Supporting Information

Understanding laccase/HBT-catalyzed grass delignification at the molecular level

Roelant Hilgers^a, Gijs van Erven^a, Vincent Boerkamp^a, Irina Sulaeva^b, Antje Potthast^b, Mirjam

A. Kabel^a and Jean-Paul Vincken^{a*}

^aLaboratory of Food Chemistry, Wageningen University & Research, The Netherlands ^bDepartment of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Austria

*Corresponding author. E-mail: jean-paul.vincken@wur.nl

Contents	page
Laccase activity determination (ABTS assay)	S3
Estimation of total laccase activity in laccase/HBT treatments/Table S1	S4
Table S1	S 5
Flash chromatography purification of WECEL and WEL fractions	S6
Quantitative ¹³ C-IS py-GC-MS analysis of lignin fractions	S 7
Table S2	S8
NMR spectroscopy	S9
Table S3	S11
RP-UHPLC-PDA-MS	S12
Table S4	S13
Table S5	S13
Effects of laccase/HBT treatment on lignin quantification by using Klason and py-GC-MS	S13
Fig. S1	S15
Fig. S2	S16
Fig. S3	S16
Fig. S4	S17
Table S6	S18
Fig. S5	S19
Fig. S6	S20
Fig. S7	S21
Table S7	S22
Table S8-S17	S23-S32
Table S18	S33
References	S34

Laccase activity determination (ABTS assay)

The activity of the commercial laccase preparation was determined spectrophotometrically by oxidation of ABTS. Hereto, a 1 mL quartz cuvette was filled with 0.5 mM ABTS in a sodium acetate buffer (pH 5, 100 mM). A solution of laccase was added and the increase in absorbance at 420 nm was measured over time ($\epsilon = 36,000 \text{ M}^{-1} \text{ cm}^{-1}$). The laccase activity was expressed in units (1 U = 1 µmol ABTS oxidized per minute).

Estimation of total laccase activity in laccase/HBT treatments

Incubations at pH 6 were performed both at equal laccase concentration and at equal laccase activity, as compared to pH 4. In order to determine the required laccase concentration at pH 6 to obtain equal laccase activity as compared to pH 4, we determined: (i) the ratio (pH 4 to pH 6) of initial laccase activity toward HBT, and (ii) the ratio (pH 4 to pH 6) of integrated residual laccase activity in incubations with HBT and milled wheat straw (MWS). The product of these two ratios was used to determine the required laccase concentration at pH 6, to obtain a similar overall activity as in the incubation with 50 U of laccase at pH 4.

Determination of laccase activity toward HBT

Relative laccase activity (pH 4 compared to pH 6) toward HBT was determined by using two methods: oxygen consumption and UV/VIS spectrophotometry. The average between the two measurements was used in further calculations.

For the oxygen consumption measurements were performed by using an Oxytherm System (Hansatech Instruments, Pentney, UK). Hereto, 1 mL of a 78 mM HBT solution in 200 mM citrate buffer at pH 4 or 6 was added to the measuring cell, and the sample was allowed to equilibrate at 40 °C under magnetic stirring (75 rpm) for approximately 1 h. Next, 0.12 U laccase was added and the oxygen concentration was monitored over time. The slopes of the oxygen consumption measurements were then corrected using blank measurements (without laccase) and used to estimate the ratio of laccase activity at pH 4 relative to pH 6 (Table S1).

For UV/VIS spectrophotometry, 1 mL aliquots of the same HBT solution as described above were used at 40 °C. Laccase (0.23 U) was added, and spectra (300-600 nm) were recorded every minute on a Shimadzu UV1800 spectrophotometer equipped with a CPS-240A temperature controller. The absorbance at 420 nm was plotted over time, and the slope was used to estimate the ratio of laccase activity at pH 4 relative to pH 6 (Table S1).

Determination of integrated residual laccase activity in incubations with HBT and MWS

HBT solutions (250 μ L, 78 mM) at either pH 4 or pH 6 in a 200 mM citrate buffer were added to 650 μ L Eppendorf tubes. MWS was suspended at a 6% (w/w) concentration and laccase was added at a dose of 33 U g⁻¹ MWS. Immediately after enzyme addition, a 10 μ L sample was withdrawn and stored at 4 °C. Next, the tubes were incubated in a thermomixer (40 °C; 1,100 rpm). Samples of 10 μ L were taken after 1, 2, 4.5, 7 and 21 h, and stored at 4 °C. To determine the laccase activity, samples were diluted with sodium acetate buffer (100 mM, pH 5), vortexed, centrifuged, and the activity of the supernatant was determined by using the ABTS assay (see page S2).¹ The residual laccase activity (RA, %) was plotted versus time and a first-order exponential decay was fitted to the data according to the equation:

$$RA = e^{-kt}$$

where k (s⁻¹) is the inactivation rate constant an t (s) is the time. The functions were then integrated to obtain the areas under the curves, which are a measure for the total laccase activity in a 21 h incubation. The ratio between the areas at pH 4 and pH 6 was used to compensate for differences in laccase stability (Table S1).

	Ratio pH 4 to pH 6
Activity toward HBT (O ₂ consumption)	5.9 ± 0.71
Activity toward HBT (spectrophotometry)	7.4 ± 0.93
Integrated residual activity	0.38 ± 0.05
Overall activity	2.5

Table S1. Ratio (pH 4 to pH 6) of laccase activity and of integrated residual laccase activity.

Based on the results displayed in Table S1, incubations at pH 6 were performed with both 50 and 125 U g^{-1} MWS/MCS.

Flash chromatography purification of WECEL and WEL fractions

The Rovabio[®] Advance treated and pooled WECEL and WEL fractions were injected on a Grace Reveleris Flash chromatography system (Grace, Columbia, MD, USA), equipped with a Reveleris C18 RP 40 g cartridge (particle size 40 µm). Eluents used were water (A) and acetonitrile (B), both containing 1% (v/v) formic acid. The flow rate was 30 mL min⁻¹. UV absorbance at 280 and 310 nm and evaporative light scattering detector (ELSD) were used to monitor the elution of compounds. The following elution program was used: 0–3 min, isocratic at 0% B; 3–6.5 min, linear gradient to 14 % B; 6.5–12.5 min, isocratic at 14% B; 12.5–26 min, linear gradient to 68% B; 26–29.2 min, linear gradient to 100% B; 29.2–37.2 min, isocratic at 100% B; 37.2–39.2 min, linear gradient to 0% B; 39.2–43.2 min, isocratic at 0% B. The eluent was collected from 16.5-39.2 min, after which it was concentrated under reduced pressure at 30 °C, and lyophilized to obtain purified water extractable lignin (WELpure).

For WECEL purification, a slightly different elution program was used with a flow rate of 40 mL min⁻¹: 0–2.9 min, isocratic at 0% B; 2.9–12.9 min, linear gradient to 20% B; 12.9–20.9 min, linear gradient to 68% B; 20.9–23.4 min, linear gradient to 100% B; 23.1–29.1 min, isocratic at 100% B; 29.1–31.1 min, linear gradient to 0% B; 31.1–34 min, isocratic at 0% B. The eluent was collected from 12.5–31 min, after which it was concentrated under reduced pressure at 30 °C, and lyophilized to obtain purified water extractable cellulolytic enzyme lignin (WECELpure).

Quantitative py-GC-MS with ¹³C-lignin as internal standard

Quantitative pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) was performed by using an EGA/PY-3030D Multi-shot pyrolyzer (Frontier Laboratories, New Ulm, MN, USA) equipped with an AS-1020E Autoshot auto-sampler as described previously.² The pyrolyzer was coupled to a GC-MS system consisting of a Trace GC (Thermo Scientific, Waltham, MA, USA) equipped with a DB-1701 fused-silica capillary column (30 m \times 0.25 mm i.d. 0.25 μ m film thickness), of which the first meter is employed as pre-column, and an Exactive Orbitrap Mass Spectrometer (Thermo Scientific). Samples were weighed using an XP6 excellence-plus microbalance (Mettler Toledo, Columbus, OH, USA). Sample masses were used roughly according to their estimated lignin content: $\sim 60 \ \mu g$ for CEL, $\sim 40 \ \mu g$ for WELpure, ~40 μ g for WECELpure, and ~80 μ g for all other samples. To all samples, 10 μ L of a ¹³C-labeled wheat straw lignin isolate solution (1 mg mL⁻¹ in CHCl3:EtOH 50:50 v/v) was added as an internal standard. Samples were then air dried at room temperature prior to analysis. Pyrolysis was performed at 500 °C for 1 min with an interface temperature of 300 °C. Pyrolysis products were injected on the column via split/splitless injection at 250 °C with a split ratio of 1:133 and helium was used as carrier gas with constant flow at 1.5 mL min⁻¹. The GC oven was programmed from 70 °C (2 min) to 270 °C at 5 °C min⁻¹ and held at 270 °C for 15 min. MS detection was used with EI at 70 eV, a source temperature of 275 °C, a resolution of 60,000, AGC target at 106, maximum IT at 'auto' and a scan range of m/z 35-550. Fifty one lignin pyrolysis compounds were identified by comparing retention time and mass spectrum with literature (Table S2).²

Pyrograms were processed by Tracefinder 4.0 software (Thermo Scientific). For each compound, the most abundant ion was selected and automatically integrated using ICIS peak integration with optimized settings per compound. Manual corrections were only performed when irregular peak shapes were observed that led to erroneous peak integration with automated integration. From the processed data, lignin contents and relative abundances of lignin-derived pyrolysis products were calculated as described previously.³ For absolute lignin quantification, all lignin-derived pyrolysis products were included in the processing. In case pyrolysis data were used to fingerprint structural changes in lignin, two pyrolysis products were excluded from processing: 4-vinylphenol (4-VP) and 4-vinylguaiacol (4-

