A Fully Biomass Content Monomer from Itaconic Acid and Eugenol to Build Degradable Thermosets via Thiol-ene Click Chemistry

Yazhou Tian¹, Qiong Wang¹, Jue Cheng¹,*, Junying Zhang¹,*

¹Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University

of Chemical Technology, Beijing 100029, People's Republic of China

*Corresponding author. Tel.: +86 10 64425439; fax: +86 10 64425439

E-mail address: chengjue@mail.buct.edu.cn (J. Cheng), zhangjy@mail.buct.edu.cn (J.Zhang)

Contents

Table S1. The biobased allyl compound monomers and the T_g , mechanical properties, and biomass content of allyl compound of thiol-ene crosslinking network structures

Figure S1. The sample size for tensile testing

Figure S2. The H-H COSY NMR spectra of EUIT-nBM

Figure S3. Visualization images of (a) EUIT/4SH, (b) EUIT/3SH, and (c) EUIT/2SH

Table S2. Degradation time for EUIT/SH with different sodium hydroxide solution at room

temperature and 90 °C

Figure S4. Degradation of the thiol-ene crosslinked networks at 90 °C at 6M NaOH

Figure S5. The weight loss studies of EUIT/SH (1M at 90 °C)

Name	Chemical structure	T _g (°C)	Tensile strength (MPa)	Biomass content of allyl compound	reference
EUIT/4SH		74.0	58.6	100.0%	This work
EUIT/3SH		53.1	26.2		
EUIT/2SH		27.2	6.5		
pA4E-S4P		4.4	2.5	46.6%	
pA4Y-S4P		24.4	18.2	51.9%	1
aSA		0.8	2.7	62.4%	
a3HBA		-7.1	1.8	62.4%	
a4HBA	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	5.5	3.7	62.4%	2
aGenA		-5.7	2.7	55.1%	
aGalA		-7.4	2.1	50.3%	
IDA-co- TMPTMP	Solo Contraction	15.8	7.8	45.9%	3
DADG-PS4P		8.1	0.5	66.4%	4

Table S1. The biobased allyl compound monomers and the T_g , mechanical properties, and biomass content of allyl compound of thiol-ene crosslinking network structures

ISODIAL		-2	2.0	63.7%	5
EAE		-2.4	2.1	79.9%	6
DIA		8.6	4.7	60.9%	
TEGBMP-co-		-18	Nd		
TAQA		-10	ING		
TMPTMP-co-	e o	12	20		
TAQA		43	~39	40.1%	7
1,6-HDT-co-		48	~30		
TAQA					
2,3-BDT-co-		51	~50		
TAQA		51			
1,2-EDT-co-		65	40		
TAQA		05	~40		

Figure S1. The sample size for tensile testing (unit: mm)

Figure S2. The H-H COSY NMR spectra of EUIT-nBM

Figure S3. Visualization images of (a) EUIT/4SH, (b) EUIT/3SH, and (c) EUIT/2SH

Table S2. Degradation time for EUIT/SH with different sodium hydroxide solution at room

	1		
Sample Degradation conditions	EUIT/2SH	EUIT/3SH	EUIT/4SH
1 M NaOH (25 °C)	N/A ^a	N/A ^a	N/A ^a

temperature and 90 °C

6 M NaOH (25 °C)	>2 months ^b	>2 months ^b	>2 months ^b
1 M NaOH (90 °C)	300 min	420 min	480 min
6 M NaOH (90 °C)	30 min	120 min	120 min

a. Two months in solution and no degradation occurred. b. Time when some degradation occurred (5%

weight loss).

The degradation of EUIT/2SH at 90 °C for 30 min

The degradation of EUIT/3SH at 90 °C for 120 min

The degradation of EUIT/4SH at 90 °C for 120 min

Figure S4. Degradation of the thiol-ene crosslinked networks at 90 °C at 6M NaOH

Figure S5. The weight loss studies of EUIT/SH (1M at 90 °C)

References

- S. Aoyagi, T. Shimasaki, N. Teramoto and M. Shibata, *European Polymer Journal*, 2018, 101, 151-158.
- G. Yang, S. L. Kristufek, L. A. Link, K. L. Wooley and M. L. Robertson, *Macromolecules*, 2016, 49, 7737-7748.
- T. S. Kristufek, S. L. Kristufek, L. A. Link, A. C. Weems, S. Khan, S.-M. Lim, A. T. Lonnecker, J. E. Raymond, D. J. Maitland and K. L. Wooley, *Polymer Chemistry*, 2016, 7, 2639-2644.
- 4. T. Yoshimura, T. Shimasaki, N. Teramoto and M. Shibata, *European Polymer Journal*, 2015, **67**, 397-408.
- T. Modjinou, D.-L. Versace, S. Abbad-Andallousi, N. Bousserrhine, J. Babinot, V. Langlois and E. Renard, ACS Sustainable Chemistry & Engineering, 2015, 3, 1094-1100.
- J. Dai, S. Ma, L. Zhu, S. Wang, L. Yang, Z. Song, X. Liu and J. Zhu, *Polymer*, 2017, 108, 215-222.
- L. A. Link, A. T. Lonnecker, K. Hearon, C. A. Maher, J. E. Raymond and K. L. Wooley, ACS Appl Mater Interfaces, 2014, 6, 17370-17375.