Electronic Supplementary Information (ESI)

Efficient Base-Free Oxidation of Monosaccharide into Sugar

Acid under Mild Conditions using Hierarchical Porous

Carbon Supported Au Catalysts

Xintong Meng^a, Zengyong Li^a, Di Li^a, Yiming Huang^a, Jiaojiao Ma^a, Chuanfu Liu *^a and Xinwen Peng *^a ^a State Key Laboratory of Pulp and Paper Engineering, South China University of

Technology, Guangzhou, 510000, China

* Corresponding authors:

Email: chfliu@scut.edu.cn (Prof. C. Liu); fexwpeng@scut.edu.cn (Prof. X. Pen)

Number of Pages: 26. Number of Figures: 19. Number

of

Tables: 5.

Figure S1 SEM images of (A,B) NC-1; (C,D) NC-2; (E,F) NC-3; (G,H) NC-4; (I,J) NC-5.

Figure S3. N1s spectrum of NC-x.

Figure S4. SEM images of FNC.

Figure S5. TEM images of NC-3.

Figure S6. STEM image of NC-3 (A) and the line scan of NC-3.

Figure S7. AFM image of Au/NC-3.

Figure S8. Elemental mapping of Au, N, C and O in Au/NC-3.

Figure S9. HAADF-STEM and element mapping of Au, C, N and O in Au/NC-3.

Figure S10. Nitrogen adsorption isotherm of the Au/NC-3. The insert image represents the BJH pore size distribution of NC-3.

Figure S11. Carbon balance values of D-glucose convert into D-gluconic acid under different oxygen pressures and the mass of Au/NC-3 (A), as well as different temperatures and different reactions (B). Carbon balance values of D-xylose convert into D-xylonic acid under different oxygen pressures and the mass of Au/NC-3 (C), as well as different temperatures and different reactions (D). Reaction conditions: glucose=0.2g, H2O=30mL, stirring speed=1000 rpm(A, B); xylose=0.2g, H2O=30mL, stirring speed=1000 rpm (C, D). Carbon balance values calculated as the ratio of carbon in glucose quantified as products.¹

Figure S12. Recycle of Au/NC-3 for base-free oxidation of glucose to gluconic acid (A) and base-free oxidation of xylose to xylonic acid (B). Calcination process under 573 K in air as regeneration steps.

Figure S13. Carbon balance values of recycle of Au/NC-3 for base-free oxidation of D-glucose to D-gluconic acid and D-xylose to D-xylonic acid. Carbon balance values calculated as the ratio of carbon in glucose quantified as products.

Figure S14. TEM images of 5th reused of Au/NC-3(A, B). The inset in B shows the

size distribution of Au NPs from 100 particles.

Figure S15. XPS spectra of (A) Au 4f, (B) C 1s, (C) N 1s and (D) O 1s of catalysts of the fresh, 1st used, 1st recovered, 5th used and 5th recovered on base-free oxidation of D-glucose to D- gluconic acid.

Figure S16. XPS spectra of (A) Au 4f, (B) C 1s, (C) N 1s and (D) O 1s of catalysts ofthe fresh, 1^{st} used, 1^{st} recovered, 5^{th} used and 5^{th} recovered on base-free oxidation of D-xylosetoD-xylonicacid.

by

catalyzed

Au/NC-3.

* RC(O)OOH tends to be cleaved to RC(O)O and OH on the surface of Au_{13} . The value of 4.51 is the energy of (RC(O)O + OH) relative to unabsorbed RC(O)OOH.

Figure S18. The optimized structure of intermedium of base-free oxidation reaction on D-glucose convert to D-gluconic acid, RCO • (A), RC(O)O • (B), RC(O)O • + OH • (C), D-gluconic acid (RC(O)OH) (D) adsorbed on the Au₁₃ cluster supported on graphene doped a vacant site with three pyridinic N, respectively. The catalyst models are same as those in Figure 2. The adsorption energies are marked correspondingly. R= $C_5H_{11}O_5$.