VG). This was mainly done to improve the comparability between the py-GC-MS results and the results from HSQC NMR experiments. The rationale behind this, is that in HSQC NMR analysis, FA and pCA can be distinguished from 'core lignin' units, while pyrolysis of hydroxycinnamic acids and lignin interunit linkages both yield vinyl products.^{4, 5}

In more detail, for relative quantification of C_{α} -oxidation and intact interunit linkages in HSQC NMR, only S, S_{ox}, G, G_{ox} and H-units were taken into account. For comparative purposes, the origin of the vinyl products in py-GC-MS based relative quantifications should be dealt with. Although 4-VP can also be formed from pyrolysis of H-units, the abundance of H-units is low compared to that of pCA (especially in corn stover). It can therefore be fairly assumed that 4-VP mainly originates from pyrolysis of pCA, and that exclusion from 4-VP increases the comparability between HSQC and py-GC-MS results. The formed 4-VG, however, can originate from both FA and G-units, which are both highly abundant in WS and CS lignin. Therefore, neither inclusion nor exclusion of 4-VG would result in a perfect comparability between both techniques. We decided to exclude 4-VG from data comparison. For py-GC-MS based estimation of the *p*CA content, the relative abundance of 4-VP was taken from the total abundance of lignin-derived pyrolysis products (i.e. including 4-VP and 4-VG) and reported separately (Table S18).
 Table S2. Identity and structural classification of lignin-derived pyrolysis products by ¹³C-IS py-GC-MS.

#	Compound	Rt (min)	Structural feature	Side- chain length	Mw ¹² C (Da)	Quan ion ¹² C [M-e ⁻]	Mw ¹³ C (Da)	Quan ion ¹³ C [M-e ⁻]
1	nhenol	9 79	H unsub	_	94	94 041320	100	100 06145
2	guaiacol	10.03	G unsub		124	124 05188	131	115 04853
3	2-methylphenol	11.03	H. methyl	1	108	108.05698	115	115.08045
4	4-methylphenol(+3-MP)	12.00	H, methyl	1	108	107.04914	115	114.07263
5	4-methylguaiacol	12.71	G, methyl	1	138	138.06753	146	146.09437
6	2.4-dimethylphenol	13.18	H. methyl	1	122	107.04914	130	114.07263
7	4-ethylphenol	14.25	H. misc.	2	122	107.04914	130	114.07263
8	4-ethylguaiacol	14.83	G misc	2	152	137 05971	161	145 08654
9	4-vinylguaiacol ^a	16.29	G vinvl	2	150	150 06753	159	159 09754
10	4-vinylphenol ^a	16.46	H vinvl	2	120	120.05697	128	128 08381
11	eugenol	16.89	G misc	3	164	164 08318	174	174 11673
12	4-propylguaiacol	16.99	G mise	3	166	137 05971	175	145 08654
13	svringol	17.64	S unsub		154	154 06245	162	162 08928
14	<i>cis</i> -isoeugenol	18.25	G misc	3	164	164 08318	174	174 11673
15	4-propenylphenol	19.24	H. misc.	3	134	133.06479	143	142.09498
16	trans-isoeugenol	19.50	G. misc.	3	164	164.08318	174	174.11673
17	4-methylsyringol	19.86	S. methyl	3	168	168.07810	177	177.10829
18	vanillin	19 99	G C -0	3	152	151 03897	160	159 06581
19	4-propyneguaiacol	20.23	G_{α} G_{α	3	162	162.06753	172	172 10108
20	4-alleneguaiacol	20.29	G mise	3	162	162.06753	172	172 10108
21	homovanillin	21.44	G C -O	2	166	137 05971	175	145 08654
21	4-ethylsyringol	21.11	C, C_{β} - C	2	182	167.07022	192	176 10046
22	vanillic acid methyl ester	21.90	G C O	2	182	182 05736	101	191 08766
23	acetovanillone	21.82	$0, C_a = 0$	1	166	151 03807	175	159.06581
27	4 hydroxybanzaldahyda	21.89	$U, C_a = 0$	2	100	121.02877	170	129.05190
25	4-invaloxybelizaideliyde	22.70	$H, C_{\alpha} = 0$	1	122	121.02848	129	120.03109
20		22.90	S, VIIIYI	2	100	127.05071	190	145 09654
27		25.10	G, C_{β} -O	3	100	157.03971	190	145.08054
28	4-allylsyringol	23.31	S, misc.	3	194	194.093/3	205	205.13065
29	propiovanilione	23.79	G, C_{α} -O	3	180	151.03897	190	159.06581
30	gualacyl vinyl ketone	24.09	G, C_{α} -O	3	1/8	151.03897	188	159.06581
31	gualacyl diketone	24.32	G, C_{α} -O, C_{β} -O	3	194	151.03897	204	159.06581
32	cis-4-propenylsyringol	24.43	S, misc.	3	194	194.093/3	205	205.13065
33	4-propynesyringol	25.06	S, misc.	3	192	192.07810	203	203.11500
34	4-allenesyringol	25.27	S, misc.	3	192	192.07810	203	203.11500
35	trans-4-propenylsyringol	25.72	S, misc.	3	194	194.09373	205	205.13065
36	dihydroconiferyl alcohol	25.81	S, C_{γ} -O	3	182	137.05971	192	145.08654
37	syringaldehyde	26.34	S, C_{α} -O	1	182	182.05736	191	191.08755
38	cis-coniferyl-alcohol	26.42	G, C_{γ} -O	3	180	137.05971	190	145.08654
39	homosyringaldehyde	27.32	S, C_{β} -O	2	196	167.07027	206	176.10046
40	syringic acid methyl ester	27.66	S, C_{α} -O	1	212	212.06793	222	222.10147
41	acetosyringone	27.76	S, C_{α} -O	2	196	181.04954	206	190.07973
42	trans-coniferyl alcohol	28.11	G, C_{γ} -O	3	180	137.05971	190	145.08654
43	trans-coniferaldehyde	28.50	G, C_{γ} -O	3	178	147.04406	188	156.07425
44	syringylacetone	28.68	S, C_{β} -O	3	210	167.07027	221	176.10046
45	propiosyringone	29.29	S, C_{α} -O	3	210	181.04954	221	190.07973
46	syringyl diketone	29.43	S, C_{α} -O, C_{β} -O	3	224	181.04954	235	190.07973
47	syringyl vinyl ketone	29.57	S, C_{α} -O	3	208	181.04954	219	190.07973
48	dihydrosinapyl alcohol	31.13	G, C, -O	3	212	168.07841	223	177.10829
49	cis-sinapyl alcohol	31.63	S, C_{ν} -O	3	210	167.07027	221	176.10046
50	trans-sinapyl alcohol	33.31	S, C _y -O	3	210	167.07027	221	176.10046
51	trans-sinapaldehyde	33.54	S, C, -O	3	208	208.07301	219	219.10994

^a 4-vinylphenol and 4-vinylphenol is reported separately in Table S18.

NMR spectroscopy

Sample preparation

NMR spectroscopy of CEL samples was performed in gel-state, based on a previously described protocol.⁶ Hereto, approximately 40 mg CEL was swollen with 500 μ L (for CS) or 650 μ L (for WS) deuterated dimethyl sulfoxide (DMSO-*d*₆) in a 5 mm NMR tube, followed by sonication for 1-5 h to obtain a homogeneous gel. WECELpure samples (15-60 mg) were dissolved in 450 μ L DMSO-*d*₆, vortexed, and transferred to a 5 mm NMR tube. For WELpure samples, solutions of 15-45 mg in 200 μ L DMSO-*d*₆ were prepared, vortexed, and transferred to a 5 mm Shigemi NMR microtube.

HSQC NMR analysis

HSQC experiments were performed based on previously reported methods.⁶ Spectra were recorded at 25 °C on a Bruker AVANCE III 600 MHz NMR spectrometer (Bruker BioSpin, Rheinstetten, Germany) equipped with a 5 mm cryoprobe. Spectra were recorded using a standard Bruker pulse sequence 'hsqcetgpsisp2.2'. The spectral widths were 0-12 ppm (7,200 Hz) for the ¹H dimension and 0-200 ppm (30,000 Hz) for the ¹³C dimension. Sixteen scans were acquired with a relaxation time of 1 s and a FID size of 2018 in the ¹H dimension, and 400 the ¹³C dimension. For ¹*J*_{CH} 145 Hz was used.

Data was processed with Bruker TopSpin version 4.0.5. DMSO-*d6* (δ C 39.5 ppm; δ H 2.49 ppm) was used to calibrate the chemical shifts. Processing was performed by Gaussian apodization, and a squared cosine function in the ¹H and ¹³C dimensions, respectively. For the different sample fractions slightly different values for LB and GB were used, WELpure, and WECELpure: LB = -0.2 and GB = 0.001; WS-CEL LB = -0.20 and GB = 0.0005; CS-CEL LB = -0.30 and GB = 0.0005. LPfr linear prediction in F1 of 32 points was performed. Prior to Fourier transformation, the ¹³C dimension was zero filled up to 1024 points.

HSQC correlations were assigned in accordance to literature (Table S3).⁷⁻¹¹ Semi-quantitative volume integration was performed as previously described by Del Río et al.,⁸ on a single zoom level within each sample.

