Supporting Information

A mild, general, metal-free method for site-specific

deuteration induced by visible light

Shuai Shi, ^a Ruining Li, ^a Liangming Rao, ^{b, c} and Zhankui Sun*^{a, b}

Table of contents

1. General Remarks on Materials and Methods	S3
2. Optimization of reaction conditions	S4
3. Desulfurization-deuteration reactions of thiol/disulfide-containing compounds	S6
4. Desulfurization-deuteration reactions of peptides	S20
5. Scale-up reaction	S24
6. Mechanistic studies	S25
7. References	S28
8. Spectral data	S29

1. General Remarks on Materials and Methods

All commercial reagents were used without further purification. All glassware was oven dried at 120 °C for more than 1 hour before used. DCM was dried and preserved with 4Å molecular sieves under nitrogen. Unless otherwise noted, all solvents in reagent grade or analytical grade were used as received. Organic solutions were concentrated under reduced pressure on an IKA rotary evaporator using a water bath. Chromatographic purification of products was accomplished using force-flow chromatography on silica gel (200-300 mesh) according to the method of Still¹. Thin-layer chromatography (TLC) was performed on 250 µm silica gel plates. TLC visualization was performed by fluorescence quenching or iodine stain. All small molecular compounds were characterized by ¹H NMR, ¹³C NMR and MS. ¹H NMR spectra were recorded on an Agilent NMR Systems 400 MHz Spectrometer (¹H NMR at 400 MHz) and are internally referenced to residual protic CDCl₃ (δ 7.26 ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, br = broad), coupling constant (Hz), and assignment. ¹³C NMR spectra were recorded on an Agilent NMR Systems 400 MHz Spectrometer (¹³C NMR at 101 MHz) and data are reported in terms of chemical shift relative to CDCl₃ (77.16 ppm). ²H NMR spectra were recorded on a Bruker ADVANCE 600 MHz and reported as chemical shifts relative to CDCl₃ (7.26 ppm) or D_2O (4.79 ppm). EPR spectra were obtained on a Bruker EMX-8. UV-visible absorption spectrum were executed on SHIMADZU UV-2450 spectrophotometer. MS: electrospray ionization mass (ESI-MS) was performed on Agilent 6210 Series TOF MS. GC-MS analyses were performed on a GC-MS with an EI mode. LC-MS spectra were acquired by Acquity[™] UPLC/Xevo-G2-XS-QTOF-MS using C18 column (150mm×2.1mm, 1.7μ m). HPLC: analytical revered-phase HPLC was performed on Agilent (1200 series HPLC system) instrument employing an analytical C18 column (250 \times 4.6 mm, 5 μ m). Mobile phases of HPLC are as followed: solvent A: 0.1% TFA (v/v) in acetonitrile; Solvent B: 0.1% TFA (v/v) in water. The peptides substrates were synthesized by the SPPS procedure and provided by GL Biochem. The 36 W household CFL bulbs were directly purchased from supermarket.

2. Optimization of reaction conditions

Supplementary Figure S1. Optimization of reaction conditions for the deuteration of 1a^a.

		<i>hv</i> DTBP(1.2 equiv) phosphoric reagent rt		
	1a		2a	
entry	phosphoric reagent	solvent	Yield (%) ^b	D-incorp. (%) ^c
1	2.0 eq PPh_3	DCM/D ₂ O(V:V=2:1)	91	95
2	2.0 eq Ph ₂ POEt	DCM/D ₂ O(V:V=2:1)	96	96
3	2.0 eq P(OEt) ₃	DCM/D ₂ O (V:V=2:1)	N.D.	_
4	2.0 eq Ph ₂ POEt	CD ₃ OD	93	64
5	2.0 eq Ph ₂ POEt	D ₆ -DMSO	95	N.D.
6	2.0 eq Ph ₂ POEt	CDCl ₃	91	N.D.
7	_	DCM/D ₂ O(V:V=2:1)	N.D.	_
8 ^d	2.0 eq Ph ₂ POEt	DCM/D ₂ O(V:V=2:1)	N.D.	-
9 ^e	2.0 eq Ph ₂ POEt	DCM/D ₂ O(V:V=2:1)	N.D.	_

^{*a*}Standard conditions: **1a** (0.75 mmol), DTBP (0.90 mmol), phosphoric reagent (0.90 mmol), solvent (6 ml), 36 W household CFL bulb irradiation on two sides, 10 h. ^{*b*}Yield of the isolated product. ^{*c*}Deuterium incorporation was determined by ¹H NMR spectroscopy. ^{*d*}Without DTBP. ^{*e*}Without visible light. N.D. = not detected. DCM = dichloromethane. DTBP = di-*tert*-butyl peroxide.

Supplementary Figure S2. Optimization of reaction conditions for the deuteration of 1g^a.

