 - 7.24 (m, 3H), 7.18 (t, *J* = 8.1 Hz, 1H), 6.67 - 6.62 (m, 2H), 6.50 - 6.46 (m, 2H), 3.79 (s, 3H), 3.41 - 3.33 (m, 1H), 2.90 - 2.60 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.8, 160.5, 143.2, 143.0, 136.0, 130.0, 128.7, 126.9, 126.7, 115.5, 111.3, 106.2, 104.6, 55.2, 44.1, 41.0, 32.6.

HRMS (ESI): Calcd. for C₁₉H₂₀O₂N ([M+H]⁺): 294.1489, found: 294.1485.

4-((3-nitrophenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (40)

4o (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:10), the product **4o** was obtained in 59% yield (36.4 mg, yellow solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.92 (t, *J* = 2.3 Hz, 1H), 7.71 (ddd, *J* = 8.1, 2.3, 1.0 Hz, 1H), 7.41 - 7.35 (m, 3H), 7.30 - 7.25 (m, 4H), 6.74 (s, 1H), 6.58 (dd, *J* = 6.4, 3.2 Hz, 1H), 3.45 - 3.37 (m, 1H), 2.93 - 2.66 (m, 4H). **¹³C NMR** (100 MHz, CDCl₃): δ 194.4, 149.0, 143.5, 142.7, 135.0, 129.9, 128.7, 127.0, 126.6, 123.7, 118.1, 115.2, 111.2, 43.8, 40.7, 32.5.

HRMS (ESI): Calcd. for C₁₈H₁₇O₃N₂ ([M+H]⁺): 309.1234, found: 309.1230.

4-((3-chlorophenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4p)

4p (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4p** was obtained in 79% yield (47.0 mg, white solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.38 - 7.34 (m, 2H), 7.28 - 7.24 (m, 3H), 7.18 (t, *J* = 8.1 Hz, 1H), 7.07 (t, *J* = 2.1 Hz, 1H), 6.89 (td, *J* = 8.2, 2.1 Hz, 2H), 6.47 (dd, *J* = 6.3, 3.3 Hz, 1H), 3.42 - 3.33 (m, 1H), 2.90 - 2.61 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.6, 143.1, 143.0, 135.6, 134.8, 130.3, 128.7, 127.0, 126.6, 121.0, 117.8, 116.5, 116.4, 44.0, 40.9, 32.6.

HRMS (ESI): Calcd. for C₁₈H₁₇ONCl ([M+H]⁺): 298.0993, found: 298.0990.

4-((2-chlorophenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4q)

4q (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product 4q was obtained in 87% yield (51.7 mg, white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.38 - 7.34 (m, 3H), 7.32 - 7.25 (m, 4H), 7.19 (td, *J* = 7.8, 1.5 Hz, 1H), 6.85 (td, *J* = 7.7, 1.5 Hz, 1H), 6.47 (dd, *J* = 6.2, 3.4 Hz, 1H), 3.44 -

3.36 (m, 1H), 2.94 - 2.62 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.4, 143.0, 138.4, 135.47, 129.9, 128.7, 127.2, 127.0, 126.6, 123.7, 121.3, 117.7, 116.9, 44.0, 40.9, 32.6.

HRMS (ESI): Calcd. for C₁₈H₁₇ONCl ([M+H]⁺): 298.0993, found: 298.0991.

4-(benzo[d][1,3]dioxol-5-ylamino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4r)

4r (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4r** was obtained in 56% yield (34.4 mg, yellow solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.36 - 7.32 (m, 2H), 7.26 (d, *J* = 6.4 Hz, 3H), 6.74 (d, *J* = 8.2 Hz, 1H), 6.66 (d, *J* = 2.2 Hz, 1H), 6.51 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.20 - 6.13

¹³C NMR (100 MHz, CDCl₃): δ 194.8, 148.0, 143.3, 142.8, 137.4, 136.0, 128.7, 126.9, 126.6, 113.5, 113.2, 108.4, 102.9, 101.1, 44.1, 41.2, 32.5.

(m, 2H), 5.92 (s, 2H), 3.38 - 3.32 (m, 1H), 2.88 - 2.59 (m, 4H).

HRMS (ESI): Calcd. for C₁₉H₁₈O₃N ([M+H]⁺): 308.1281, found: 308.1278.