The abundances of β -O-4' substructures and the cleavage products (DHPV, DHPS, HPV, HPS) were determined using their C_β-H_β correlations. For phenylcoumaran (B) and resinol (C) substructures C_α-H_α

correlations were used. The signals of HPV+HPS (L) and resinol (C) were logically halved. $S_{2,6}$, G_2 , and $H_{2,6}$ signals were used for S, G, and H units, respectively, where S and H integrals were halved as well. Abundances of oxidized analogues were estimated in a similar manner. Tricin, *p*CA, and FA were determined from their respective $T_{2',6'}$, *p*CA_{2,6}, and FA₂ signals. $H_{2,6}$ integrals were corrected for the overlapping phenylalanine cross peak (PHE_{3,5}) by subtraction of the isolated PHE_{2,6} cross-peak integral.¹² Amounts were calculated relative to the total aromatic lignin subunits (H + G + G_{ox} + S + S_{ox} = 100).

HMBC experiments

HMBC experiments were performed with the following WS fractions: WECEL_{pure} (pH 4, control), WECEL_{pure} (pH 4, 50 U g⁻¹) and WEL_{pure} (pH 6, 125 U g⁻¹). Hereto, 20, 32 and 49 mg of the fractions, respectively, were dissolved in 200 μ L DMSO-*d*₆, vortexed, and transferred into Shigemi NMR microtubes. Experiments were performed similar to the HSQC experiments, using the standard Bruker pulse program 'hmbcgplpndqf'. Sixteen dummy scans and 88 scans were acquired with an evolution period of 53 ms for long range coupling. The FID size was 8192 in the ¹H dimension, and 400 the ¹³C dimension. Processing used Gaussian apodization (LB=-5, GB=0.8), and a squared cosine function (SSB=1) in the ¹H and ¹³C, respectively.

E_{B} 40.3/3.08 C_{B} -H _B of HPV and HPS i.e. B-O cleaved B-O-4' linkage	
F_{-OCH2} 51.6/3.60 C-H in methoxyl groups of cyclohexadienone ketals (t)	
C_{B} 53.0/3.43 C_{B} -H _B in resinol substructures	
B_{B} 53.6/3.05 C_{B} -H _B in phenylcoumaran substructures	
-OCH ₃ 55.6/3.73 C-H in methoxyl groups	
E_x 56.9/3.75 C_x -H _x in HPV and HPS, i.e. β -O cleaved β -O-4' linkage	
A_{y} 59.6/3.4 and 3.7 C_{y} -H _y in β -O-4' substructures	
J_{y} 61.4/4.09 C_{y} -H _y in cinnamyl alcohol end groups	
A'_{γ}/A''_{γ} 62.3/4.02 $C_{\gamma}-H_{\gamma}$ in C_{α} oxidized β -O-4' substructures	
B_{γ} 62.6/3.67 C_{γ} - H_{γ} in phenylcoumaran substructures	
D_{γ} 64.0/3.64 C_{γ} -H _{γ} in DHPV and DHPS, i.e. <i>O</i> -4' cleaved β - <i>O</i> -4' link	kage
$A_{\gamma(ac)}$ 64.2/4.1 and 4.3 C_{γ} - H_{γ} in acylated β -O-4' substructures	
$A_{\alpha}(G)$ 70.9/4.71 C_{α} -H _{α} in β -O-4' substructures linked to a G-unit	
C_{γ} 71.0/3.79 and 4.16 C_{γ} -H _{γ} in resinol substructures	
$A_{\alpha}(S)$ 71.8/4.81 C_{α} -H _{α} in β -O-4' substructures linked to a S-unit	
D_{β} 73.8/4.98 C_{β} -H _{β} of DHPV and DHPS, i.e. <i>O</i> -4' cleaved β - <i>O</i> -4' line	kage
A" _{β} (G) 81.2/5.88 C _{β} -H _{β} in C _{α} oxidized β -O-4' substructures linked to a C _{α}	μ-
A' _{β} (S) 83.2/5.18 C _{β} -H _{β} in C _{α} oxidized β -O-4' substructures linked to a S-	unit
A" _{β} (S) 83.2/5.57 C _{β} -H _{β} in C _{α} oxidized β -O-4' substructures linked to a C _{α}	μ-
A_{β} (H) 83./4.49 C_{β} -H _{β} in β -O-4' substructures linked to a H-unit	
$A_{\beta}(G)$ 83.5/4.27 C_{β} -H _{β} in β -O-4' substructures linked to a G-unit	
C_{α} 84.9/4.64 C_{α} -H _{α} in resinol substructures	
$A_{\beta}(S_{erythro})$ 85.9/4.09 $C_{\beta}-H_{\beta}$ in β -O-4' substructures linked to an $S_{erythro}$ -unit	
$A_{\beta}(T)$ 86.2/4.36; 86.7/4.26 C_{β} -H _{β} in β -O-4' substructures linked to a T-unit*	
$A_{\beta}(S_{threo})$ 86.9/3.97 $C_{\beta}-H_{\beta}$ in β -O-4' substructures linked to an S_{threo} -unit	
B_{α} 86.9/5.43; 87.6/5.54 C_{α} -H _{α} in phenylcoumaran substructures	
T_8 94.1/6.57 C_8 -H ₈ in tricin	
T_6 98.8/6.21 C_6 -H ₆ in tricin	
$S_{2,6}$ 103.9/6.69 C_2 -H ₂ and C_6 -H ₆ in S-unit	
$T_{2',6'}$ 104.0/7.31 $C_2'-H_2'$ and $C_6'-H_6'$ in tricin	
T_3 104.6/7.04 C_3 -H ₃ in tricin	
Sox _{2,6} (carbonyl) 106.4/7.30 C_2 -H ₂ and C ₆ -H ₆ in C _α -oxidized (C _α =O) S-unit	
Sox _{2,6} (acid) 106.5/7.19 C_2 -H ₂ and C ₆ -H6 in C _a -oxidized (C _a OOH) S-unit	
G_2 110.8/6.96 C_2 -H ₂ in G-unit	
FA_2 110.9/7.34 C_2 - H_2 in terulate	
Gox ₂ 111.4/7.51; 112.4/7.45 C_2 -H ₂ in C_{α} -oxidized G-unit	
$H_{3,5}/FA_5$ 114.0/6.7/0 C_3-H_3 and C_5-H_5 in H-unit, C_5-H_5 in FA	
G_5/G_6 114.9/6.76, 118.7/6.81 C_5 -H ₅ and C_6 -H ₆ in G-unit, C_3 -H ₃	
GOX_5 115.0/6.80 C_5 -H ₅ in C_{α} -Oxidized G-unit	
$pCA_{3,5}$ 115.0/0.75 C_5 - H_5 01 pCA	
FA_{β}/pCA_{β} 115.5/0.55 $C_{\beta}-H_{\beta}$ in terulate/ <i>p</i> -coumarate	
ΓA_6 122.3/7.09 C_6 - Π_6 in ferulate	
$C_6 - 116 \text{ III } C_6 - 116 \text{ III } C_6 - 016 \text$	
Find $120.5/7.18$ C H and C H in H units C H and C H in phenyla	lanina
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nannie
Two $_{2,6}$ 129.8/7.00 C_{2} -H ₂ in C_{2} -oxidized G_{2} -unit	
PHE ₂ $128.0/7.21$ C ₂ -H ₂ and C ₂ -H ₂ in phenylalanine	
$pCA_{2,0}$ 130 1/7 50 C_2 -H ₂ and C_6 -H ₆ in prohyadanine	
$EA / pCA = \frac{144.27740}{14.27740}$	

Table S3. Assignments of the lignin ${}^{1}H/{}^{13}C$ correlation signals in HSQC NMR spectra. Assignments are based on literature.⁷⁻ ${}^{12}t =$ tentative annotation.

* Or electron-withdrawing moieties other than tricin

RP-UHPLC-PDA-MS

High resolution RP-UHPLC-PDA-MS analysis was performed as described in a previous study,¹ using water (A) and acetonitrile (B) as eluents, both containing 0.1% formic acid. An adapted elution gradient was used: From 0-1.5 min at 5% B (isocratic), 1.5-35 min from 5 to 60% B (linear gradient), 35 to 41.2 min from 60 to 100% B (linear gradient), 41.2-45.7 min at 100% B (isocratic), 45.7-46.2 min from 100 to 5% B (linear gradient) and 46.2-50 min at 5% B (isocratic). The capillary temperature was 254 °C; the probe heater temperature was 408 °C; S-lens RF level was 50 and the source voltages were 3.5 and 2.5 kV in positive and negative ionization mode, respectively. Nitrogen was used as sheath gas (46.6 arbitrary units) and auxiliary gas (10.8 arbitrary units). All other settings were the same as described in Hilgers et al.¹

Table S4 Recoveries (%) of residues of wheat straw and corn stover during extraction, ball milling and washing relative to the starting material (dry matter) of each step. N.D. = Not determined.

Step	Wheat straw	Corn stover
Soxhlet extraction	98	N.D.
Ball-milling	92	93
Washing (water)	80	84

Table S5 Klason lignin determination of MWS and its RES fractions after control and laccase/HBT incubations (24h) at pH4. Acid-soluble lignin could not be determined, due to the interfering UV absorption of HBT and its degradation products.

	MWS	Control	Laccase/HBT
Acid-insoluble lignin (AIL) (%) ^a	21.0 ± 0.6	20.1 ± 0.7	15.0 ± 0.4
Klason lignin (mg) ^a	-	292 ± 10	216 ± 7
Ash (% of AIL)	14.7 ± 1.0	16.3 ± 1.8	16.3 ± 1.5
Protein (% of AIL) ^b	3.2 ± 0.0	3.7 ± 0.1	8.1 ± 1.0
Delignification (%)		7.4	31.7

^a Corrected for ash and protein content.

