Supplementary Material

Photocatalyst-free Visible Light Promoted $E \rightarrow Z$ Isomerization of Alkenes

Jianbin Xu,^{#, a} Na Liu,^{#, a} Haiping Lv,^b Chixian He,^a Zining Liu,^a Xianfu Shen,^a Feixiang Cheng^{*, a} and Baomin Fan^{*,b}

- Yunnan Guizhou Plateau Chemical Functional Materials Pollution Control Research Center, Qujing Normal University, Qujing, 655011, China
- ^b YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, 650500, China.

Phone: +(86)-874-8998658 ; Email: chengfx2019@163.com; FanBM@ynni.edu.cn (Baomin Fan).

Contents

1. General information	S2
2. The general procedure	S2
3. Mechanistic Investigation	82
4. Characterization data of the products	S2
5. References	S 6
6. NMR spectra of products	S8

1. General Information

All commercially available chemicals were used as received from Aldrich, TCI, Acros or Strem without further purification.¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400 Spectrometer (¹H 400 MHz and ¹³C 100.6 MHz). The blue LED [30.0 W, λ = 455 nm] was used as a visible light source.

2. The general procedure

In an reaction tube containing a magnetic stirring bar was charged with a mixture solution of (E)-alkene (0.3 mmol) in MeCN (2 ml) and water (0.2 mL), followed by the addition of NaOH (12.0 mg, 0.3 mmol). The reaction mixture was open to air and stirred under the irradiation of 30 W blue LED at room temperature. After reaction 24 hours, the solution was concentrated in vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product.

3. screening of reaction conditions

Entry	Base	Solvent	Time	Yield(%) ^[b]	Z/E ^[c]
1	NaOH	MeCN/H ₂ O	24h	98	97:3
2	Na ₂ CO ₃	MeCN/H ₂ O	24h	91	90:10
3	K_2CO_3	MeCN/H ₂ O	24h	93	62:38
4	KHCO ₃	MeCN/H ₂ O	24h	91	66:34
5	Li ₂ CO ₃	MeCN/H ₂ O	24h	86	41:59
6	Cs ₂ CO ₃	MeCN/H ₂ O	24h	81	32:68
7	NH ₂ PF ₆	MeCN/H ₂ O	24h	88	85:15
8	K_3PO_4	MeCN/H ₂ O	24h	94	42:58
9	Na ₂ PO ₄	MeCN/H ₂ O	24h	84	28:72
10	NEt ₃	MeCN/H ₂ O	24h	92	36:64

Table 1. The screening of reaction conditions for the isomerization reaction^[a]

11	NaOH	THF/H ₂ O	24h	93	65:35
12	NaOH	DMF/H ₂ O	24h	86	53:47
13	NaOH	DMSO/H ₂ O	24h	78	44:56
14	NaOH	Dioxane/H ₂ O	24h	83	49:51
15	NaOH	Toluene /H ₂ O	24h	84	55:45
16	NaOH	<i>i</i> -PrOH /H ₂ O	24h	92	28:72
17 ^[d]	NaOH	MeCN/H ₂ O	24h	96	/
18	/	MeCN/H ₂ O	24h	99	3:97
19 ^[e]	NaOH	MeCN/H ₂ O	24h	91	36:64
20 ^[f]	NaOH	MeCN/H ₂ O	24h	95	48:52
21 ^[g]	NaOH	MeCN/H ₂ O	24h	93	26:74
22 ^[h]	NaOH	MeCN/H ₂ O	24h	97	9:91

^[a] Reaction conditions: *E*-1a (0.3 mmol), base (0.3 mmol), solvent (2mL), H₂O (0.2mL), 30W blue LED, air, rt.; ^[b] isolated yield; ^[c] determined by ¹H NMR of crude product; ^[d] No light. ^[e] MeCN/H₂O = 1:1; ^[f] MeCN/H₂O = 2:1; ^[g] MeCN/H₂O = 5:1; ^[h] MeCN/H₂O = 20:1;

3. Mechanistic Investigation

3.1 Deuteration experiment

In an reaction tube containing a magnetic stirring bar was charged with a mixture solution of (*E*)-stilbene (54.0 mg, 0.3 mmol) in MeCN (2 ml) and deuterium oxide (0.2 mL), followed by the addition of NaOH (12.0 mg, 0.3 mmol). After being degassed three times of nitrogen, the tube was heated and stirred under the irradiation of 30 W blue LED. After reaction 24 hours, the solution was concentrated in vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the product.