		<i>hv</i> BP(1.2 equiv) sphoric reagent rt		
	1g		2g	
entry	phosphoric reagent	solvent	Yield (%) ^b	D-incorp. (%) ^c
1	2.0 eq P(OEt) ₃	DCM/D ₂ O	N.D.	_
	(sensitive to water)	(V:V=2:1)		
2	2.0 eq Ph ₂ POEt	DCM/D_2O	89	90
		(V:V=2:1)		
3	2.0 eq PPh_3	DCM/D_2O	26	91
		(V:V=2:1)		
4	2.0 eq Ph₂POEt	CD ₃ OD	91	58

^{*a*}Standard conditions: **1g** (0.75 mmol), DTBP (0.90 mmol), phosphoric reagent (0.90 mmol), solvent (6 ml), 36 W household bulb irradiation on two sides, 10 h. ^{*b*}Yield of the isolated product. ^{*c*}Deuterium incorporation was determined by ¹H NMR spectroscopy. N.D. = not detected. DCM=dichloromethane. DTBP=di-*ter*t-butyl peroxide.

3. Desulfurization-deuteration reactions of thiol/disulfide-containing compounds

General procedure for desulfurization-deuteration reactions

$$\begin{array}{c} hv \\ 2 \text{ equiv } Ph_2POEt \\ \hline R-SH & \underbrace{1.2 \text{ equiv } DTBP}_{DCM/D_2O} (V:V=2:1) \\ rt \end{array} \quad R-D$$

To a 25 ml round-bottom flask equipped with a stir bar was added the substrate (0.75 mmol, 1.0 equiv) and Ph_2POEt (0.3454 g, 1.5 mmol, 2.0 equiv). Solvent (DCM/D₂O, 6ml, V:V = 2:1) was added followed by the addition of DTBP (0.1316 g, 0.9 mmol, 1.2 equiv). The flask was capped and the reaction was stirred and irradiated using two 36 W household CFL bulbs (6 cm away, to keep the reaction at room temperature) at room temperature for 10 hours. When the reaction was complete, the reaction mixture was extracted with ethyl acetate (3×20 ml). The combined organic layer was dried with sodium sulfate, filtered and concentrated. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate mixture as the eluent.

$$hv$$

4 equiv Ph₂POEt
R-S-S-R 2.4 equiv DTBP R-D
DCM/D₂O (V:V=2:1)
rt

To a 25 ml round-bottom flask equipped with a stir bar was added the substrate (0.375 mmol, 1.0 equiv.) and Ph_2POEt (0.3454 g, 1.5 mmol, 4.0 equiv.). Solvent (DCM/D₂O, 6ml, V:V = 2:1) was added followed by the addition of DTBP (0.1316 g, 0.9 mmol,2.4 equiv.). The flask was capped and the reaction was stirred and irradiated using two 36 W household CFL bulb (6 cm away, to keep the reaction at room temperature) at room temperature for 10 hours. When the reaction was complete, the reaction mixture was extracted with ethyl acetate (3×20 ml). The combined organic layer was dried with sodium sulfate, filtered and concentrated. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate mixture as the eluent.

Methyl ((benzyloxy)carbonyl)-L-alaninate-3-d

The reaction was carried out according to the general procedure on 0.75 mmol scale. When the reaction was complete, the reaction mixture was extracted with ethyl acetate (3×20 ml). The combined organic layers were dried with sodium sulfate, filtered and concentrated. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (5:1) to afford **2a** (171.5 mg, 96% yield) as colorless oil. D-incorporation ratio was based on ¹H NMR:

96%.¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.07 (m, 5H), 5.38 (d, *J* = 4.9 Hz, 1H), 5.10 (s, 2H), 4.38 (dt, *J* = 6.7, 4.9 Hz, 1H), 3.73 (s, 3H), 1.38 (d, *J* = 6.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ173.44, 155.58, 136.25, 128.50, 128.14, 128.08, 66.90, 52.41, 49.52, 18.38 (t, *J* = 20.8 Hz). ²H NMR (92 MHz, CDCl₃) δ 1.42 (s, 1D). HRMS (ESI) calcd for $C_{12}H_{14}DNO_4$ [M + Na] ⁺ m/z = 261.0956, found: 261.0953.

Methyl 2-(((benzyloxy)carbonyl)amino)butanoate-4-d

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (5:1) to afford **2b** (183.5 mg, 97% yield) as colorless oil. D-incorporation ratio was based on ¹H NMR: 97%. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.17 (m, 5H), 5.41 (d, *J* = 7.4 Hz, 1H), 5.10 (s, 2H), 4.34 (m, 1H), 3.72 (s, 3H), 1.89 – 1.76 (m, 1H), 1.73 – 1.60 (m, 1H), 0.89 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.88, 155.88, 136.28, 128.49, 128.12, 128.07, 66.91, 54.94, 52.25, 25.70, 9.21 (t, *J* = 19.5 Hz). ²H NMR (92 MHz, CDCl₃) δ 0.94 (s, 1D). HRMS (ESI) calcd for C₁₃H₁₆DNO₄ [M + Na] ⁺ m/z = 275.1113, found: 275.1108.

Benzyl propanoate-3-d

The reaction was carried out according to the general procedure on 0.75 mmol scale. As the compound is volatile, the 92% yield was based on ¹H NMR. D-incorporation ratio was calculated by ¹H NMR and mass spectrometry: 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 5.10 (s, 2H), 2.36 (t, *J* = 7.5 Hz, 2H), 1.13 (t, *J* = 7.5 Hz, 2H). GC-MS (EI): m/z = 165.15.