^b As determined by using the Dumas method with N-to-protein ratio 6.25, assuming that all nitrogen originates from protein

Effects of laccase/HBT treatment on lignin quantification by using Klason and py-GC-MS methodologies

The most widely applied method for lignin quantification is the Klason lignin determination method, which relies on gravimetric analysis of samples after a hydrolytic treatment with sulfuric acid (including correction for ash and protein content). Although this method gives a fairly accurate estimation of the lignin content of untreated biomass, the presence of HBT, either in free form or grafted, may heavily interfere with the lignin determination. In our case, HBT and its degradation product BT were, despite extensive washing, still present in the residue (see Table S6). During the Klason method, free HBT and BT are expected to end up in the acid-soluble fraction. Since these products show absorbance at 205 nm, no reliable acid-soluble lignin content could be determined in this study. For grafted HBT it is unclear how it influences the Klason lignin determination. If grafted HBT is cleaved off during the sulfuric acid treatment, it will also end up in the acid-soluble fraction, but if it 'survives' the sulfuric acid treatment, it will also end up in the acid-soluble fraction, but if it off during the sulfuric acid treatment. The presence of grafted HBT will also interfere with the protein correction, which is based on nitrogen content.

To overcome the major drawback of the Klason method (i.e. poor selectivity for lignin), recently, a py-GC-MS based lignin quantification method was developed.² In this method, lignin-derived pyrolysis products are measured exclusively, and quantification is performed using a ¹³C-labeled wheat straw lignin isolate as internal standard. The method has been shown to accurately quantify lignin in several grasses, amongst which wheat straw and corn stover. Nevertheless, it is possible that reactions such as (re)polymerization and grafting resulted in substructures that are considerably more resistant against pyrolysis than those originally present in the substrate and internal standard.^{13, 14} These substructures may, therefore, have accumulated in the pyrolysis residue or may have been released as (dimeric) products that were not quantified in the used method. Consequently, the formation of such substructures likely resulted in an underestimation of the lignin content of the laccase/HBT treated samples, and thus in an overestimation of delignification.

Although we cannot prove that py-GC-MS is a more accurate quantification method for laccase/HBT samples, we chose to use this method for quantification of lignin since it also provides useful information on the lignin structure and it can also be used on soluble fractions.

Fig. S1 Aromatic regions of the HSQC spectra obtained from CEL fractions of MWS treated with laccase/HBT at pH 4 (B) and the corresponding control (A). HSQC analyses of other CEL fractions showed the same peaks with different intensities. Only processed data from these spectra are shown (in other Figures and Tables). Example spectra of WECEL_{pure} and WEL_{pure} fractions are shown in Fig. 5.

Fig. S2 Relative abundance of C_{α} -oxidized structures as determined by HSQC NMR (A) and estimated based on py-GC-MS (B) in RES (black), CEL (grey), WECEL_{pure} (blue) and WEL_{pure} (green) fractions of laccase/HBT treated MCS and controls. Solid and striped bars correspond to G and S units, respectively. Because of their low abundance, H-units are not included. Error bars in B represent the standard deviation of two treatment duplicates and two analytical duplicates. N.D. = Not determined.

Fig. S3 HSQC NMR based (A) and py-GC-MS based (B) estimation of intact interunit linkages in RES (black), CEL (grey), WECEL_{pure} (blue) and WEL_{pure} (green) fractions of laccase/HBT treated MCS and controls. In B, solid and striped bars refer to G and S units, respectively. Error bars in B represent the standard deviation of two treatment duplicates and two analytical duplicates. N.D. = Not determined.

Fig. S4 Molecular weight distributions of WS CEL (A) CS CEL (B) and CS WECEL_{pure} fractions as determined by using SEC-MALS_(IR). pH 4 control = dark blue; pH 4 - 50U = light blue; pH 6 control = black; pH 6 - 50U = dark grey; pH 6 - 125U = light grey.

Table S6 Summarized RP-UHPLC-MS data of WECEL_{pure} samples of laccase/HBT treated samples (LMS) and controls. Several compounds were tentatively annotated as lignin-HBT adducts, based on their molecular formula (shown in bold). These structures were absent in control incubations and in the control containing only laccase and HBT.

Rt	Molecular	Ionization	Observed/	mass	Tentative annotation	Detected in
(min)	formula		calculated mass	error		
				(ppm)		
3.84	$C_6H_5N_3O$	$[M+H]^{+}$	135.04333/135.04326	0.53	1-Hydroxybenzotriazole	LMS
6.41	$C_6H_5N_3$	$[M+H]^+$	119.04841/119.04835	0.55	Benzotriazole	LMS
8.33	$C_9H_8O_3$	[M-H] ⁻	164.04751/164.04735	1.03	<i>p</i> -coumaric acid	Control & LMS
9.25	$C_{13}H_{11}N_3O_4$	$[M+H]^{+}$	273.07496/273.07496	0.03	Lignin-HBT adduct	LMS
9.38	$C_{19}H_{19}N_3O_7$	$[M+H]^+$	401.12263/401.12230	0.83	Lignin-HBT adduct	LMS
9.76	$C_{10}H_{10}O_4$	[M-H] ⁻	194.05801/194.05791	0.54	Ferulic acid	Control & LMS
11.00	$C_{20}H_{22}O_8$	[M+Na] ⁺	390.13175/390.13147	0.68	Unknown	Control & LMS
11.32	$C_{14}H_{13}N_3O_4$	$[M+H]^{+}$	287.09065/287.09061	0.17	Lignin-HBT adduct	LMS
13.78	$C_{20}H_{20}O_8$	[M+Na] ⁺	388.11610/388.11582	0.68	Unknown	Control & LMS
13.92	$C_{21}H_{22}O_9$	[M+Na] ⁺	418.12650/418.12639	0.26	Unknown	Control & LMS
14.01	$C_{19}H_{19}N_3O_6$	$[M+H]^{+}$	385.12752/385.12739	0.36	Lignin-HBT adduct	LMS
15.31	$C_{13}H_{11}N_3O_3$	$[M+H]^{+}$	257.08018/257.08004	0.55	Lignin-HBT adduct	LMS
15.86	$C_{19}H_{18}O_{6}$	$[M+H]^{+}$	342.11043/342.11034	0.28	Unknown	Control & LMS
17.01	$C_{20}H_{18}O_{10}$	$[M+H]^{+}$	418.09022/418.09000	0.54	Unknown	Control & LMS
18.54	$C_{17}H_{14}O_{7}$	$[M+H]^{+}$	330.07399/330.07396	0.12	Tricin	Control & LMS
21.62	$C_{22}H_{22}O_{6}$	[M+Na] ⁺	382.14158/382.14164	-0.15	Unknown	LMS

Fig. S5 Overlay of aromatic (A) and aliphatic (B) regions of the HSQC spectra obtained from the WEL_{pure} fraction of laccase/HBT treated MWS (pH 4), the Rovabio Advance enzyme cocktail, and an incubation with only laccase and HBT. Colors and annotations of the WEL_{pure} fraction are as displayed in Fig 5. Correlations from the Rovabio enzyme cocktail are shown in red and correlations from laccase+HBT are shown in navy.

Fig. S6 NMR spectra used for the annotation of ether cleavage structures D (yellow) and E (purple): diagnostic HSQC and HMBC correlations in WEL_{pure} fraction of laccase/HBT treated MWS (pH 6, 125 U) between α , β and γ positions of E (A), and overlapping HSQC signals of D and E with purified 1-(3,4-dimethoxyphenyl)-3-hydroxypropan-1-one (green) and 1-(3,4-dimethoxyphenyl)-2,3-dihydroxypropan-1-one (blue), respectively. Due to low intensity, diagnostic HMBC correlations of structure D are not visible in (A).

Fig. S7 HMBC spectrum of WEL_{pure} fraction of laccase/HBT treated MWS at pH 4. The spectrum is identical to the spectrum in Fig. 6C, but zoomed in $(3\times)$. The spectrum shows that a large variety of phenylketones are present, mainly corresponding to S-units. The black peak most likely corresponds to an aldehyde.

	Wheat straw			Corn stover		
	pH 4	рН 6		pH 4	рН 6	
Laccase (U g ⁻¹)	50	50	125	50	50	125
Lignin subunits (%)						
Н	0	0	0	0	0	0
G	14	15	11	14	14	12
G _{ox}	41	40	43	36	41	42
S	16	15	14	29	17	17
S _{ox}	30	30	32	21	29	28
S/G	0.84	0.83	0.86	1.02	0.83	0.84
Hydroxycinnamates ^a						
pCA	0	0	0	0	0	0
FA	0	0	0	0	0	0
Flavonoids ^a						
Tricin	8	1	2	6	1	1
Interunit linkages ^{a,b}						
β- <i>O</i> -4' (A)	7.5 (49)	7.0 (63)	5.1 (37)	12.1 (84)	8.6 (84)	3.7 (46)
β- <i>O</i> -4' _{ox} (A'/A")	7.9 (51)	4.1 (37)	8.6 (63)	2.4 (16)	1.6 (16)	4.4 (56)
β-5' (B)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
β-β' (C)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Total (100%)	15.4	11.1	13.7	14.5	10.2	8.0
Cleavage products ^a						
DHPV/DHPS (D)	5.1	2.2	3.6	1.6	1.1	1.4
HPV/HPS (E)	14.6	18.7	24.7	14.5	13.6	22.5

Table S7 Structural features of lignin in WEL_{pure} fractions after laccase/HBT and control treatments as measured by HSQC NMR.

^a Amount of substructures per 100 aromatic subunits ($S+S_{ox}+G+G_{ox}+H$). ^b numbers between brackets refer to relative abundances of linkages.