3.2 The model reaction was carried under $N_{\rm 2}$

In an reaction tube containing a magnetic stirring bar was charged with a mixture solution of (*E*)-stilbene (54.0 mg, 0.3 mmol) in MeCN (2 ml) and water (0.2 mL), followed by the addition of NaOH (12.0 mg, 0.2 mmol). After being degassed three

times of nitrogen, the tube was heated and stirred under the irradiation of 30 W blue LED. After reaction 24 hours, the solution was concentrated in vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the product.

3.3 Radical Control Experiment

In an oven-dried reaction tube with a magnetic stirring bar a solution of (*E*)-stilbene (54.0 mg, 0.3 mmol), MeCN (2 ml), water (0.2 mL), NaOH (12.0 mg, 0.3 mmol) and TEMPO (93.7 mg, 0.6 mmol). The reaction mixture was open to air and stirred under the irradiation of 30 W blue LED at room temperature for 24 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the product.

3.4 O₂⁻ Radical Quenching Experiment

In an oven-dried reaction tube with a magnetic stirring bar a solution of (*E*)-stilbene (54.0 mg, 0.3 mmol), MeCN (2 ml), water (0.2 mL), NaOH (12.0 mg, 0.3 mmol) and DPPH (236.6 mg, 0.6 mmol). The reaction mixture was open to air and stirred under the irradiation of 30 W blue LED at room temperature for 24 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the product.

3.5 EPR experiments

a) standard conditions: A mixture of (*E*)-stilbene (54.0 mg, 0.3 mmol), MeCN (2 ml), water (0.2 mL), NaOH (12.0 mg, 0.3 mmol) and DMPO (10 uL) was open to air and stirred under the irradiation of 30 W blue LED at room temperature for 2 h. Afterwards, 20 uL of the mixture was quickly taken out into a small tube and analyzed by EPR.

b) without water under the standard conditions: A mixture of (*E*)-stilbene (54.0 mg, 0.3 mmol), MeCN (2 ml), NaOH (12.0 mg, 0.3 mmol) and DMPO (10 uL) was open to air and stirred under the irradiation of 30 W blue LED at room temperature

for 2 h. Afterwards, 20 uL of the mixture was quickly taken out into a small tube and analyzed by EPR.

c) without NaOH under the standard conditions: A mixture of (*E*)-stilbene (54.0 mg, 0.3 mmol), MeCN (2 ml), water (0.2 mL) and DMPO (10 uL) was open to air and stirred under the irradiation of 30 W blue LED at room temperature for 2 h. Afterwards, 20 uL of the mixture was quickly taken out into a small tube and analyzed by EPR.

d) without (*E*)-stilbene under the standard conditions: A mixture of NaOH (12.0 mg, 0.3 mmol), MeCN (2 ml), water (0.2 mL) and DMPO (10 uL) was open to air and stirred under the irradiation of 30 W blue LED at room temperature for 2 h. Afterwards, 20 uL of the mixture was quickly taken out into a small tube and analyzed by EPR.

Figure 1. EPR spectra (X band, 9.4 GHz, rt) of (a) (*E*)-**1a** and NaOH in the mixture of CH₃CN and water, under blue LED irritation 2h; (b) (*E*)-**1a** and NaOH in CH₃CN, under blue LED irritation 2h; (c) (*E*)-**1a** in the mixture of CH₃CN and water, under blue LED irritation 2h; (d) NaOH in the mixture of CH₃CN and water, under blue LED irritation

4. Characterization Data of Products

Z-1a

(**Z**)-1,2-phenylethene (**Z**-1a)¹. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.18 (m, 10H), 6.60 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.3, 130.3, 128.9, 128.2, 127.1.

(**Z**)-1,2-di-*p*-tolylethene.¹ ¹H NMR (400 MHz, CDCl₃): δ 7.15-7.13 (m, 2H), 7.09-7.05 (m, 2H), 6.94-6.89 (m, 4H), 6.71 (s, 2H), 2.28 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 136.5, 136.2, 130.0, 129.5, 129.1, 127.0, 125.4, 19.9.

(**Z**)-1,2-di-*m*-tolylethene.² ¹H NMR (400 MHz, CDCl₃): δ 7.16 (d, J = 8.1 Hz, 4H), 7.02 (d, J = 7.8 Hz, 4H), 6.51 (s, 2H), 2.31 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 136.8, 134.5, 129.5, 128.9, 128.8, 21.3.