Benzyl (ethyl-2-d)carbamate

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (8:1) to afford **2d** (125.7 mg, 93% yield) as colorless liquid. D-incorporation ratio was based on ¹H NMR: 98%.¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.26 (m, 5H), 5.09 (s, 2H), 4.81 (br s, 1H), 3.22 (dt, *J* = 6.4 Hz, *J* = 6.2 Hz, 2H), 1.11 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.28, 136.67, 128.48, 128.03, 66.50, 35.84, 14.94 (t, *J* = 19.8 Hz). HRMS (ESI) calcd for C₁₀H₁₂DNO₂ [M + Na] ⁺ m/z = 203.0901, found: 203.0904.

Benzyl (ethyl-2-d)carbamate

The reaction was carried out according to the general procedure on 7.5 mmol scale (1.5846g substrate). The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (8:1) to afford **2d** (1.1769 g, 87% yield) as colorless liquid. D-incorporation ratio was based on ¹H NMR: 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.17 (m, 5H), 5.08 (s, 2H), 4.71 (brs, 1H), 3.21 (dt, *J* = 6.4 Hz, *J* = 6.2 Hz, 2H), 1.10 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.24, 136.65, 128.45, 128.00, 66.51, 35.83, 15.10, 14.90, 14.72 (t, *J* = 19.8 Hz). HRMS (ESI) calcd for C₁₀H₁₂DNO₂ [M + Na] + m/z = 203.0901, found: 203.0904.

1-methoxy-4-(methyl-d) benzene

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with 100% petroleum ether to afford **2e** (74.8 mg, 81% yield) as colorless liquid. D-incorporation ratio was based on ¹H NMR: 93%.¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, *J* = 7.9 Hz, 2H), 6.81 (d, *J* = 7.9 Hz, 2H), 3.79 (s, 3H), 2.28 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.44, 129.85, 129.77, 113.67, 55.24, 20.15 (t, *J* = 19.8 Hz). GC-MS (EI): m/z = 123.08.

1-chloro-4-(methyl-d) benzene

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with 100% petroleum ether to afford **2f** (87.1 mg, 91% yield) as colorless liquid. D-incorporation ratio was based on ¹H NMR: 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 2.31 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 136.23, 136.20, 131.07, 130.38, 128.27, 20.58 (t, *J* = 19.6 Hz). ²H NMR (92 MHz, CDCl₃) δ 2.34 (t, 1D). GC-MS (EI): m/z = 127.03.

1-(tert-butyl)-4-(methyl-d) benzene

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with 100% petroleum ether to afford **2g** (99.6 mg, 89% yield) as colorless liquid. D-incorporation ratio was based on ¹H NMR: 90%.¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.9 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 2.37 – 2.28 (m, 2H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.17, 134.84, 128.79, 125.19, 34.35, 31.48, 20.62 (t, *J* = 19.3 Hz).GC-MS (EI): m/z = 149.14.

Undecanoic-11-d acid

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (1:5). As the compound is volatile, the pure product was difficult to be obtained. As such NMR spectra is

not clean and the crude NMR spectra was acquired. The 85% yield was based on ¹H NMR. D-incorporation ratio was calculated by ¹H NMR and mass spectrometry: 91%. The crude ¹H NMR (400 MHz, CDCl₃) δ 2.23 (t, *J* = 7.5 Hz, 2H), 1.58 – 1.49 (m, 2H), 1.25 – 1.14 (m, 14H), 0.78 (t, *J* = 7.2 Hz, 2H). GC-MS (EI): m/z = 187.17.

2, 2-bis ((acetoxy-2-d) methyl) propane-1, 3-diyl bis (acetate-2, 2'-d₂)

The reaction was carried out according to the general procedure using 0.75 mmol of the substrate, Ph₂POEt (0.6908 g, 1.5 mmol, 8.0 equiv.) and DTBP (0.2632g, 4.8 equiv.). The product was purified by column chromatography on silica with petroleum ether/ethyl acetate (1:1) to afford **5i** (217.4 mg, 94% yield) as white solid. D-incorporation ratio was based on ¹H NMR: 99%. ¹H NMR (400 MHz, CDCl₃) δ 4.12 (s, 1H), 2.06 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.51, 62.25, 41.62, 20.49 (t, *J*= 19.8 Hz). ²H NMR (92 MHz, CDCl₃) δ 2.07 (s, 4D). HRMS (ESI) calcd for C₁₃H₁₆DO₈ [M + Na] + m/z = 331.1301, found: 331.1297.

Ethane-1, 2-diyl bis (acetate-2, 2'-d2)

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 90% based on ¹H NMR. D-incorporation ratio was based on ¹H NMR: 96%. ¹H NMR (400 MHz, CDCl₃) δ 4.21 (s, 2H), 2.00 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.66, 62.16, 20.60 (t, *J* = 20.0 Hz). HRMS (ESI) calcd for C₆H₈D₂O₄ [M + H] + m/z = 149.0777, found: 149.0959.