Table S8 lignin content and relative abundances of structural features in MWS/MCS as determined by quantitative py-GC-MS.

	MWS	MCS
Lignin % (w/w) ^a	18.3 ± 0.2	22.7 ± 0.1
Lignin subunits (%) ^b		
Н	3.6 ± 0.1	10.3 ± 0.2
G	56.4 ± 0.4	51.7 ± 0.6
S	40.0 ± 0.5	37.9 ± 0.4
S/G	0.7 ± 0.0	0.7 ± 0.0
Structural features (%) ^b		
Unsubstituted	10.1 ± 0.7	18.0 ± 0.2
Methyl	5.5 ± 0.4	10.2 ± 0.7
Cα-O	6.3 ± 0.3	11.2 ± 0.2
Cα-O, G	3.4 ± 0.2	6.5 ± 0.1
Cα-O, S	2.8 ± 0.1	3.3 ± 0.1
Diketones	0.8 ± 0.0	0.7 ± 0.0
Vinyl ketones	0.2 ± 0.0	0.2 ± 0.0
Cβ-O ^c	1.8 ± 0.0	2.1 ± 0.0
Сγ-Ο	64.2 ± 0.4	38.3 ± 1.5
Misc	6.1 ± 0.4	11.2 ± 0.9
Vinyl	6.0 ± 0.2	8.9 ± 0.3
$PhC\gamma^d$	71.1 ± 0.0	50.5 ± 0.7
PhCy-corrected ^e	70.0 ± 0.0	49.5 ± 0.7
PhCγ-corrected, G	42.4 ± 0.0	31.2 ± 0.7
PhC _γ -corrected, S	27.5 ± 0.0	18.1 ± 0.1

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b 4-vinylphenol and 4-vinylguaicol not included in processing. ^e Excluding diketones. ^d phenols with intact 3-carbon (α , β , γ) side chain. ^e phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	рН 4		рН 6			
Laccase (U g ⁻¹)	0	50	0	50	125	
Lignin % (w/w) ^a	18.6±0.8	9.4±0.8	18.0±0.5	$10.8 {\pm} 0.8$	10.3±0.6	
Lignin (mg) ^a	270.5±11.5	$134.1{\pm}11.1$	261.2 ± 7.1	$152.9{\pm}11.6$	145.4 ± 8.6	
Lignin recovery vs MWS (%) ^a	98.2±4.3	$48.8 {\pm} 4.1$	94.8±2.7	55.6±4.2	52.9 ± 3.2	
Lignin subunits (%) ^b						
Н	3.5 ± 0.1	7.6 ± 0.2	3.9 ± 0.1	7.2 ± 0.1	7.4 ± 0.1	
G	55.8 ± 0.3	44.4 ± 0.5	56.7 ± 0.3	48.3 ± 0.6	48.4 ± 0.3	
S	40.7 ± 0.4	48.0 ± 0.4	39.4 ± 0.3	44.5 ± 0.5	44.2 ± 0.2	
S/G	0.7 ± 0.0	1.1 ± 0.0	0.7 ± 0.0	0.9 ± 0.0	0.9 ± 0.0	
Structural moieties (%) ^b						
Unsubstituted	11.0 ± 0.9	20.8 ± 1.1	10.6 ± 0.2	17.6 ± 0.5	18.3 ± 0.4	
Methyl	5.2 ± 0.5	6.9 ± 0.3	5.5 ± 0.1	8.0 ± 0.1	8.3 ± 0.1	
Ca-O	5.7 ± 0.2	16.8 ± 1.1	6.0 ± 0.1	12.4 ± 0.3	12.9 ± 0.5	
Cα-O, G	2.9 ± 0.2	8.0 ± 0.5	3.2 ± 0.0	6.0 ± 0.2	6.3 ± 0.2	
Cα-O, S	2.6 ± 0.0	8.5 ± 0.6	2.6 ± 0.0	6.1 ± 0.1	6.3 ± 0.3	
Diketones	0.5 ± 0.0	4.5 ± 0.5	0.5 ± 0.0	2.1 ± 0.1	2.3 ± 0.2	
Diketones, G	0.2 ± 0.0	2.2 ± 0.2	0.2 ± 0.0	0.9 ± 0.0	1.1 ± 0.1	
Diketones, S	0.3 ± 0.0	2.4 ± 0.3	0.2 ± 0.0	1.2 ± 0.1	1.3 ± 0.1	
Vinyl ketones	0.2 ± 0.0	0.7 ± 0.0	0.2 ± 0.0	0.4 ± 0.0	0.5 ± 0.0	
Vinyl ketones, G	0.2 ± 0.0	0.6 ± 0.0	0.2 ± 0.0	0.4 ± 0.0	0.4 ± 0.0	
Vinyl ketones, S	0.0 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	
$C\beta$ -O ^c	1.8 ± 0.1	2.6 ± 0.1	1.8 ± 0.0	2.6 ± 0.0	2.6 ± 0.1	
Сү-О	64.7 ± 0.7	40.3 ± 1.6	64.9 ± 0.4	45.3 ± 0.3	43.7 ± 0.6	
Miscellaneous	5.8 ± 0.5	5.8 ± 0.4	5.7 ± 0.2	7.3 ± 0.2	7.6 ± 0.3	
Vinyl	5.8 ± 0.1	6.8 ± 0.1	5.5 ± 0.1	6.8 ± 0.1	6.7 ± 0.1	
$PhC\gamma^d$	72.0 ± 0.6	53.1 ± 1.3	71.9 ± 0.3	56.3 ± 0.5	55.2 ± 0.6	
PhCy-corrected ^e	71.3 ± 0.6	47.9 ± 1.8	71.3 ± 0.3	53.7 ± 0.5	52.4 ± 0.7	
PhCy-corrected, G	43.0 ± 0.5	22.6 ± 1.3	43.8 ± 0.2	29.1 ± 0.7	28.4 ± 0.6	
PhCy-corrected, S	28.2 ± 0.3	25.1 ± 0.5	27.4 ± 0.3	24.4 ± 0.3	23.9 ± 0.2	

Table S9 Lignin content, recovery and relative abundances of structural features in WS-RES as determined by quantitative py-GC-MS.

^a4-vinylphenol and 4-vinylguaiacol included in processing. ^b4-vinylphenol and 4-vinylguaiacol not included in processing. ^c excluding diketones. ^d phenols with intact 3-carbon (α , β , γ) side chain. ^e phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	р	H 4		рН 6	
Laccase (U g ⁻¹)	0	50	0	50	125
Lignin % (w/w) ^a	24.8±1.0	14.8±0.7	24.4±0.6	15.9±1.0	13.8±1.3
Lignin (mg) ^a	348.6±13.7	207.9±9.4	340.6±8.4	222.2±13.9	$192.2{\pm}17.9$
Lignin recovery vs MCS (%) ^a	102.3±4.1	60.9 ± 2.8	99.9±2.6	65.2±4.1	56.3±5.3
Lignin subunits (%) ^b					
Н	9.2 ± 0.4	16.2 ± 0.8	10.3 ± 0.1	16.9 ± 0.4	17.4 ± 0.3
G	52.7 ± 0.3	37.5 ± 1.5	51.7 ± 0.1	40.9 ± 0.1	39.8 ± 1.0
S	38.1 ± 0.2	46.4 ± 0.8	38.0 ± 0.1	42.3 ± 0.4	42.7 ± 0.7
S/G	0.7 ± 0.0	1.2 ± 0.1	0.7 ± 0.0	1.0 ± 0.0	1.1 ± 0.0
Structural moieties (%) ^b					
Unsubstituted	17.2 ± 0.3	25.9 ± 0.8	18.2 ± 0.4	25.7 ± 0.3	26.5 ± 1.1
Methyl	7.0 ± 0.4	8.7 ± 0.1	7.3 ± 0.2	10.2 ± 0.2	10.8 ± 0.1
Са-О	10.2 ± 0.1	15.4 ± 0.5	10.0 ± 0.2	12.8 ± 0.3	13.6 ± 0.1
Сα-О, G	5.8 ± 0.0	6.3 ± 0.1	5.9 ± 0.1	6.1 ± 0.2	6.3 ± 0.1
Cα-O, S	3.1 ± 0.1	7.4 ± 0.4	2.7 ± 0.1	5.2 ± 0.1	5.8 ± 0.2
Diketones	0.7 ± 0.0	3.0 ± 0.3	0.5 ± 0.0	1.5 ± 0.0	1.8 ± 0.1
Diketones, G	0.2 ± 0.0	0.8 ± 0.1	0.2 ± 0.0	0.4 ± 0.0	0.5 ± 0.0
Diketones, S	0.5 ± 0.0	2.2 ± 0.2	0.4 ± 0.0	1.1 ± 0.0	1.3 ± 0.0
Vinyl ketones	0.2 ± 0.0	0.4 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.3 ± 0.0
Vinyl ketones, G	0.1 ± 0.0	0.3 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.2 ± 0.0
Vinyl ketones, S	0.1 ± 0.0				
$C\beta$ -O ^c	2.1 ± 0.0	2.6 ± 0.0	1.7 ± 0.0	2.3 ± 0.0	2.3 ± 0.1
Сү-О	47.6 ± 0.9	31.1 ± 1.3	48.1 ± 0.2	32.7 ± 0.6	30.3 ± 1.3
Miscellaneous	8.4 ± 0.3	8.1 ± 0.1	7.3 ± 0.2	8.3 ± 0.4	8.6 ± 0.1
Vinyl	7.4 ± 0.1	8.2 ± 0.1	7.4 ± 0.1	8.1 ± 0.1	7.9 ± 0.2
$PhC\gamma^d$	57.6 ± 0.7	43.9 ± 1.0	56.3 ± 0.1	43.2 ± 0.4	41.4 ± 1.2
PhC _y -corrected ^e	56.7 ± 0.7	40.5 ± 1.4	55.6 ± 0.1	41.4 ± 0.4	39.3 ± 1.3
PhCy-corrected, G	35.2 ± 0.5	18.3 ± 1.4	33.7 ± 0.1	21.0 ± 0.2	19.3 ± 1.1
PhCy-corrected, S	21.3 ± 0.2	21.9 ± 0.1	21.8 ± 0.1	20.2 ± 0.4	19.8 ± 0.2

Table S10 Lignin content, recovery and relative abundances of structural features in CS-RES as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b 4-vinylphenol and 4-vinylguaiacol not included in processing. ^c excluding diketones. ^d phenols with intact 3-carbon (α , β , γ) side chain. ^e phenols with intact 3-carbon (α , β , γ) side chain. ^e phenols with intact 3-carbon (α , β , γ) side chain minus diketones.

