
1

Synthesis of lignin-functionalized phenolic nanospheres supported 

Ag nanoparticles with excellent dispersion stability and catalytic 

performance

Shilin Chen,a Guanhua Wang,a* Wenjie Sui,b Ashak Mahmud Parvez c and Chuanling Si a*

a Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, 

Tianjin University of Science and Technology, Tianjin 300457, China

b State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and 

Technology, Tianjin 300457, China

c Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, 

Canada

* Corresponding author. Tel.: +86 02260601313

Address: No.29 at 13th Avenue, TEDA, Tianjin 300457, China

E-mail address: ghwang@tust.edu.cn (Guanhua Wang)

sichli@tust.edu.cn (Chuanling Si)

Electronic Supplementary Material (ESI) for Green Chemistry.
This journal is © The Royal Society of Chemistry 2020

mailto:ghwang@tust.edu.cn
mailto:sichli@tust.edu.cn


2

Experiment sections

Preparation of lignin-based phenolic resin (LPR) spheres with different lignin addition ratios

The formula of reagents for LPR spheres fabrication with different lignin addition ratios 

(replacement ratios of phenol by lignin) are presented in Table 1S. The reagents including lignin, 

phenol, formaldehyde, and NaOH were weighted based on the formula and mixed sufficiently in 

aqueous ethanol solution (20 mL of deionized water and 8 mL of ethanol). The mixture solution was 

then heated at 65 oC for 1 h and 90 oC for 30 min, respectively. Afterward, the mixture solution was 

transferred into a sealed Teflon-lined stainless steel autoclave and heated at 120 oC for 12 h, followed 

by natural cooling to room temperature. The solid products were collected by centrifugation (10000 

rpm, 5 min), and washed using deionized water and ethanol three times, respectively. Finally, the 

thermosetting LPR spheres with different lignin addition ratios were obtained by vacuum drying at 80 oC 

for 12 h.

Table S1. Formula for lignin-based phenolic resin preparation with different lignin addition ratios

Addition ratios (R, %) Lignin (g) Phenol (g)
37% aqueous 

formaldehyde (g)
NaOH (g)

0 0 0.2 0.28 0.0170
5 0.01 0.19 0.27 0.0172
10 0.02 0.18 0.26 0.0173
20 0.04 0.16 0.23 0.0176
40 0.08 0.12 0.19 0.0182
50 0.1 0.1 0.17 0.0185

The lignin addition ratio was calculated according to the replacement ratios R.

R=L/(L+P)×100%    (1)

Where R was the adition ratio of lignin, L was the mass of lignin added and P was the mass of phenol [1].
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Figure S1 FTIR spectra of PR (a), LPR (b), and the solid substance in the synthesis solution after 

removal of LPR nanospheres (c).
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Figure S2 Typical TEM images of LPR spheres: (a) LPR-5%, (b) LPR-10%, (c) LPR-20% and (d) 

LPR-40%; (e-h) the size distribution histograms of the corresponding LPR spheres.
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Figure S3 Typical SEM images of LPR spheres prepared using sodium lignosulfonate as the 

feedstock, (a) LPR-5%; (b) LPR-10%; (c) LPR-20%; (d) LPR-40%.
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Figure S4 SEM images of LPR@Ag-10 nanocomposites.
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Figure S5 Effects of lignin addition ratios (replacement ratios of phenol by lignin) on the Ag NPs sizes 

formed on LPR spheres and the Ag NPs loading content.
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Figure S6 (a) Uv-vis spectra of PR nanospheres dispersed in water for 0, 2, and 4 h; (b) Uv-vis 

spectra of PR@Ag-10 dispersed in water for 0, 2, and 4 h.
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Figure S7 XRD patterns of LPR@Ag composites with different lignin addition ratios. 
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Figure S8 XRD patterns of LPR@Ag-10 nanocomposites (LPR@ Ag-2.5, LPR@ Ag-5, LPR@ 

Ag-10)
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Figure S9 Time-dependent UV-vis spectra for adsorption of methylene blue solution (40 mg/L) by 

LPR@Ag-10 (c) and PR@Ag-10 (d) without addition of NaBH4.
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igure S10 Time-dependent UV−vis spectra for catalytic reduction of methylene blue aqueous 

solution (40 mg/L) by LPR@Ag-2.5 (a) and LPR@Ag-5 (b).
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Figure S11 Time-dependent UV−vis spectra for catalytic reduction of methylene blue aqueous 

solution (40 mg/L) by LPR@Ag-10 nanocomposites at pH=3.0 (a), pH=7.0 (b) and pH=9.0 (c).
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Figure S12 (a) Time-dependent UV-vis spectra for adsorption of methyl orange solution (40 mg/L) 

by LPR@Ag-10; (b) Time-dependent UV-vis spectra for catalytic reduction of methyl orange 

solution (40 mg/L) by PR@Ag-10 in the presence of NaBH4.
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Figure S13 Time-dependent UV-vis spectra of methylene blue solution (40 mg/L) by LPR 

nanosphere in the presence of NaBH4 (a) and UV-vis spectra of methyl orange aqueous solution 

(40 mg/L) by LPR nanosphere in the presence of NaBH4 (b).
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Figure S14 UV-vis spectra for the reduced products of methylene blue (a) and methyl orange (b) 

by LPR@Ag-10 nanocomposites in the presence of NaBH4.
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Table S2 Comparison of catalytic activities of Ag-based catalysts for reduction of methylene blue.

Catalyst
Ag NPs size 

(nm)
MB (mg/L) Time (min) κapp (min−1) Reference

AgNPs-entrapped 
hydrogel

∼20 20 30 - [2]

Ag/PSNM-3 16.56 9.6 11 0.13 [3]

Fe3O4@HA@Ag MNCs 13.25 3.2 20 0.08 [4]

AgNP-agar hydrosol 10.16 32.7 6 0.67 [5]

Multilayer Ag 
nanoparticles

35–50 6.4 16 0.058 [6]

Fe3O4@Polydopamine-Ag ∼25 40 9 0.43 [7]
AgNP-starch 18.2±0.97 32.7 10 0.13 [8]

Ag NPs-embedded
hybrid microgels

3~6 3.7 28 0.058 [9]

AgNPs@Caulerpa 
racemosa

25 16 30 0.067 [10]

LPR@Ag-10 10 40 6 0.815 This work
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