Triethoxy(propyl-3-d)silane

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 95% based on ¹H NMR. D-incorporation ratio was calculated by ¹H NMR: 93%. ¹H NMR (400 MHz, CDCl₃) δ 3.81 (q, *J* = 7.0 Hz, 6H), 1.50 – 1.40 (m, 2H), 1.20 (t, *J* = 7.0 Hz, 9H), 0.94 (t, *J* = 7.3 Hz, 2H), 0.63 (t, *J* = 8.2 Hz, 2H). GC-MS (EI): m/z = 207.04.

2-(ethyl-2-d) pyrazine

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 73% based on ¹H NMR. D-incorporation ratio was based on ¹H NMR: 95%. ¹H NMR (400 MHz, d_6 -DMSO) δ 8.46 (dd, J = 8.5, 2.7 Hz, 2H), 8.36 (d, J = 2.4 Hz, 1H), 2.68 (t, J = 7.4 Hz, 2H), 1.11 (t, J = 7.4 Hz, 2H). GC-MS (EI): m/z = 109.08.

((R)-2-methylpropanoyl-3-d)-L-proline

The reaction was carried out according to the general procedure on 0.75 mmol scale. When the reaction is complete, the solvent was removed under vacuum. The residue was purified by flash column chromatography (CH₃CN/H₂O, 20% –90%) to afford **2m** (126.5 mg, 91% yield) as white solid. D-incorporation ratio was based on ¹H NMR: 92%. ¹H NMR (400 MHz, CDCl₃) δ 4.44 – 4.27 (m, 1H), 3.66 – 3.38 (m, 2H), 2.69 – 2.39 (m, 1H), 2.23 – 1.67 (m, 4H), 1.24 – 0.71 (m, 5H). ¹³C

NMR (101 MHz, CDCl₃) δ 177.22, 175.94, 60.26, 47.20, 32.20, 28.49, 24.81, 18.65, 18.37 (t, *J* = 19.8). ²H NMR (92 MHz, CDCl₃) δ 1.08 (s, 1D). HRMS (ESI) calcd for C₉H₁₄DNO₃ [M + H] ⁺ m/z = 187.1187, found: 187.1175.

2-ethyl-2-(((propanoyl-3-d)oxy)methyl)propane-1,3-diyl bis(propanoate-3-d)

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 92% based on ¹H NMR. D-incorporation ratio was calculated by ¹H NMR: 98%. ¹H NMR (400 MHz, CDCl₃) δ 4.02 (s, 6H), 2.27 (t, *J* = 7.4 Hz, 6H), 1.46 (q, *J* = 7.6 Hz, 2H), 1.05 (t, *J* = 7.4 Hz, 6H), 0.85 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.94, 63.71, 40.75, 27.38, 23.10, 8.84 (t, *J* = 19.7 Hz), 7.41. HRMS (ESI) calcd for C₁₅H₂₃D₃O₆ [M + H] ⁺ m/z = 306.1990, found:306.1986.

Propanoic-3-d acid

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 95% based on ¹H NMR. D-incorporation ratio was based on ¹H NMR: 95%. ¹H NMR (400 MHz, CDCl₃) δ 2.28 (t, *J* = 7.0 Hz, 2H), 1.05 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 177.33, 27.47, 8.91 (t, *J* = 19.8 Hz). GC-MS (EI): m/z = 75.04.

Sodium ethane-1-sulfonate-2-d

The reaction was carried out according to the general procedure on 0.75 mmol scale in CD_3OD/D_2O (4ml/2ml) in order to dissolve all compounds. When the reaction is complete, the solvent was removed under vacuum. The residue was purified by flash column chromatography (CH₃CN/H₂O, 10% –80%) to afford **2p** (74.7 mg, 75% yield) as white solid. D-incorporation ratio

was based on ¹H NMR: 96%. ¹H NMR (400 MHz, D₂O) δ 2.80 (t, *J* = 7.2 Hz, 2H), 1.15 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, D₂O) δ 45.32, 8.14 (t, *J* = 20.0 Hz). ²H NMR (92 MHz, D₂O) δ 1.27 (s, 1D). HRMS (ESI) calcd for C₂H₄DNaO₃S [M + Na]⁺ m/z =155.9812, found: 155.9923.

Hexan-6-d-1-ol

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 92% based on ¹H NMR. D-incorporation ratio was based on ¹H NMR: 91%. ¹H NMR (400 MHz, CDCl₃) δ 3.54 (t, *J* = 6.7 Hz, 2H), 3.11 (brs, 1H), 1.57 – 1.43 (m, 2H), 1.43 – 1.06 (m, 6H), 0.83 (t, *J* = 7.1 Hz, 2H).¹³C NMR (101 MHz, CDCl₃) δ 62.43, 32.68, 31.61, 25.47, 22.50, 13.76 (t, *J* = 19.2 Hz). GC-MS (EI) [M-H₂O]: m/z = 85.09.