	рН 4			рН б			
Laccase (U g ⁻¹)	0	50	0	50	125		
Lignin % (w/w) ^a	39.4 ± 5.1	23.0 ± 1.6	48.4 ± 4.0	28.7 ± 1.1	26.6 ± 0.9		
Lignin (mg) ^a	81.9 ± 12.0	26.2 ± 1.9	103.0 ± 8.7	38.9 ± 1.5	33.7 ± 3.7		
Lignin recovery vs MWS (%) ^{a,b}	66.5 ± 9.8	21.0 ± 1.5	83.2 ± 7.1	30.9 ± 1.2	26.7 ± 2.9		
vs WS-RES (%) ^{a,b}	67.7 ± 10.3	43.0 ± 4.7	87.7 ± 7.8	55.6 ± 4.7	50.4 ± 6.2		
Lignin subunits (%) ^c							
Н	3.1 ± 0.4	4.6 ± 0.3	3.0 ± 0.2	3.8 ± 0.1	3.8 ± 0.1		
G	54.7 ± 0.2	48.7 ± 0.6	54.3 ± 0.4	50.5 ± 0.5	50.7 ± 0.5		
S	42.2 ± 0.3	46.6 ± 0.4	42.8 ± 0.3	45.7 ± 0.5	45.5 ± 0.3		
S/G	0.8 ± 0.0	1.0 ± 0.0	0.8 ± 0.0	0.9 ± 0.0	0.9 ± 0.0		
Structural moieties (%) ^c							
Unsubstituted	8.5 ± 0.2	12.9 ± 0.8	8.9 ± 0.6	10.7 ± 0.6	10.7 ± 0.3		
Methyl	5.3 ± 0.5	5.6 ± 0.2	5.0 ± 0.4	5.4 ± 0.2	5.4 ± 0.2		
Са-О	5.5 ± 0.2	10.4 ± 0.1	5.4 ± 0.1	7.4 ± 0.1	7.3 ± 0.1		
Cα-O, G	2.6 ± 0.1	4.9 ± 0.1	2.5 ± 0.1	3.4 ± 0.1	3.4 ± 0.1		
Cα-O, S	2.7 ± 0.1	5.2 ± 0.1	2.7 ± 0.1	3.8 ± 0.0	3.8 ± 0.0		
Diketones	0.5 ± 0.0	2.1 ± 0.0	0.5 ± 0.0	1.1 ± 0.0	1.1 ± 0.0		
Diketones, G	0.2 ± 0.0	1.0 ± 0.0	0.2 ± 0.0	0.5 ± 0.0	0.5 ± 0.0		
Diketones, S	0.3 ± 0.0	1.1 ± 0.0	0.3 ± 0.0	0.6 ± 0.0	0.6 ± 0.0		
Vinyl ketones	0.3 ± 0.0	0.5 ± 0.0	0.2 ± 0.0	0.3 ± 0.0	0.3 ± 0.0		
Vinyl ketones, G	0.2 ± 0.0	0.4 ± 0.0	0.2 ± 0.0	0.3 ± 0.0	0.3 ± 0.0		
Vinyl ketones, S	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0		
$C\beta$ -O ^d	1.6 ± 0.0	2.1 ± 0.1	1.6 ± 0.0	1.8 ± 0.1	1.8 ± 0.0		
Су-О	67.4 ± 1.6	56.8 ± 1.4	67.4 ± 1.9	62.2 ± 0.5	62.4 ± 0.5		
Miscellaneous	6.5 ± 0.6	5.8 ± 0.3	6.4 ± 0.6	6.1 ± 0.2	6.0 ± 0.2		
Vinyl	5.2 ± 0.1	6.5 ± 0.3	5.4 ± 0.3	6.3 ± 0.2	6.3 ± 0.2		
PhCy ^e	75.1 ± 1.0	66.6 ± 1.1	75.1 ± 1.4	70.7 ± 0.5	70.9 ± 0.4		
PhCy-corrected ^f	74.4 ± 1.0	64.0 ± 1.1	74.4 ± 1.4	69.3 ± 0.5	69.4 ± 0.3		
PhCy-corrected, G	43.7 ± 0.5	33.8 ± 0.8	43.3 ± 0.9	38.0 ± 0.6	38.2 ± 0.5		
PhCy-corrected, S	30.5 ± 0.6	30.0 ± 0.4	31.0 ± 0.7	31.2 ± 0.3	31.1 ± 0.4		

Table S11 Lignin content, recovery and relative abundances of structural features in WS-CEL as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b note that CEL was prepared from ~650 mg of RES. ^c 4-vinylphenol and 4-vinylguaiacol not included in processing. ^d excluding diketones. ^e phenols with intact 3-carbon (α , β , γ) side chain. ^f phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	рН 4		рН б			
Laccase (U g ⁻¹)	0	50	0	50	125	
Lignin % (w/w) ^a	49.5 ± 1.9	32.6 ± 1.9	51.6 ± 4.4	32.9 ± 4.1	31.1 ± 2.0	
Lignin (mg) ^a	75.9 ± 3.2	36.9 ± 3.0	80.7 ± 7.4	48.1 ± 6.1	42.4 ± 2.9	
Lignin recovery vs MCS (%) ^{a,b}	56.8 ± 2.4	27.6 ± 2.2	60.0 ± 5.5	35.8 ± 4.5	31.4 ± 2.1	
vs CS-RES ^{a,b}	55.5 ± 3.2	45.4 ± 4.2	60.1 ± 5.7	54.9 ± 7.7	55.8 ± 6.4	
Lignin subunits (%) ^c						
Н	8.9 ± 0.2	12.3 ± 0.4	9.1 ± 0.3	11.5 ± 0.1	11.5 ± 0.3	
G	50.6 ± 0.2	41.7 ± 0.7	50.6 ± 0.3	44.4 ± 1.0	44.4 ± 0.6	
S	40.4 ± 0.0	46.0 ± 0.8	40.3 ± 0.1	44.1 ± 0.9	44.1 ± 0.4	
S/G	0.8 ± 0.0	1.1 ± 0.0	0.8 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	
Structural moieties (%) ^c						
Unsubstituted	14.5 ± 0.4	20.2 ± 0.4	14.4 ± 0.6	18.8 ± 0.1	18.9 ± 0.5	
Methyl	7.3 ± 0.1	8.1 ± 0.2	7.3 ± 0.3	7.8 ± 0.1	8.0 ± 0.2	
Са-О	9.4 ± 0.0	13.5 ± 0.2	9.5 ± 0.1	11.7 ± 0.6	11.7 ± 0.3	
Cα-O, G	4.7 ± 0.0	5.6 ± 0.1	4.8 ± 0.0	5.2 ± 0.1	5.3 ± 0.1	
Cα-O, S	3.4 ± 0.0	6.4 ± 0.1	3.3 ± 0.1	5.2 ± 0.5	5.1 ± 0.2	
Diketones	0.7 ± 0.0	2.3 ± 0.1	0.7 ± 0.0	1.5 ± 0.2	1.5 ± 0.1	
Diketones, G	0.2 ± 0.0	0.5 ± 0.1	0.2 ± 0.0	0.3 ± 0.0	0.3 ± 0.0	
Diketones, S	0.5 ± 0.0	1.7 ± 0.1	0.5 ± 0.0	1.1 ± 0.2	1.1 ± 0.1	
Vinyl ketones	0.3 ± 0.0	0.4 ± 0.0	0.3 ± 0.0	0.3 ± 0.0	0.3 ± 0.0	
Vinyl ketones, G	0.2 ± 0.0	0.3 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	
Vinyl ketones, S	0.1 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	
$C\beta$ - O^d	1.9 ± 0.0	2.4 ± 0.0	1.9 ± 0.0	2.3 ± 0.0	2.3 ± 0.0	
Сү-О	49.8 ± 0.7	39.0 ± 0.6	49.9 ± 1.3	42.8 ± 0.3	42.4 ± 1.1	
Miscellaneous	9.0 ± 0.1	8.0 ± 0.1	8.8 ± 0.2	7.9 ± 0.3	8.0 ± 0.1	
Vinyl	8.0 ± 0.1	8.8 ± 0.1	8.2 ± 0.2	8.7 ± 0.3	8.7 ± 0.1	
PhCy ^e	60.3 ± 0.6	51.0 ± 0.5	60.3 ± 1.2	53.6 ± 0.3	53.3 ± 1.0	
PhC _y -corrected ^f	59.4 ± 0.6	48.3 ± 0.6	59.4 ± 1.2	51.8 ± 0.3	51.5 ± 1.1	
PhCy-corrected, G	36.3 ± 0.4	25.1 ± 0.7	36.3 ± 0.7	28.4 ± 0.8	28.1 ± 0.8	
PhCy-corrected, S	22.9 ± 0.3	23.0 ± 0.2	22.9 ± 0.5	23.2 ± 0.6	23.1 ± 0.4	

