Supporting Information for

An environmentally benign multiphase solid-liquid-gas catalysis

Xueli Bai,^a Nianze Song,^a Liang Wen,^a Xin Huang,^a Jian Zhang,^a Yue Zhang,^{*a} and Yongxiang Zhao^{*a}

^aEngineering Research Center of Ministry of Education for Fine Chemicals, and College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China.

*Corresponding author (email: zyue@sxu.edu.cn and yxzhao@sxu.edu.cn)

Chemicals: All kinds of alcohols (AR) were purchased from Sinopharm. Acetonitrile (99%) was purchased from Meryer. (Octyl)-trimethoxysilane (97.0%), n-propyltrimethoxysilane (98.0%), n-dodecyltrimethoxysilane (93.0%) and tetramethylammonium chloride (99.0%) were purchased from Sinopharm. DMSO-d₆ (99.9%) were purchased from Sigma-Aldrich.

SI-1: FT-IR spectrogram of the 3C-silyl-POM, 8C-silyl-POM and 12C-silyl-POM.

SI-2: FT-Raman spectrogram of the 3C-silyl-POM, 8C-silyl-POM and 12C-silyl-POM.

SI-3: ¹H NMR spectrum of the 3C-silyl-POM, 8C-silyl-POM and 12C-silyl-POM.

SI-4: Tungsten content of the POM, 3C-silyl-POM, 8C-silyl-POM and 12C-silyl-POM are detected by ICP.

SI-5: ³¹P NMR spectrum of the 3C-silyl-POM, 8C-silyl-POM and 12C-silyl-POM.

SI-6: MALDI-TOF-MS spectrum of the 8C-silyl-POM.

SI-7: ²⁹Si NMR spectrum of the 8C-silyl-POM.

SI-8: XPS spectrum of the POM, 3C-silyl-POM, 8C-silyl-POM and 12C-silyl-POM

SI-9: FT-IR spectrogram of the recycled 8C-silyl-POM and fresh 8C-silyl-POM.

SI-10: ¹H NMR spectrum of the recycled 8C-silyl-POM and fresh 8C-silyl-POM.

SI-11: FT-Raman spectrogram of the recycled 8C-silyl-POM and fresh 8C-silyl-POM.

SI-12: XPS spectrum of the recycled 8C-silyl-POM and fresh 8C-silyl-POM.

IR (ATR): 1110 (Si-O-Si), 1079~1030 (P-O), 997~940(W=O), 901~706(W-O-W)

SI-1

SI-2

¹H NMR (DMSO-d₆): δ = 3.11 ([NMe₄]⁺), 1.61~1.14 (-CH₂-), 0.85 (-CH₃), 0.71 (-CH₂-Si).

SI-3

SI-4

SI-5

SI-6

SI-7

SI-8

SI-9

SI-10

SI-11

SI-12

According to the curve of surface tension and catalyst concentration (Figure 3b), the maximum slope in the interval between functions c and σ is identified (the maximum slope corresponding to 3C-silyl-POM, 8C-silyl-POM and 12C-silyl-POM is -10.2, -1.1 and -0.2, respectively.), and the maximum adsorption capacity (Γ) of the three catalysts at the surface of benzyl alcohol can be estimated using the Gibbs adsorption equation.

Table S1. Polyoxometalates as catalysts for the oxidation of benzyl alcohol with molecular oxygen have been reported in the literatures.

Entry	catalyst	reaction	Temp.	Solvent	Coversion	Selectivity
			(°C)		(%)	(%)
149	(PW11)3/MCM-41	он о	00		30	90
	(PW11)3/MCM-48	$\bigcup_{Catalysts} O_2$	90		32	89
2 ⁵⁰	$H_4PMo_{11}VO_{40}$	OH O ₂ Catalysts	150	DMSO	78	90

Herein, although the catalytic conversion of the catalysts in the oxidation of alcohol is low, which is consistent with the literature (Table S1).

- 49. Singh, S.; Patel, A., *Catalysis Letters*, 2016, **146**, 1059-1072.
- 50. Qian, X.; Li, S.; Banks, M. K.; Xu, W.; Wu, R., *Catalysis Communications*, 2018, **114**, 24-27.