Supplementary information

of

Fast synthesis of hierarchical Al-free Ti-BEA nanocrystals from low-

templated dry gel via a steam-assisted conversion method

Yuying Luo^{a,b}, Yadong Zhu^{a,b}, Jianguo Pan^c, Xiaohui Chen^{b*}

^a National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical

Engineering, Fuzhou University, Fuzhou 350002, Fujian, P. R. China.

^b School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China.

Jingmen Branch of China Petroleum & Chemical Corporation (SINOPEC).

*Correspondence author. Tel: (+86)591-83731234-8607, Fax: (+86)591-83738808,

E-mail: <u>chenxhfzu@fzu.edu.cn</u>.

<u>Chemicals involved in the Ti-BEA synthesis</u>

In the synthesis of Al-free Ti-BEA zeolites, the reagents used include fumed silica (Aerosil®200, Shanbo Co. Ltd., China), ammonium hexafluorotitanate ($H_8F_6N_2Ti$, AR, Maclin, Co. Ltd., China), sodium hydroxide (NaOH, AR, Xilong, Co. Ltd., China), aqueous tetraethylammonium hydroxide (TEAOH, 25 wt%, Xiya Reagent, China). All the reagents were invoked as purchased without any further purification.

Synthesis of pure Si-BEA seeds and its physicochemical property

Briefly, 0.64 g NaOH and 4.71 g TEAOH solution were dissolved in 60 g distilled water, and stirred until the formation of a clear solution. Then, 6.0 g silicon source was added to the clear solution and the resulting mixture was stirred vigorously for 20 min at room temperature to form a uniform gel with the molar composition of SiO2:0.16NaOH:0.08TEAOH:33H₂O. Then the gel was heated at 70 °C for 24 h to form a dry gel and grinded into a fine powder. 5.0 g of obtained dry gel was weighed and transferred into a 10 mL small Teflon cup. The loaded Teflon cup was placed in a 40 mL Teflon-lined stainless-steel autoclave, and 1.25 g distilled water was added into the bottom of Teflon liner without contacting the dry gel. The autoclave was sealed and heated at 418 K for 24 h, then the as-prepared pure-Si BEA was obtained after washing and drying.

The detailed synthetic procedure and physicochemical property of the pure Si-BEA seeds were reported on our previous study (<u>Y.L. Luo, Q.M. Huang, X.H. Chen,</u> <u>Micropor. Mesopor. Mater. DOI: 10.1016/j.micromeso.2019.109675</u>).</u>

Figures and Schemes

Fig.S1. XRD pattern of sample obtained without addition of Na⁺ after 2 days at 145 °C. Only very weak reflections can be observed. They could originate from the seeds added in the gel.

Fig.S2. XRD pattern of sample directly synthesized with NH₄NO₃ after 2 days at 145 °C. Only amorphous substances exist, indicating that ammonium ions added to the precursor cannot replace sodium ions.

Fig.S3. ²⁹Si MAS NMR spectra of pure-Si-BEA-SAC sample.

Fig.S4. DRIFT (left) and ²⁹Si MAS NMR (right) spectra of Ti-BEA-70 samples before dehydration (a) and after dehydration (b).

Fig.S5. DRIFT spectra of Ti-BEA-70 samples before and after dehydration: the stretching vibration of various silanol hydroxyl groups between 3000~4000 nm.

Fig.S6. UV-Vis (left) and DRIFT (right) spectra for Ti-BEA samples with different pretreatments: (a) ion exchange and (b) HNO₃ washing.

Fig.S7. NH₃-TPD curves (left) and ²⁹Si MAS NMR (right) spectra of Ti-BEA-SAC (a) and Ti-BEA-HT (b) with the same Si/Ti=70 in precurssor.

Fig.S8. Water adsorption isotherms (left) and TG curves (right) of Ti-BEA-SAC and Ti-BEA-HT samples.

Scheme S1. Two different intermediates Species I and Species II in protic and aprotic solvents in Ti active sites.

the Ti-peroxo complex.

