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Supplementary Information

Basic Principles of Small Angle X-Ray Scattering (SAXS)

When an X-ray beam shines on a sample, some X-rays are reflected, most transmit through the 
sample without changing direction, while some are scattered by the sample. There are two types 
of scattering: elastic scattering occurs when the kinetic energy of the X-ray is conserved before 
and after being scattered, and inelastic scattering occurs when the kinetic energy of the X-ray 
changes. The SAXS instrument works with elastic scattering only. The scattering vector, q, is 
defined as:

𝑞 = 𝑘𝑠 ‒ 𝑘𝑖

where  is the wave vector describing the scattered direction, and is the incident wave vector. 𝑘𝑠 𝑘𝑖

The scattering angle, θ, is the angle by which the trajectory of the incident X-ray beam is 
changed. In elastic scattering, the wavelength of the X-ray, λ, the distance between lattice planes, 
d, and the angle θ are related by Bragg’s Law:

𝜆 = 2𝑑𝑠𝑖𝑛𝜃

q is in reciprocal space related to the d in the normal space through the relationship: 
𝑞 =

2𝜋
𝑑

This is an important relationship that indicates that when we refer to large length scales, we 
observe them at low q regimes; conversely, we observe small length scales at high q regimes. 
Combining the above equations, we obtain: 

𝑞 =
4𝜋𝑠𝑖𝑛𝜃

𝜆

The elastic scattering intensity for a monodisperse system is given by:1 
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𝐼(𝑞) =
𝑁
𝑉

𝑉2
𝑝(∆𝜌)2𝑃(𝑞)𝑆(𝑞)

where N is the number of particles, V is the total volume of the system, Δρ is the scattered 
intensity difference between the suspended particles and the solvent, P(q) is the form factor that 
includes information on the shape of the particles. 

For a spherical particle, the expression of P(q) is given by:1

𝑃(𝑞) =
3(sin (𝑞𝑅) ‒ 𝑞𝑅𝑐𝑜𝑠(𝑞𝑅))

(𝑞𝑅)3

S(q) is the structure factor that accounts for the interaction between particles in concentrated 
suspensions. When analyzing our dilute system, S(q) was approximated to be equal to 1. 2

The volume fraction of particles is defined by the total volume of particles over the total solution 
volume:

𝜑 =
𝑁𝑉𝑝

𝑉

The number of particles per unit volume (N/V) can be calculated from the fitted φ and Vp values.

Incorporating the volume fraction into the expression for the scattered intensity I(q) above, I(q) 
is rewritten as:

𝐼(𝑞) = 𝜑𝑉𝑝(∆𝜌)2𝑃(𝑞)𝑆(𝑞)

When the system is polydisperse, I(q) becomes:1

𝐼(𝑞) =
𝑁
𝑉

𝑉2
𝑝(∆𝜌)2

∞

∫
‒ ∞

𝑓(𝑟)[𝑟2𝑗1(𝑞𝑟)]2𝑑𝑟

where f(r) is the distribution function of sizes, and j1 is the Bessel function.

For spheroids, the radius of gyration Rg, which is obtained from fitting the I(q) vs. q data, is 
related to radius of the particle (R) by:1

                                                                                                                                  
𝑅𝑔 =

3
5

𝑅

The polydispersity PD was calculated as follows: 

𝑃𝐷 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒 

The Porod analysis is used for obtaining the shape of particles:

𝐼(𝑞)~𝑆𝑞 ‒ 𝛼 = 𝑆𝑞 ‒ (6 ‒ 𝑑)



where α is the Porod (or power law slope) of the particle, and d, which equals 6-α, is the fractal 
dimension of the particle. For rods, α equals 1. For mass fractals, α is between 2 and 3. For 
fractal-like shapes with rough surfaces, α is between 3 and 4. For a smooth sphere, α equals 4. 
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Figure S1. Raw and fitted data in a typical experiment. Data shown here were taken from a 10 wt% 
pH=0 fructose solution heated at 80 °C at 80 min of reaction time. A Gaussian size distribution 
model is a good fit for the data.
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Figure S2. Number of particles per volume of solution as a function of time for (a) 10 wt % 
initial fructose solution at various temperatures indicated and (b) 50 wt % initial fructose at 
solution 70 and 80 °C. Reaction pH=0.
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Figure S3. (a) Fructose and FA, LA, HMF concentrations and (b) calculated fructose conversion 
and product yields as functions of time without stirring. (c) Fructose and FA, LA, HMF 
concentrations and (d) calculated fructose conversion and product yields as functions of time 
with stirring at 700 rpm. Reaction conditions: 10 wt% fructose, pH=0, 80 °C. 
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Figure S4. (a) Fructose and FA, LA, HMF concentrations and (b) calculated fructose conversion 
and product yields as functions of time. Reaction conditions: 10 wt% fructose, pH=0, 85 °C, no 
stirring. 

 

0 20 40 60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 Fructose
 FA
 LA
 HMF

C
on

ce
nt

ra
tio

n 
(m

ol
/L

)

Time (min)

(a)

0 20 40 60 80 100 120
0

10

20

30

40(b)
 Fructose
 FA
 LA
 HMF
 Balance (humins)

C
on

ve
rs

io
n 

or
 Y

ie
ld

 (%
)

Time (min)

Figure S5. (a) Fructose and FA, LA, HMF concentrations and (b) calculated fructose conversion 
and product yields as functions of time. Reaction conditions: 10 wt% fructose, pH=0, 90 °C, no 
stirring. 
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Figure S6. (a) Fructose and FA, LA, HMF concentrations and (b) calculated fructose conversion 
and product yields as functions of time. Reaction conditions: 10 wt% fructose, pH=0, 95 °C, no 
stirring. 
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Figure S7. (a) HMF, FA, and LA concentrations and (b) calculated HMF conversion and product 
yields as a function of time. Reaction conditions: 10 wt% HMF, pH=0, 70 °C, no stirring. 
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