The reaction was carried out according to the general procedure on 0.75 mmol scale. When the reaction is complete, the solvent was removed under vacuum. The residue was purified by flash column chromatography (CH₃CN/H₂O, 20% –90%) to afford **2r** (83.7 mg, 97% yield) as colorless liquid. D-incorporation ratio was based on ¹H NMR: 94%. ¹H NMR (400 MHz, CDCl₃) δ 4.92 (d, *J* = 12.2 Hz, 2H), 3.07 (s, 2H), 2.11 (t, *J* = 7.1 Hz, 2H), 1.02 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 178.03, 143.39, 112.91, 41.84, 28.56, 11.60 (t, *J* = 19.5 Hz). ²H NMR (92 MHz, CDCl₃) δ 1.07 (s, 1D). HRMS (ESI) calcd for C₆H₉DO₂ [M + H] + m/z =116.0816, found: 116.0814.

(2R, 3R, 4R, 5S)-2-(acetoxymethyl) tetrahydro-2H-pyran-3, 4, 5-triyl-6-d triacetate

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (3:1) to afford **2s** (239.8 mg, 96% yield) as colorless oil. D-incorporation ratio was calculated by ¹H NMR:

96%. ¹H NMR (400 MHz, CDCl₃) δ 5.11 (t, *J* = 9.5 Hz, 1H), 4.99 – 4.85 (m, 2H), 4.19 – 3.98 (m, 3H), 3.52 (ddd, *J* = 10.0, 4.8, 2.2 Hz, 1H), 2.00 (s, 3H), 1.94 (s, 6H), 1.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.51, 170.18, 169.63, 169.39, 76.29, 73.60, 68.80, 68.34, 66.34 (t, *J* = 21.6 Hz), 62.11, 20.59, 20.56, 20.54, 20.47. ²H NMR (92 MHz, CDCl₃) δ 3.24 (s, 1D). HRMS (ESI) calcd for C₁₄H₁₉DO₉ [M + H] ⁺ m/z = 334.1243, found: 334.1230.

2-(azetidin-1-yl-3-d)-4, 5-dihydrothiazole

The reaction was carried out according to the general procedure on 0.75 mmol scale. When the reaction is complete, the solvent was removed under vacuum. The residue was purified by flash column chromatography (CH₃CN/H₂O, 20% –90%) to afford **2t** (100.8 mg, 94% yield) as colorless liquid. D-incorporation ratio was calculated by ¹H NMR: 94%. ¹H NMR (400 MHz, D₂O) δ 4.15 (t, *J* = 7.3 Hz, 4H), 3.80 (t, *J* = 7.5 Hz, 2H), 3.45 (t, *J* = 7.4 Hz, 2H), 2.42 – 2.22 (m, 1H). ¹³C NMR (101 MHz, D₂O) δ 170.14, 54.32, 53.72, 49.25, 32.07, 15.78 (t, *J* = 21.6 Hz). ²H NMR (92 MHz, D₂O) δ 2.67 (s, 1D). HRMS (ESI) calcd for C₆H₉DN₂S [M + H]⁺ m/z =144.0700, found: 144.0699.

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with 100% petroleum ether to afford **2u** (270.2 mg, 97% yield) as white solid. D-incorporation ratio was assessed by mass spectrometry: 90%. ¹H NMR (400 MHz, CDCl₃) δ 5.30 – 5.20 (m, 1H), 2.45 – 0.33 (m, 44H). ¹³C NMR (101 MHz, CDCl₃) δ 143.67, 118.93, 56.87, 56.18, 50.60, 42.29, 39.87, 39.51, 37.51, 36.19, 35.78, 32.78, 31.87, 31.84, 29.67, 28.22, 27.98, 27.62 (t, *J* = 18.9 Hz), 24.26, 23.82, 22.77, 22.52, 22.45, 20.76, 19.42, 18.70, 11.84. ²H NMR (92 MHz, CDCl₃) δ 1.20 (s, 1D). GC-MS (EI): m/z = 371.36.

Hexan-3-d-1-ol

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 90% based on ¹H NMR. D-incorporation ratio was based on ¹H NMR: 94%. ¹H NMR (400 MHz, cdcl₃) δ 3.54 (t, *J* = 6.7 Hz, 2H), 2.84 (brs, 1H), 1.49 (dd, *J* = 13.6, 6.8 Hz, 2H), 1.39 – 1.09 (m, 5H), 0.84 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, cdcl₃) δ 62.57, 32.63, 31.55, 25.08 (t, *J* = 19.2 Hz), 22.59, 14.08. ²H NMR (92 MHz, CDCl₃) δ 1.27 (s, 1D). GC-MS (EI)[M-H₂O]: m/z = 85.09.

Dibenzyl succinate-2-d

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (8:1) to afford **2w** (215.5 mg, 96% yield) as white solid. D-incorporation ratio was based on ¹H NMR: 97%.¹¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.22 (m, 10H), 5.12 (s, 4H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.03, 135.72, 128.55, 128.26, 128.22, 66.56, 29.10. ²H NMR (92 MHz, CDCl₃) δ 2.72 (s, 1D). HRMS (ESI) calcd for C₁₈H₁₇DO₄ [M + Na] ⁺ m/z = 322.1160, found: 322.1158.