(**Z**)-1,2-bis(4-fluorophenyl)ethene.³ ¹H NMR (400 MHz, CDCl₃): δ 7.14-7.12 (m, 4H), 7.09-7.06 (m, 4H), 6.48 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 135.2, 133.0, 130.2, 129.6, 128.6.

(**Z**)-1,2-bis(4-chlorophenyl)ethane.¹ ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.13 (m, 6H), 7.09-7.07 (m, 2H), 6.57 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.5, 134.2, 130.0, 129.6, 128.8, 127.5, 126.9.

(Z)-1,2-bis(3-chlorophenyl)ethene.¹ ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.15 (m, 6H), 7.13-7.03 (m, 3H), 6.56 (d, J = 1.04 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.5, 134.2, 130.0, 129.9, 129.6, 128.8, 128.6, 127.9, 127.5, 127.0, 126.4, 124.9.

(Z)-1,2-bis(4-bromophenyl)ethane.⁴ ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.34 (m, 4H), 7.09-7.06 (m, 4H), 6.53 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 135.7, 131.5, 130.5, 129.7.

(**Z**)-1,2-bis(4-(trifluoromethyl)phenyl)ethane.⁵ ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 8.6 Hz, 4H), 7.30 (d, *J* = 8.0 Hz, 4H), 6.72 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 140.1, 130.7, 130.0, 129.6, 129.3, 129.1, 126.9, 125.5, 125.4, 125.37, 125.33, 122.7.

(**Z**)-4-Chloro-4'-methoxystilbene.⁶ ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.11 (m, 4H), 6.81 (d, *J* = 7.62 Hz, 1H), 6.78-6.76 (m, 2H), 6.57 (dd, *J* = 37.46, 12.2 Hz, 2H), 3.67 (s, 3H) ; ¹³C NMR (CDCl₃, 100 MHz): δ 159.4, 139.1, 137.9, 134.0, 131.4, 129.5, 129.4, 128.9, 128.8, 127.2, 127.1, 121.5, 113.7, 113.6, 55.1.

(**Z**)-1-methoxy-4-styrylbenzene.⁷ ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.10 (m, 7H), 6.69-6.66 (m, 2H), 6.41 (s, 2H), 3.70 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 137.6, 130.2, 129.8, 128.8, 128.7, 128.3, 126.9, 113.6, 55.2.

(**Z**)-1-methyl-4-styrylbenzene.⁸ ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.15 (m,5H), 7.10-7.03 (m,3H), 6.99-6.97 (m, 1H), 6.55 (s, 2H), 2.24 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 137.4, 137.3, 130.5, 130.2, 129.7, 128.9, 128.3, 128.2, 127.9, 127.2, 125.9, 21.5.

(**Z**)-1-methyl-3-styrylbenzene.⁹ ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.10 (m, 8H), 7.03-7.01 (m, 1H), 6.64-6.56 (m, 2H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.3, 137.2, 136.2, 130.7, 130.2, 129.7, 129.1, 129.0, 128.3, 127.4, 127.2, 125.9, 20.1.

(Z)-1,2,3-Trimethoxy-5-styrylbenzen.¹⁰ ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.10 (m, 4H), 7.06-7.03 (m, 1H), 6.46 (d, *J* = 12.16 Hz, 1H), 6.37-6.34 (m, 3H), 3.70 (s, 3H), 3.49 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 152.8, 137.5, 137.1, 132.5, 130.2, 130.0, 128.9, 128.3, 127.2, 106.1, 60.9, 55.8.

(**Z**)-1-fluoro-4-styrylbenzene.¹² ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.18 (m, 7H), 6.93-6.87 (m, 2H), 6.56 (dd, *J* = 22.1, 12.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 163.0, 160.6, 137.0, 133.2, 133.1, 130.6, 130.5, 130.3, 129.1, 128.8, 128.3, 127.3, 115.3, 115.1.

(**Z**)-1-chloro-4-styrylbenzene.¹ ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.15 (m 9H), 6.57 (dd, *J* = 40.4, 21.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 136.9, 135.7, 132.8, 131.0, 130.3, 129.0, 128.9, 128.5, 128.4, 127.4.