Tables related with catalytic performance

Table S1

Influence of solvents on cyclohexene epoxidation on Ti-BEA samples by SAC method ^a

Solvent	Dielectric	Cyclohexene	Selectivity (%)		
	constants	conversion (%)	Epoxide	Diol	Others ^b
Acetonitrile	37.5	59.5	55.7	21.3	23.0
Acetone	20.7	62.5	8.6	80.2	11.2
Butanone	18.5	71.6	7.8	79.8	12.4
Methanol	32.7	92.0	0.2	14.8	85.0
Ethanol	24.5	82.8	0.4	28.0	71.6
Tertiary Butanol	10.9	62.8	1.6	70.4	28.0

^a Reaction conditions: 30 mmol cyclohexene; 10 mmol H₂O₂; 50 mg catalysts with Si/Ti=36; reaction temperature, 323 K; duration, 2 h.

^b Mainly allylic oxidized products: 2-Cyclohexene-1-ol and 2-Cyclohexene-1-one.

Table S2

Cyclohexene epoxidation over various titanosilicate zeolites ^a

Different zeolites	Si/Ti	Cyclohexene	Selectivity (%)		
		conversion (%)	Epoxide	Diol	Others ^b
TS-1	83	3.3	17.9	75.7	6.4
Ti-MWW	45	8.1	35.0	58.8	6.2
Ti-MOR ^c	92	9.0	55.0	39.1	5.9
Ti-BEA-HT ^d	60	16.5	78.4	18.6	3.0
Ti-BEA-SAC	36	44.8	53.8	23.7	22.5

^a Reaction conditions: 10 mmol cyclohexene; 10 mmol H₂O₂; 50 mg catalysts; Solvent, acetonitrile; reaction temperature, 323 K; duration, 2 h.

^b Mainly allylic oxidized products: 2-Cyclohexene-1-ol and 2-Cyclohexene-1-one.

^c It was post-synthesis by treating the dealuminated Al-BEA with $TiCl_4$ vapor. The reaction conditions are the same as others except for using 0.2 g catalyst.

^d It was prepared by direct hydrothermal synthesis. The reaction conditions are the same as others except for using 0.28 g catalyst.

Table S3

Recyclability of Ti-BEA zeolites prepared by SAC method in cyclohexene epoxidation ^a

Sample ^b	Si/Ti molar	Cyclohexene	Selectivity (%)		
	ratio (product) d	conversion (%)	Epoxide	Diol ^c	Others ^c
1 st	38	67.2	50.6	22.7	26.7
2 nd	41	61.0	46.8	25.0	28.2
3 rd	47	44.9	42.8	25.4	31.8
4 th	50	30.6	42.7	23.9	33.4

5 th	50	20.9	38.5	24.8	36.7

^a Reaction conditions: 30 mmol cyclohexene; 10 mmol H₂O₂; 100 mg catalysts with Si/Ti=36; reaction temperature, 323 K; duration, 2 h.

^b After each run, the catalyst was washed with acetonitrile and then distilled water four times. The solid material was dried at 110 °C and then calcined at 550 °C for 6 h before the next run.

^c Mainly allylic oxidized products: 2-Cyclohexene-1-ol and 2-Cyclohexene-1-one.

^d Given by ICP.

Table S4

Catalytic performance of Ti-BEA-SAC in different catalytic reactions.

Reactions	Si/Ti d	Conversion (%)	Selectivity (%)
1-hexene epoxidation ^a	70	10.1	98.0
allyl chloride epoxidation ^b	71	20.7	98.3
cyclohexanone ammoximation ^c	73	58.0	99.0

^a Reaction conditions: catalyst, 50 mg; 1-hexene, 10 mmol; H₂O₂ (30 wt.% aqueous solution), 10 mmol; solvent, 10 mL; temp., 333 K; time, 2 h

^bReaction conditions: catalyst, 50 mg; allyl chloride, 10 mmol; H₂O₂ (30 wt.% aqueous solution), 10 mmol; solvent, 10 mL; temp., 333 K; time, 2 h

^c Reaction conditions: catalyst, 50 mg; cyclohexanone, 10 mmol; NH₃ (25 wt.%), 12 mmol; H₂O₂ (30 wt.%

aqueous solution), 12 mmol; solvent, 10 mL; temp,. 338 K; time, 2 h.

^d Given by ICP.