Benzyl propanoate-2-d

The reaction was carried out according to the general procedure on 0.75 mmol scale. The pure product was difficult to be obtained. As such NMR spectra is not clean and the crude NMR spectra was acquired. The 95% yield was calculated based on ¹H NMR. D-incorporation ratio was calculated by ¹H NMR: 99%.¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 5H), 5.09 (s, 2H), 2.33 (q, *J* = 7.5 Hz, 1H), 1.10 (d, *J* = 7.5 Hz, 3H). GC-MS (EI): m/z = 165.15.

Methyl acetylvalinate-3-d

The reaction was carried out according to the general procedure on 0.75 mmol scale. The crude ¹H NMR was obtained. The 89% yield was calculated based on ¹H NMR. D-incorporation was calculated by ¹H NMR: 95%. ¹H NMR (400 MHz, CDCl₃) δ 6.23 (d, *J* = 8.8 Hz), 4.54 (d, *J* = 8.8 Hz, 1H), 3.71 (s, 3H), 2.03 (s, 3H), 0.91 (s, 3H), 0.88 (s, 3H). HRMS (ESI) calcd for C₈H₁₅NO₃ [M + Na] ⁺ m/z = 197.1007, found: 197.1012.

5-methyl-2-(propan-2-yl-2-d)cyclohexan-1-one

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (20:1) to afford **2z** (110.6 mg, 95% yield) as colorless liquid. D-incorporation was calculated by ¹H NMR: 97%. ¹H NMR (400 MHz, CDCl₃) δ 2.31 (m, 1H), 2.11 – 1.78 (m, 5H), 1.42 – 1.22 (m, 2H), 0.97 (d, *J* = 6.3 Hz, 3H), 0.86 (s, 3H), 0.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.41, 55.72, 50.83, 35.43, 33.88, 27.76, 25.40 (t, *J* = 19.6 Hz), 22.27, 21.08, 18.53. GC-MS (EI): m/z = 155.14.

The reaction was carried out according to the general procedure on 0.75 mmol scale. The residue was purified by column chromatography on silica with 100% petroleum ether to afford **1A** (92.6 mg, 90% yield) as white solid. D-incorporation ratio was calculated by ¹H NMR: 89%. ¹H NMR (400 MHz, CDCl₃) δ 1.86 (s, 3H), 1.75 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 37.73, 37.60, 28.30, 27.81 (t, *J* = 20.2 Hz). GC-MS (EI): m/z = 137.14.

Benzyl propanoate-3-d

The reaction was carried out according to the general procedure on 0.375 mmol scale. The pure product was difficult to be obtained. As such NMR spectra is not clean and the crude NMR spectra was acquired. The 81% yield was calculated based on ¹H NMR. D-incorporation was calculated by ¹H NMR: 95%.¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 5H), 5.03 (s, 2H), 2.27 (t, *J* = 7.5 Hz, 2H), 1.04 (t, *J* = 7.5 Hz, 2H). GC-MS (EI): m/z = 165.15.

Benzyl (ethyl-2-d)carbamate

The reaction was carried out according to the general procedure on 0.375 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (8:1) to afford **1C** (113.5 mg, 84% yield) as colorless liquid. D-incorporation was calculated by ¹H NMR: 99%.¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.26 (m, 5H), 5.09 (s, 2H), 4.71 (br s, 1H), 3.23 (dt, *J* = 6.4 Hz, *J* = 6.2 Hz, 2H), 1.12 (t, *J* = 6.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.28, 136.67, 128.47, 128.03, 66.50, 35.84, 14.9 (t, *J* = 19.8 Hz). HRMS (ESI) calcd for C₁₀H₁₂DNO₂ [M + Na]⁺ m/z = 203.0901, found: 203.0904.

The reaction was carried out according to the general procedure on 0.375 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (5:1) to afford **1D** (157.0 mg, 83% yield) as colorless oil. D-incorporation was calculated by ¹H NMR: 98%.¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.21 (m, 5H), 5.36 (d, *J* = 7.4 Hz, 1H), 5.10 (s, 2H), 4.46 – 4.23 (m, 1H), 3.73 (s, 3H), 1.93 – 1.82 (m, 1H), 1.74 – 1.64 (m, 1H), 0.90 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.87, 155.85, 136.26, 128.50, 128.14, 128.07, 66.93, 54.92, 52.27,

25.72, 9.19 (t, J = 19.5 Hz). HRMS (ESI) calcd for $C_{13}H_{16}DNO_4$ [M + Na] ⁺ m/z = 275.1113, found: 275.1108.

Methyl ((benzyloxy)carbonyl)-L-alaninate-3-d

The reaction was carried out according to the general procedure on 0.375 mmol scale. The residue was purified by column chromatography on silica with petroleum ether/ethyl acetate (5:1) to afford **1E** (141.2 mg, 79% yield) as colorless oil. D-incorporation was calculated by ¹H NMR: 99%. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.19 (m, 5H), 5.37 (d, *J* = 4.9 Hz, 1H), 5.10 (s, 2H), 4.38 (dt, *J* = 6.7, 4.9 Hz, 1H), 3.74 (s, 3H), 1.39 (d, *J* = 6.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.44, 155.58, 136.25, 128.50, 128.14, 128.08, 66.90, 52.41, 49.53, 18.37 (t, *J* = 20.8 Hz). HRMS (ESI) calcd for C₁₂H₁₄DNO₄ [M + Na]⁺ m/z = 261.0956, found: 261.0953.