(**Z**)-1-nitro-4-styrylbenzene.¹³ ¹H NMR (400 MHz, CDCl₃): δ 8.14 (dd, *J* = 6.96, 1.92 Hz, 2H), 7.55 (dd, *J* = 7.04, 1.72 Hz, 2H), 7.49-7.47 (m, 2H), 7.35-7.31 (m, 2H), 7.28-7.26 (m, 1H), 7.21-7.17 (m, 1H), 7.06 (d, *J* = 16.32 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 146.7, 143.9, 136.2, 133.3, 129.0, 127.1, 126.9, 126.3, 124.2.

(**Z**)-1-styryl-3-(trifluoromethyl)benzene.¹⁵ ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.20 Hz, 2H), 7.31 (d, *J* = 8.56 Hz, 2H), 7.22-7.18 (m, 5H), 6.68 (d, *J* = 12.24 Hz, 1H), 6.56 (d, *J* = 12.24 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 141.0, 140.9, 136.6, 132.4, 129.2, 128.9, 128.8, 128.7, 128.5, 127.7, 126.3, 125.3, 125.2.

(**Z**)-**4**-styrylaniline.¹¹ ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.28 (m, 2H), 7.25-7.17 (m, 3H), 7.08-7.05 (m, 2H), 6.54-6.51 (m, 2H), 6.45 (dd, *J* = 20.8, 12.24 Hz, 2H), 3.67 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 145.5, 138.0, 130.2, 130.1, 128.8, 128.2, 127.6, 127.5, 126.7, 114.7.

(Z)-4-Styrylbenzaldehyde.¹⁴ ¹H NMR (400 MHz, CDCl₃): δ 9.95 (s, 1H), 7.73 (d, J = 7.48 Hz, 2H), 7.39 (d, J = 7.76 Hz, 2H), 7.26-7.24 (m, 7H), 6.76 (d, J = 12.28 Hz, 1H), 6.62 (d, J = 12.24 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 191.9, 143.8, 136.5, 134.9, 133.0, 129.7, 129.5, 129.0, 128.9, 128.4, 127.7.

(**Z**)-4-Styrylpyridine.¹⁵ ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, J = 5.96 Hz, 2H), 7.26-7.19 (m, 5H), 7.10 (d, J = 5.88 Hz, 2H), 6.79 (d, J = 12.28 Hz, 1H), 6.50 (d, J = 12.28 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 149.8, 145.0, 136.1, 134.1, 128.8, 128.5, 127.9, 127.6, 123.5.

(Z)-3-phenylacrylamide.¹⁶ ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.47 (m, 2H), 7.39-7.33 (m, 3H), 6.87 (d, J = 12.6Hz, 1H), 6.01 (d, J = 12.6 Hz, 1H), 5.43 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.8, 137.6, 134.8, 128.9, 128.8, 128.6, 123.8.

(Z)-3-(*p*-tolyl) acrylamide. Yellow Solid, mp. 119-121°C. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 8.08 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 12.56 Hz, 1H), 5.94 (d, J = 12.52 Hz, 1H), 5.44 (d, J = 22.12 Hz, 2H). 2.36 (s, 3H); ¹³C NMR

(CDCl₃, 100 MHz): δ 169.0, 139.0, 137.7, 131.9, 129.3, 128.9, 123.0, 21.3. HRMS (ESI) calcd. for C₁₀H₁₂NO [M+H]⁺: 162.0913, found: 162.0915.

(**Z**)-3-(4-methoxyphenyl) acrylamide. White Solid, mp. 146-147 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.49 (m, 2H), 6.89-6.87 (m, 2H), 6.77 (d, *J* = 12.56 Hz, 1H), 5.87 (d, *J* = 12.56 Hz, 1H), 5.66 (d, *J* = 18.84 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.3, 137.8, 130.9, 130.2, 127.2, 121.4, 113.8, 55.3. HRMS (ESI) calcd. for C₁₀H₁₂NO₂ [M+H]⁺: 178.0863, found: 178.0864.

(Z)-3-(2-methoxyphenyl) acrylamide. Yellow oil, mp. 132-133 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 7.52 Hz, 1H), 7.32-7.28 (m, 1H), 7.00-6.97 (m, 1H), 6.94-6.88 (m, 2H), 6.20 (s, 1H), 5.97 (d, J = 12.56 Hz, 1H), 5.68 (s, 1H), 3.84 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.5, 157.0, 133.6, 130.4, 130.2, 124.1, 123.7, 120.5, 110.6, 55.4. HRMS (ESI) calcd. for C₁₀H₁₂NO₂[M+H]⁺: 178.0863, found: 178.0862.