4-(naphthalen-1-ylamino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4s)

4s (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4s** was obtained in 72% yield (45.0 mg, yellow solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.99 (s, 1H), 7.83 (s, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.50 (s, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.33 (d, *J* = 6.3 Hz, 3H), 7.26 (d, *J* = 6.7 Hz, 3H), 6.74 (s, 1H), 6.09 (s, 1H), 3.39 (s, 1H), 2.94 - 2.78 (m, 2H), 2.60 - 2.59 (m, 2H). **¹³C NMR** (100 MHz, CDCl₃): δ 194.8, 143.1, 137.5, 137.2, 134.5, 128.6, 128.4, 128.0, 126.8, 126.6, 126.0, 125.7, 125.6, 123.2, 121.9, 117.1, 114.7, 44.0, 41.1, 32.3., **HRMS (ESI):** Calcd. for C₂₂H₂₀ON ([M+H]⁺): 314.1539, found: 314.1536.

4-(naphthalen-2-ylamino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4t)

4t (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4t** was obtained in 72% yield (44.6 mg, yellow solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.45 - 7.25 (m, 8H), 7.19 (d, *J* = 8.8 Hz, 1H), 6.61 (dd, *J* = 6.3, 3.3 Hz, 1H), 3.46 - 3.38 (m, 1H), 2.93 - 2.65 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 194.8, 143.2, 139.3, 136.1, 134.4, 129.1, 128.7, 127.6, 127.0, 126.7, 126.6, 126.5, 123.8, 120.8, 115.4, 112.6, 44.1, 41.1, 32.7.
HRMS (ESI): Calcd. for C₂₂H₂₀ON ([M+H]⁺): 314.1539, found: 314.1535.

4-((3-bromo-4-methylphenyl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4u)

4u (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4u** was obtained in 89% yield (62.9 mg, yellow solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.37 - 7.33 (m, 2H), 7.28 - 7.24 (m, 4H), 7.11 (d, *J* = 8.2 Hz, 1H), 6.89 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.38 - 6.33 (m, 2H), 3.40 - 3.32 (m, 1H), 2.89 - 2.59 (m, 4H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 194.6, 143.1, 140.7, 136.1, 131.0, 130.4, 128.7, 127.0, 126.6, 125.1, 122.3, 118.2, 115.1, 44.0, 41.0, 32.5, 22.0.

HRMS (ESI): Calcd. for C₁₉H₁₉ONBr ([M+H]⁺): 356.0645, found: 356.0641.

4-((6-methoxypyridin-3-yl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4v)

4v (0.2 mmol scale) was synthesized following *the procedure B*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **4v** was obtained in 73% yield (43.1 mg, yellow solid).

¹**H NMR** (400 MHz, CDCl₃): δ 7.98 (d, *J* = 2.8 Hz, 1H), 7.39 - 7.33 (m, 3H), 7.27 - 7.25 (m, 3H), 6.72 (d, *J* = 8.7 Hz, 1H), 6.07 - 6.04 (m, 2H), 3.91 (s, 3H), 3.40 - 3.32 (m, 1H), 2.90 - 2.74 (m, 2H), 2.68 - 2.54 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 194.6, 160.0, 143.1, 139.7, 137.8, 133.4, 131.9, 128.7, 126.9, 126.6, 113.0, 111.0, 53.5, 44.1, 41.2, 32.4.

HRMS (ESI): Calcd. for C₁₈H₁₉O₂N₂ ([M+H]⁺): 295.1441, found: 295.1438.

4-((1H-indazol-3-yl)amino)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4w)

4w (0.2 mmol scale) was synthesized following *the procedure A*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:15), the product 4w was obtained in 46% yield (27.9 mg, white solid). ¹H NMR (400 MHz, CDCl₃): δ 9.44 (s, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.56 - 7.54 (m, 1H), 7.41 - 7.26 (m, 8H), 7.13 - 7.09 (m, 1H), 3.42 - 3.34 (m, 1H), 2.94 - 2.65 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 145.4, 143.2, 141.1, 134.2, 128.6, 127.6, 126.9, 126.6, 119.9, 119.6, 118.8, 115.1, 109.6, 43.8, 41.1, 32.7., HRMS (ESI): Calcd. for C₁₉H₁₈ON₃ ([M+H]⁺): 304.1444, found: 304.1441.

2-((4-chlorophenyl)amino)cyclohex-2-en-1-one (3b)

3b (10.0 mmol scale) was synthesized following *the procedure C*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **6a** was obtained in 82% yield (1.82 g, white solid). Characterization data matched those obtained on 0.2 mmol scale (vide infra).