Table S12 Lignin content, recovery and relative abundances of structural features in CS-CEL as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b note that CEL was prepared from ~550 mg of RES. ^c 4-vinylphenol and 4-vinylguaiacol not included in processing. ^d excluding diketones. ^e phenols with intact 3-carbon (α , β , γ) side chain. ^f phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	рН 4		рН 6			
Laccase (U g ⁻¹)	0	50	0	50	125	
Lignin % (w/w) ^a	6.6 ± 0.7	6.5 ± 0.5	7.3 ± 0.2	7.0 ± 0.4	6.5 ± 0.3	
Lignin (mg) ^a	41.6 ± 4.7	46.4 ± 3.8	46.2 ± 1.8	48.8 ± 2.9	45.8 ± 2.9	
Lignin recovery vs MWS (%) ^{a,b}	33.8 ± 3.8	37.2 ± 3.1	37.3 ± 1.5	38.8 ± 2.4	36.2 ± 2.3	
vs WS-RES ^{a,b}	34.4 ± 4.2	76.2 ± 8.9	39.4 ± 1.9	69.7 ± 6.7	68.5 ± 5.9	
Lignin subunits (%) ^c						
Н	9.1 ± 0.0	9.8 ± 0.4	8.7 ± 0.0	9.1 ± 0.3	9.3 ± 0.4	
G	58.6 ± 0.0	48.6 ± 0.5	58.5 ± 0.5	50.6 ± 0.2	50.8 ± 0.8	
S	32.3 ± 0.1	41.6 ± 0.6	32.8 ± 0.5	40.3 ± 0.4	39.9 ± 1.1	
S/G	0.6 ± 0.0	0.9 ± 0.0	0.6 ± 0.0	0.8 ± 0.0	0.8 ± 0.0	
Structural moieties (%) ^c						
Unsubstituted	16.3 ± 0.2	24.2 ± 0.9	15.1 ± 0.2	21.3 ± 0.3	22.7 ± 1.3	
Methyl	7.9 ± 0.1	8.8 ± 0.1	7.9 ± 0.1	9.0 ± 0.3	9.3 ± 0.3	
Са-О	6.8 ± 0.2	20.4 ± 0.1	6.5 ± 0.0	15.1 ± 0.2	16.1 ± 0.4	
Cα-O, G	4.1 ± 0.2	10.5 ± 0.2	3.8 ± 0.0	7.6 ± 0.1	8.4 ± 0.3	
Cα-O, S	2.5 ± 0.1	9.5 ± 0.1	2.4 ± 0.0	7.1 ± 0.1	7.5 ± 0.1	
Diketones	0.5 ± 0.1	4.1 ± 0.1	0.4 ± 0.0	2.2 ± 0.1	2.7 ± 0.1	
Diketones, G	0.3 ± 0.1	2.0 ± 0.1	0.2 ± 0.0	1.1 ± 0.0	1.4 ± 0.1	
Diketones, S	0.3 ± 0.1	2.2 ± 0.0	0.2 ± 0.0	1.1 ± 0.1	1.4 ± 0.0	
Vinyl ketones	0.2 ± 0.0	1.0 ± 0.1	0.2 ± 0.0	0.6 ± 0.0	0.6 ± 0.0	
Vinyl ketones, G	0.2 ± 0.0	0.8 ± 0.1	0.2 ± 0.0	0.5 ± 0.0	0.6 ± 0.0	
Vinyl ketones, S	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	
$C\beta$ -O ^d	1.4 ± 0.0	2.5 ± 0.0	1.4 ± 0.0	2.4 ± 0.0	2.4 ± 0.1	
Сү-О	58.6 ± 0.4	34.3 ± 0.8	60.1 ± 0.2	41.3 ± 0.6	38.8 ± 2.0	
Miscellaneous	5.4 ± 0.0	5.8 ± 0.0	5.3 ± 0.0	6.5 ± 0.2	6.6 ± 0.2	
Vinyl	3.6 ± 0.0	4.1 ± 0.2	3.7 ± 0.1	4.4 ± 0.1	4.1 ± 0.1	
PhCy ^e	64.6 ± 0.3	46.6 ± 0.8	66.0 ± 0.2	51.6 ± 0.6	49.8 ± 1.9	
PhCy-corrected ^f	63.8 ± 0.4	41.5 ± 0.9	65.4 ± 0.2	48.8 ± 0.5	46.4 ± 1.9	
PhC _γ -corrected, G	41.9 ± 0.2	21.6 ± 0.4	42.7 ± 0.3	27.7 ± 0.4	26.2 ± 0.5	
PhCy-corrected, S	21.9 ± 0.2	19.8 ± 0.7	22.5 ± 0.5	21.0 ± 0.3	20.1 ± 1.6	

Table S13 Lignin content, recovery and relative abundances of structural features in WS-WECEL as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b note that WECEL was prepared from ~650 mg of RES. ^c 4-vinylphenol and 4-vinylguaiacol not included in processing. ^d excluding diketones. ^e phenols with intact 3-carbon (α , β , γ) side chain. ^f phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	рН 4		рН 6			
Laccase (U g ⁻¹)	0	50	0	50	125	
Lignin % (w/w) ^a	10.6 ± 0.3	6.4 ± 0.4	9.7 ± 0.6	6.5 ± 0.6	5.3 ± 0.3	
Lignin (mg) ^a	58.6 ± 2.7	36.8 ± 2.1	55.6 ± 4.3	36.2 ± 3.4	35.2 ± 3.9	
Lignin recovery vs MCS (%) ^{a,b}	43.8 ± 2.0	27.6 ± 1.6	41.8 ± 3.3	27.1 ± 2.5	26.2 ± 2.9	
vs CS-RES ^{a,b}	42.9 ± 2.6	45.3 ± 3.3	41.4 ± 3.4	41.4 ± 4.7	46.3 ± 6.7	
Lignin subunits (%) ^c						
Н	16.3 ± 1.8	24.3 ± 1.0	21.1 ± 3.8	23.9 ± 1.5	25.1 ± 5.4	
G	57.4 ± 0.4	39.0 ± 0.2	54.9 ± 2.4	42.0 ± 0.4	37.8 ± 2.5	
S	26.3 ± 1.4	36.7 ± 0.8	24.1 ± 1.4	34.2 ± 1.9	37.1 ± 2.9	
S/G	0.5 ± 0.0	0.9 ± 0.0	0.4 ± 0.0	0.8 ± 0.1	1.0 ± 0.0	
Structural moieties (%) ^c						
Unsubstituted	22.5 ± 2.9	35.5 ± 0.0	24.3 ± 3.0	30.3 ± 4.2	26.7 ± 4.0	
Methyl	11.6 ± 1.0	12.4 ± 0.5	12.5 ± 1.3	13.8 ± 0.4	11.7 ± 0.0	
Са-О	11.5 ± 0.0	18.9 ± 0.5	11.1 ± 0.5	16.3 ± 0.1	16.6 ± 1.2	
Сα-О, G	7.6 ± 0.0	8.4 ± 0.2	7.5 ± 0.3	7.8 ± 0.1	7.4 ± 0.5	
Cα-O, S	2.5 ± 0.1	8.0 ± 0.2	2.4 ± 0.1	6.4 ± 0.2	7.4 ± 0.5	
Diketones	0.6 ± 0.0	3.0 ± 0.1	0.6 ± 0.0	2.0 ± 0.0	2.2 ± 0.2	
Diketones, G	0.2 ± 0.0	1.1 ± 0.1	0.2 ± 0.0	0.5 ± 0.1	0.7 ± 0.1	
Diketones, S	0.6 ± 0.0	1.9 ± 0.0	0.3 ± 0.0	1.4 ± 0.1	1.6 ± 0.1	
Vinyl ketones	0.2 ± 0.0	0.5 ± 0.0	0.2 ± 0.0	0.4 ± 0.0	0.5 ± 0.0	
Vinyl ketones, G	0.1 ± 0.0	0.4 ± 0.0	0.2 ± 0.0	0.3 ± 0.0	0.4 ± 0.0	
Vinyl ketones, S	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	
$C\beta$ -O ^d	1.2 ± 0.0	2.0 ± 0.2	1.2 ± 0.1	1.8 ± 0.0	1.9 ± 0.2	
Сү-О	43.1 ± 3.6	20.2 ± 0.2	37.2 ± 1.0	27.1 ± 5.0	28.6 ± 0.1	
Miscellaneous	6.4 ± 0.0	6.9 ± 0.1	10.1 ± 4.4	6.9 ± 0.4	10.4 ± 5.8	
Vinyl	3.7 ± 0.3	4.0 ± 0.2	3.5 ± 0.4	3.8 ± 0.1	4.1 ± 0.5	
PhCy ^e	49.3 ± 3.9	30.7 ± 0.1	43.4 ± 0.5	36.0 ± 5.0	37.7 ± 0.6	
PhC _γ -corrected ^f	48.6 ± 3.9	27.2 ± 0.0	42.6 ± 0.5	33.7 ± 4.9	34.9 ± 0.4	
PhCy-corrected, G	33.7 ± 2.3	13.7 ± 0.1	30.1 ± 0.4	18.7 ± 1.8	17.3 ± 0.2	
PhCy-corrected, S	14.7 ± 1.5	13.3 ± 0.1	12.4 ± 0.1	14.8 ± 3.1	17.5 ± 0.2	