(Z)-3-(*m*-tolyl) acrylamide. White Solid, mp. 123-124 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.21 (m, 3H), 7.12 (d, *J* = 7.32 Hz, 1H), 6.78 (d, *J* = 12.6 Hz, 1H), 6.17 (s, 1H), 5.94 (d, *J* = 12.6 Hz, 1H), 5.74 (s, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.5, 138.2, 137.7, 134.8, 129.5, 128.5, 125.9, 123.7, 21.4. HRMS (ESI) calcd. for C₁₀H₁₂NO [M+H]⁺: 162.0913, found:162.0914.

(**Z**)-**3**-(**4**-fluorophenyl) acrylamide. Colorless Oil. ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.52 (m, 2H), 7.07-7.03 (m, 2H), 6.79 (d, *J* = 12.56 Hz, 1H), 5.97 (d, *J* = 12.6 Hz, 1H), 5.42 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.9, 136.9, 131.2, 131.1, 122.9, 115.6, 115.4. HRMS (ESI) calcd. for C₉H₉FNO [M+H]⁺: 166.0663, found:166.0666.

(Z)-3-(4-chlorophenyl) acrylamide. Yellow Oil. ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.46 (m, 2H), 7.34-7.32 (m, 2H), 6.77 (d, J = 12.6 Hz, 1H), 6.01 (d, J = 12.6 Hz, 1H), 5.45 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.4, 136.7, 133.1, 130.5, 128.7, 123.7. HRMS (ESI) calcd. for C₉H₉ClNO [M+H]⁺: 182.0367, found:182.0368.

(**Z**)-3-(4-bromophenyl) acrylamide. Yellow Solid, mp. 156-158 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.48 (m, 2H), 7.41-7.39 (m, 2H), 6.75 (d, J = 12.6 Hz, 1H), 6.02 (d, J = 12.56 Hz, 1H), 5.45 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.1, 136.7, 133.6, 131.6, 130.7, 123.9, 123.1. HRMS (ESI) calcd. for C₉H₉BrNO [M+H]⁺: 225.9862, found:225.9866.

5. References

- 1. D. C. Fabry, M. A. Ronge, M. Rueping, Chem. Eur. J., 2015, 21, 5350-5354
- C. C. Tai, M. S. Yu, Y. L. Chen, W. H. Chuang, T. H. Lin, G. P. A. Yap, T. G. Ong, *Chem. Commun.*, 2014, **50**, 4344–4346.
- A. S. Saiyed, K. N. Patel, B .V. Kamath, A. V. Bedekar, *Tetrahedron Lett.*, 2012, 53, 4692.
- S. S. Li, L. Tao, F. Z. Wang, Y.-M. Liu, Y. Cao, Adv. Synth. Catal., 2016, 358, 1410.
- 5. G. Bellucci, R. Bianchini, C. Chiappe, R. S. Brown, S. Slebocka-Tilk, J. Am. Chem. Soc., 1991, 113, 8012.
- 6. J. Wu, D. Li, D. Zhang, Synth. Commun., 2005, 35, 2543-2551.
- 7. T. Schabel, C. Belger, B. Plietker, Org. Lett., 2013, 15, 2858–2861.
- 8. L. Ilies, T. Yoshida, E. Nakamura, J. Am. Chem. Soc., 2012, 134, 16951–16954.
- 9. S. Enthaler, M. Haberberger, E. Irran, Chem. Asian J., 2011, 6, 1613
- 10. F. Lara-Ochoa, G. Espinosa-Pérez, Tetrahedron Lett., 2007, 48, 7007.
- 11. S. Rao, K. R. Prabhu, Chem. Eur. J., 2018, 24, 13954.
- T. N. Gieshoff, A. Welther, M. T. Kessler, M. H. G. Prechtl, A. J. von Wangelin, *Chem. Commun.*, 2014, **50**, 2261–2264.
- C. Linde, N. Koliaï, P. O. Norrby,; B. Åkermark, *Chem. Eur. J.*, 2002, 8, 2568-2573.
- 14. R. Nishibayashi,; T. Kurahashi, S. Matsubara, Synlett, 2014, 25, 1287.
- 15. Z. Wang, S. F. Wnuk, J. Org. Chem., 2005, 70, 3281.
- C. Q. Zhao, Y. G. Chen, H. Qiu, L. Wei, P. Fang, T. S. Mei, *Org. Lett.*, 2019, 21, 5, 1412-1416

6. NMR spectra of products