2-((4-bromophenyl)amino)cyclohex-2-en-1-one (6a)

6a (10.0 mmol scale) was synthesized following *the procedure C*. After concentration and purification by flash chromatography on silica gel (eluent = petroleum ether/ ethyl acetate = 100:5), the product **6a** was obtained in 86% yield (2.32 g, white solid). **¹H NMR** (400 MHz, CDCl₃): δ 7.35 - 7.32 (m, 2H), 6.92 - 6.88 (m, 2H), 6.39 - 6.36 (m, 2H), 2.57 - 2.54 (m, 2H), 2.45 (q, *J* = 5.8 Hz, 2H), 2.02 (p, *J* = 6.1 Hz, 2H). **¹³C NMR** (100 MHz, CDCl₃): δ 195.3, 141.0, 135.8, 132.0, 119.9, 117.2, 112.8, 37.3, 24.5, 22.8.

HRMS (ESI): Calcd. for C₁₂H₁₃O₂NBr ([M+H]⁺): 266.0175, found: 266.0172.

X-ray Datas: Crystal data of product 3ac.

Figure S3. X-ray structure of 3ac. Hydrogen atoms have been omitted for clarity. (CCDC 1962739)

Identification code	full	
Empirical formula	C33 H48 C1 N O	
Formula weight	510.17	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P1	
Unit cell dimensions	a = 9.5630(6) Å	$\alpha = 81.062(3)^{\circ}$.
	b = 12.5988(7) Å	β= 88.375(3)°.
	c = 25.0296(14) Å	$\gamma = 88.956(3)^{\circ}$.
Volume	2977.5(3) Å ³	
Z	4	
Density (calculated)	1.138 Mg/m ³	
Absorption coefficient	0.153 mm ⁻¹	
F(000)	1112	
Crystal size	0.40 x 0.20 x 0.20 mm ³	
Theta range for data collection	2.30 to 25.07°.	
Index ranges	-11<=h<=11, -15<=k<=14, -29<=l<=29	
Reflections collected	74133	
Independent reflections	20927 [R(int) = 0.0539]	
Completeness to theta = 25.07°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9700 and 0.9413	

Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole Full-matrix least-squares on F² 20927 / 3 / 1312 1.076 R1 = 0.0503, wR2 = 0.1271 R1 = 0.0679, wR2 = 0.1453 -0.03(4) 0.380 and -0.522 e.Å⁻³

Supplementary References

- (a) T. Vogler and A. Studer, *Advanced Synthesis & Catalysis*, 2008, **350**, 1963;
 (b) H.-R. Huo, X.-Y. Tang and Y.-f. Gong, *Synthesis*, 2018, **50**, 2727;
- 2. T. A. Engler and J. Wanner, J. Org. Chem., 2000, 65, 2444;
- 3. X. Y. Lu and S. H. Lin, J. Org. Chem., 2005, 70, 9651;
- S. Liu, J.-H. Xie, W. Li, W.-L. Kong, L.-X. Wang and Q.-L. Zhou, Org. Lett., 2009, 11, 4994;
- V. A. Golubev, V. D. Sen and E. G. Rozantsev, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1979, 28, 1927.

¹H-NMR and ¹³C, ¹⁹F-NMR Spectra

0 – 110 100 f1 (ppm) 70 50 30

110 100 f1 (ppm) 10 0 -

⊤ 40 10 0 -110 100 190 180 fl (ppm)

f1 (ppm)

110 100 f1 (ppm) 0 – 190 180

110 100 f1 (ppm) 10 0 -190 180

110 100 f1 (ppm) 0 – 190 180

S87

110 100 f1 (ppm) 0 – 190 180

fl (ppm)

110 100 f1 (ppm) 0 – 190 180

110 100 f1 (ppm) 0 -

110 100 f1 (ppm) 10 0 -

S99

110 100 f1 (ppm) 0 –

204.29	-149.99	$ \sum_{\substack{126.24\\126.67\\126.67\\126.67\\126.75}$	117.89	$\int_{76.68}^{77.02} 77.00$	\sim 42. 37 41. 62 \sim 31. 29 \sim 31. 29 \sim 31. 29
HN					
3z					
				ii.	

↓ 40 10 0 -210 200 190 180 110 100 170 160 150 140 70 60 50 ' | 30 20 80 130 120 90 f1 (ppm)

S109

f1 (ppm)

-121.42

5122 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S122

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S147

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

90 80 70 60 50 40 30 20 10 150 140 130 120 110 100 210 200 190 180 170 160 0

110 100 90 80

110 100 50 40

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

110 100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

190 180 170 160 150 140 130 120 110 100 210 200

fl (mgg)

o

110 100 f1 (ppm) 50 20