* RC(O)OOH tends to be cleaved to RC(O)O and OH on the surface of Au_{13} . The value of 4.46 is the energy of (RC(O)O + OH) relative to unadsorbed RC(O)OOH.

Fig S19. The optimized structure of intermedium of base-free oxidation reaction on Dxylose convert to D-xylonic acid, RCO • (A), RC(O)O • (B), RC(O)O • + OH • (C), D-xylonic acid (RC(O)OH) (D) adsorbed on the Au₁₃ cluster supported on graphene doped a vacant site with three pyridinic N, respectively. The catalyst models are same as those in Figure 2. The adsorption energies are marked correspondingly. $R = C_4H_9O_4$.

	NC-1	NC-2	NC-3	NC-4	NC-5
D band(cm ⁻¹)	1364.12	1349.1	1348.02	1356.61	1354.11
G band(cm ⁻¹)	1594.42	1596.92	1586.87	1594.42	1606.93
I_D/I_G	1.0236	1.0297	1.1157	1.0643	1.0143

Table S1. Raman shift and $I_D \! / I_G$ of NC-x series.

	NC-1	NC-2	NC-3	NC-4	NC-5
C (wt%)	69.58	72.76	70.48	68.56	67.40
N (wt%)	9.36	9.69	10.20	11.15	12.33
H (wt%)	2.03	1.97	2.17	2.86	2.24

Table S2. Element composition based on CHNS element analysis of NC-x series.

	NC-1	NC-2	NC-3	NC-4	NC-5
Pyridine N	29.66%	32.81%	34.00%	32.94%	29.43%
Graphite N	20.57%	26.67%	30.56%	24.87%	23.83%
Pyrrolic-N	23.70%	15.63%	20.39%	21.44%	22.27%
N-oxides	26.07%	25.52%	15.06%	20.76%	24.48%

Table S3. Peak area ratio for Pyridine N, Graphite N from XPS.

	Au/NC-1	Au/NC-2	Au/NC-3	Au/NC-4	Au/NC-5	Au/FNC
Metal						
loading (wt%)	0.75	0.89	0.97	0.87	0.80	0.35

 Table S4. ICP-OES analysis of Au/NC-x series.

	Conversion (%)		Yield	(%)	Selectivity (%)	
	D-	D-	D-gluconic	D-xylonic	D-gluconic	D-xylonic
	glucose ^a	xylose ^b	acid ^a	acid ^b	acid ^a	acid ^b
Au/NC-	(0.20	79.87	61.80	66.23	89.06	82.92
1	09.39					
Au/NC-	86 89	88 13	80.07	84 71	92 15	96 11
2	80.89	00.15	00.07	01.71	/2.10	<i>y</i> 0.11
Au/NC-	98.76	99.86	97.62	98 76	98 85	98 90
3		<i>yy</i> .00	57.02	90.10	90.00	<i>y</i> 0. <i>y</i> 0
Au/NC-	91.08	95.91	86.78	89.21	95.28	93.01
4						
Au/NC-	89.57	84.15	78.02	76.23	87.11	90.59
5						

Table S5. Base-free oxidation of D-glucose and D-xylose catalyzed by Au/NC-x.

^a Reaction conditions: D-glucose (0.2 g), Au/NC-3 (0.05 g), water (30mL), O₂ (2 bar), stirring speed (1000 rpm), 120min and 100 °C. ^b Reaction conditions: D-xylose (0.2 g), water (30mL), O₂ (3 bar), Au/NC-3 (0.05 g), stirring speed (1000 rpm), 120min and 100 °C.

References

 J. Iglesias, J. Moreno, G. Morales, J. A. Melero, P. Juárez, M. López-Granados, R. Mariscal and I. Martínez-Salazar, *Green Chemistry*, 2019, **21**, 5876-5885.