Triethoxy(propyl-3-d)silane

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 90% based on ¹H NMR. D-incorporation ratio was calculated by ¹H NMR: 94%. ¹H NMR (400 MHz, CDCl₃) δ 3.81 (q, *J* = 7.0 Hz, 6H), 1.53 – 1.38 (m, 2H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.94 (t, *J* = 7.3 Hz, 2H), 0.64 (t, *J* = 8.2 Hz, 2H). GC-MS (EI): m/z = 207.04.

Propanoic-3-d acid

The reaction was carried out according to the general procedure on 0.75 mmol scale. This compound was obtained as a crude product due to its volatility. The yield was 92% based on ¹H NMR. D-incorporation ratio was calculated by ¹H NMR: 96%. ¹H NMR (400 MHz, CDCl₃) δ 2.31 (t, *J*

= 7.0 Hz, 2H), 1.06 (t, J = 7.0 Hz, 2H). ¹³C NMR (101 MHz, $CDCl_3$) δ 177.63, 27.46, 8.84 (t, J = 19.8). GC-MS (EI): m/z = 75.04.

4. Desulfurization-deuteration reactions of peptides

General procedure for desulfurization-deuteration of peptides

The reaction was operated in D_2O . The reaction conditions were consistent to the general procedure of desulfurization of cysteinyl peptides. The optimal condition for deuteration of peptides is as follows.

To a solution of cysteinyl peptide (1 mM, 1.0 equiv.) in D_2O (2 ml), TPPTS (34.1 mg, 30mM, 30.0 equiv.), DTBP (8.8 mg, 30mM, 30.0 equiv.) and *t*-BuSH (5.4 mg, 30mM, 30.0 equiv.) were added. The mixture was stirred and irradiated employing two 36 W household CFL bulb at room temperature for 6 hours. When the reaction is complete, it was analyzed by LC-MS.

Peptide 1H (GSH) to peptide 2H

To a solution of GSH (0.6 mg, 1 mM) in D₂O (2 ml), TPPTS (34.1mg, 30 mM, 30.0 equiv.) and DTBP (8.8 mg, 30mM, 30.0 equiv.) were added. The resulting clear solution was stirred and irradiated with two 36 W household CFL bulb at room temperature for 10 hours. When the reaction is complete, **2H** was characterized by ¹H NMR and ESI-MS spectrometry. ¹H NMR (400 MHz, D₂O) δ 4.15 (t, *J* = 7.2 Hz, 1H), 3.79 (s, 2H), 3.72 (t, *J* = 6.3 Hz, 2H), 2.36 (t, *J* = 7.2, 2H), 2.02 (dt, *J* = 7.2, 6.3 Hz, 2H), 1.17 (d, *J* = 7.2 Hz, 2H).ESI-MS calcd for **2H** C₁₀H₁₆DN₃O₆ [M+Na]+m/z = 299.1072, found:299.1023. Conversion (>95%) and D-incoporation (98%) were based on ¹H NMR and mass spectrometry respectively.

Supplementary Figure S3. ¹H NMR spectrum of desulfurization product of 2H.

2.6 mg of peptide **2I** was subjected to the standard desulfurization conditions as illustrated in the general procedure. The reaction was monitored by LC-MS. The conversion of the desulfurized product was analyzed by LC-MS. D-incorporation ratio was assessed by mass spectrometry: 99%. The desulfurized product was characterized by mass spectrometry.

Supplementary Figure S4. Corresponding LC-MS analysis of peptide **2I** (10-65% solvent A in solvent B over 15 min at a flow rate of 0.6 mL/min). ESI-MS calcd for $C_{55}H_{89}DN_{14}O_{20}$ [M+H] ⁺m/z = 1268.6591, [M+2H] ²⁺m/z = 634.8332, found: 1268.6522, 634.8337.

3.3 mg of peptide **2J** was subjected to the standard desulfurization conditions as illustrated in the general procedure. The reaction was monitored by LC-MS. The conversion of the desulfurized product was analyzed by LC-MS. D-incorporation ratio was assessed by mass spectrometry: 97%. The desulfurized product was characterized by mass spectrometry.

Supplementary Figure S5. Corresponding LC-MS analysis of peptide **2J** (10–65% solvent A in solvent B over 15 min at a flow rate of 0.6 mL/min). ESI-MS calcd for $C_{61}H_{98}D_2N_{20}O_{28}S$ [M+2H] ²⁺m/z = 798.3504, found: 798.3506.

5. Scale-up reaction

In order to test the applicability of this novel desulfurization method, gram scale reactions were carried out based on substrate **1d**. It was found that the reaction proceeded smoothly and the corresponding products were obtained with 87% yield and 95% D-incorporation.

Supplementary Figure S6. Reactions executed on large scale.

6. Mechanistic studies

To elucidate the reaction mechanism, the radical-inhibitor experiments was performed by addition of 2 equivalent radical-trapping reagent 2,2,6,6-tetramethyl-1-piperidyloxy (TEMPO) to the reaction of **1a**. Eventually, the reaction was completely inhibited. TEMPO-**1a** adduct was observed in the LC-MS while there was no **2a**, thus suggesting a radical process.

Supplementary Figure S7. Radical trapping experiment.

The radical trapping experiment was conducted as follows.

To a 25 ml round-bottom flask equipped with a stir bar were added **1a** (0.75 mmol, 1.0 equiv.) and $P(OEt)_3$ (1.5 mmol, 2.0 equiv.). Solvent CH_3CN was added (6 ml) followed by the addition of DTBP (1.2 equiv.). TEMPO (2.0 eq) was introduced into the solution. The flask was capped and the reaction was stirred and irradiated using two 36 W household CFL bulb (6 cm away, to keep the reaction at room temperature) at room temperature for 6 hours. After 6 hours, the reaction was monitor by LC-MS. Substrate **1a** and TEMPO-**1a**-adduct can be detected in mass spectrometry. However, the product **2a** was not detected.

TEMPO-**1a**-adduct: ESI-MS calcd for $C_{21}H_{32}N_2O_5S$ [M+Na]⁺m/z = 447.1924, [M+K]⁺m/z = 463.1664, found: 447.1864, 463.1811.

1a: ESI-MS calcd for $C_{12}H_{15}NO_4S$ [M+Na]⁺m/z = 292.0614, found: 292.0566.

PO(OEt)₃: ESI-MS calcd for C₆H₁₅O₄P [M + Na]⁺m/z = 205.0600, [2M + Na]⁺m/z = 387.1308, found: 205.0573, 387.1262.

Supplementary Figure S8. The ESI-MS spectra of radical trapping experiment.

In order to further confirm the proposed mechanism, EPR experiment of the reaction system was performed using 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO) as an EPR spin trap. The experiment revealed that DMPO-radical adduct was produced during the initial reaction time at room temperature. The EPR spectra is shown in **Fig. S9**.

Supplementary Figure S9. EPR spectra of the reaction system. Reaction condition: c (**1a**) = 0.1 mol/L, c (phosphoric reagent) = 0.15 mol/L, c (DTBP) = 0.15 mol/L, c (DMPO) = 0.3 mol/L, room temprerature, 10 min after the reaction started.

Based on the above results, a plausible radical mechanism was proposed in Fig. S10.

Supplementary Figure S10 | Plausible reaction mechanism of the desulfurization-deuteration

reaction

Supplementary Figure S11. UV-Vis Titration Analysis of DTBP, Ph_2POEt , and the mixture of Ph_2POEt and DTBP. The experiments were executed on SHIMADZU UV-2450 spectrophotometer. Concentration of Ph_2POEt and DTBP were 0.1 mmol/L and 0.1 mol/L. The measured spectrum of the 1:1 mixture of DTBP and Ph_2POEt shifted a little to the visible light region compared with the spectrum add-up of DTBP and Ph_2POEt . Therefore, Ph_2POEt might interact with DTBP and help cleave the O-O bond in the peroxide under visible light irradiation.

7. References

1. Still, W.C., Kahn, M., and Mitra, A. (1978). Rapid chromatographic technique for preparative separations with moderate resolution. The Journal of Organic Chemistry *43*, 2923-2925.

8. Spectral data

¹H NMR of **2a** in CDCl₃

²H NMR of **2a** in CDCl₃

13 C NMR of **2b** in CDCl₃

The crude ${}^{1}H$ NMR of **2c** in CDCl₃

^{13}C NMR of 2d in CDCl_3

¹³C NMR of **2d** in CDCl₃ (scale-up reaction)

^{13}C NMR of 2e in CDCl_3

¹³C NMR of **2f** in $CDCl_3$

¹³C NMR of **2g** in CDCl₃

The crude ¹H NMR of **2h** in $CDCl_3$

¹³C NMR of **2i** in CDCl₃

The crude ¹H NMR of **2j** in $CDCl_3$

The crude ¹H NMR of **2k** in CDCl₃

²H NMR of **2m** in $CDCl_3$

The crude ^{13}C NMR of 2n in CDCl_3

The crude $^{\rm 13}{\rm C}$ NMR of ${\bf 2o}$ in ${\rm CDCl}_{\rm 3}$

^{13}C NMR of 2p in D_2O

The crude ¹H NMR of **2q** in $CDCl_3$

¹H NMR of 2r in CDCl₃

²H NMR of 2r in CDCl₃

S49

^{13}C NMR of 2s in CDCl_3

^{1}H NMR of **2t** in D₂O

^2H NMR of 2t in $D_2\text{O}$

¹³C NMR of **2u** in CDCl₃

¹H NMR of 2v in CDCl₃

²H NMR of 2v in CDCl₃

S55

S56

The crude ¹H NMR of 2x in CDCl₃

¹H NMR of 2z in CDCl₃

¹H NMR of **2A** in $CDCl_3$

The crude ¹H NMR of **2B** in CDCl₃

11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.5 fl (ppm)

The crude ¹H NMR of **2G** in $CDCl_3$