Table S14 Lignin content, recovery and relative abundances of structural features in CS-WECEL as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b note that WECEL was prepared from ~550 mg of RES. ^c 4-vinylphenol and 4-vinylguaiacol not included in processing. ^d excluding diketones. ^e phenols with intact 3-carbon (α , β , γ) side chain. ^f phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	рН 4		рН 6			
Laccase (U g ⁻¹)	0	50	0	50	125	
Lignin % (w/w) ^{a,b}	111.6 ± 3.8	50.4 ± 0.4	$113.1^{g} \pm 6.2$	59.7 ± 1.3	55.0 ± 1.6	
Lignin (mg) ^{a,b}	30.5 ± 1.0	47.1 ± 0.4	46.6 ± 2.5	41.5 ± 0.9	35.9 ± 1.1	
Lignin recovery vs MWS (%) ^{a,b,c}	24.8 ± 0.9	37.8 ± 0.5	37.6 ± 2.1	33.0 ± 0.8	28.4 ± 0.9	
vs WS-WECEL ^{a,b,c}	84.2 ± 9.9	$123.0^g \pm 10.1$	$115.1^{g} \pm 7.7$	$109.5^{\text{g}}\pm7.0$	95.9 ± 6.6	
Lignin subunits (%) ^d						
Н	2.1 ± 0.0	4.6 ± 0.1	2.6 ± 0.2	3.2 ± 0.1	3.6 ± 0.1	
G	57.4 ± 0.3	43.8 ± 0.1	58.6 ± 0.5	46.6 ± 0.2	46.3 ± 0.4	
S	40.5 ± 0.3	51.6 ± 0.0	38.7 ± 0.3	50.2 ± 0.1	50.1 ± 0.5	
S/G	0.7 ± 0.0	1.2 ± 0.0	0.7 ± 0.0	1.1 ± 0.0	1.1 ± 0.0	
Structural moieties (%) ^d						
Unsubstituted	7.4 ± 0.1	19.0 ± 1.3	7.8 ± 0.1	12.6 ± 0.7	12.6 ± 0.3	
Methyl	3.3 ± 0.0	5.0 ± 0.4	3.5 ± 0.2	4.5 ± 0.1	5.2 ± 0.7	
Cα-O	5.8 ± 0.1	20.4 ± 0.2	5.9 ± 0.2	15.6 ± 0.2	18.4 ± 0.2	
Са-О, G	3.3 ± 0.0	8.9 ± 0.0	3.5 ± 0.2	7.1 ± 0.1	8.4 ± 0.1	
Cα-O, S	2.4 ± 0.1	11.0 ± 0.2	2.2 ± 0.1	8.1 ± 0.1	9.7 ± 0.2	
Diketones	0.4 ± 0.0	3.9 ± 0.1	0.4 ± 0.0	2.4 ± 0.1	3.1 ± 0.1	
Diketones, G	0.2 ± 0.0	1.8 ± 0.1	0.2 ± 0.0	1.1 ± 0.0	1.3 ± 0.0	
Diketones, S	0.2 ± 0.0	2.2 ± 0.1	0.2 ± 0.0	1.3 ± 0.1	1.7 ± 0.0	
Vinyl ketones	0.2 ± 0.0	0.9 ± 0.0	0.2 ± 0.0	0.6 ± 0.0	0.7 ± 0.1	
Vinyl ketones, G	0.1 ± 0.0	0.8 ± 0.1	0.1 ± 0.0	0.5 ± 0.0	0.6 ± 0.0	
Vinyl ketones, S	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	
С <i>β</i> -О ^е	1.4 ± 0.0	2.1 ± 0.0	1.4 ± 0.0	1.9 ± 0.0	2.1 ± 0.1	
Cγ-O	75.0 ± 0.2	42.0 ± 2.3	73.9 ± 0.2	54.9 ± 1.3	51.1 ± 0.6	
Miscellaneous	3.8 ± 0.0	5.3 ± 0.3	4.2 ± 0.2	5.0 ± 0.2	5.1 ± 0.2	
Vinyl	3.3 ± 0.0	6.1 ± 0.1	3.2 ± 0.0	5.4 ± 0.2	5.5 ± 0.1	
$ m PhC\gamma^{f}$	79.6 ± 0.1	54.2 ± 1.8	78.7 ± 0.2	63.8 ± 1.1	61.0 ± 0.2	
PhCy-corrected ^g	79.1 ± 0.1	49.4 ± 1.9	78.1 ± 0.2	60.8 ± 1.1	57.2 ± 0.4	
PhCy-corrected, G	46.6 ± 0.1	21.9 ± 1.1	47.1 ± 0.2	29.6 ± 0.6	27.5 ± 0.1	
PhCy-corrected, S	32.4 ± 0.2	27.4 ± 0.8	30.9 ± 0.3	31.1 ± 0.5	29.6 ± 0.3	

Table S15 Lignin content, recovery and relative abundances of structural features in WS-WECEL_{pure} as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b these numbers are expected to be an overestimation due to the high abundance of free ferulic acid (released upon XLA treatment), which is known to be pyrolzed with high efficiency.^{15 c} note that WECEL_{pure} was prepared from 550-600 mg WECEL ^d 4-vinylphenol and 4-vinylguaiacol not included in processing. ^e excluding diketones. ^e phenols with intact 3-carbon (α , β , γ) side chain. ^f phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	рН 4		рН 6			
Laccase (U g ⁻¹)	0	50	0	50	125	
Lignin % (w/w) ^{a,b}	118.1 ± 8.8	56.4 ± 1.1	121.0 ± 6.1	59.4 ± 3.5	62.4 ± 0.6	
Lignin (mg) ^{a,b}	68.6 ± 5.1	21.3 ± 0.4	63.5 ± 3.2	22.9 ± 1.4	26.1 ± 0.3	
Lignin recovery vs MCS (%) ^{a,b,c}	51.4 ± 3.9	15.9 ± 0.3	47.7 ± 2.4	17.1 ± 1.0	19.4 ± 0.2	
vs CS-WECEL ^{a,b,c}	137.9 ± 12.1	71.9 ± 4.3	137.7 ± 12.7	76.7 ± 8.5	92.0 ± 10.3	
Lignin subunits (%) ^d						
Н	5.5 ± 0.1	10.6 ± 0.4	5.5 ± 0.3	10.1 ± 0.2	9.7 ± 0.3	
G	59.1 ± 0.5	39.2 ± 0.0	59.0 ± 0.2	44.7 ± 0.3	42.5 ± 0.5	
S	35.5 ± 0.6	50.2 ± 0.4	35.5 ± 0.1	45.2 ± 0.4	47.8 ± 0.2	
S/G	0.6 ± 0.0	1.3 ± 0.0	0.6 ± 0.0	1.0 ± 0.0	1.1 ± 0.0	
Structural moieties (%) ^d						
Unsubstituted	12.6 ± 0.2	16.9 ± 0.5	12.7 ± 0.2	19.5 ± 0.4	17.0 ± 0.9	
Methyl	5.8 ± 0.2	6.1 ± 0.1	5.5 ± 0.5	8.0 ± 0.5	6.4 ± 0.3	
Ca-O	11.7 ± 0.2	21.8 ± 0.3	10.6 ± 0.4	18.1 ± 0.4	20.0 ± 0.5	
Сα-О, G	7.2 ± 0.2	8.6 ± 0.1	6.4 ± 0.4	7.9 ± 0.1	8.5 ± 0.1	
Сα-О, S	3.6 ± 0.0	10.2 ± 0.2	3.3 ± 0.0	8.4 ± 0.2	9.2 ± 0.3	
Diketones	0.8 ± 0.0	2.8 ± 0.1	0.7 ± 0.0	2.2 ± 0.1	2.5 ± 0.1	
Diketones, G	0.3 ± 0.0	0.7 ± 0.1	0.2 ± 0.0	0.6 ± 0.0	0.6 ± 0.0	
Diketones, S	0.5 ± 0.0	2.1 ± 0.0	0.5 ± 0.0	1.6 ± 0.0	1.8 ± 0.1	
Vinyl ketones	0.2 ± 0.0	0.6 ± 0.0	0.2 ± 0.0	0.5 ± 0.0	0.5 ± 0.0	
Vinyl ketones, G	0.2 ± 0.0	0.5 ± 0.0	0.2 ± 0.0	0.4 ± 0.0	0.4 ± 0.0	
Vinyl ketones, S	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	
$C\beta$ -O ^e	1.8 ± 0.0	2.1 ± 0.0	1.8 ± 0.0	2.5 ± 0.0	2.3 ± 0.1	
Cγ-O	57.9 ± 0.5	41.2 ± 1.1	58.8 ± 0.9	38.0 ± 1.0	42.3 ± 2.2	
Miscellaneous	5.7 ± 0.0	6.2 ± 0.3	5.8 ± 0.2	7.5 ± 0.1	6.3 ± 0.3	
Vinyl	4.4 ± 0.1	5.8 ± 0.1	4.8 ± 0.1	6.4 ± 0.1	5.8 ± 0.2	
$PhC\gamma^{f}$	64.7 ± 0.5	51.6 ± 1.0	65.6 ± 0.7	48.7 ± 0.9	52.3 ± 1.8	
PhC _γ -corrected ^g	63.7 ± 0.5	48.2 ± 1.0	64.7 ± 0.7	46.0 ± 0.9	49.3 ± 2.0	
PhCy-corrected, G	40.5 ± 0.2	20.3 ± 0.3	41.8 ± 0.8	23.1 ± 0.5	22.8 ± 1.2	
PhCy-corrected, S	23.0 ± 0.5	27.6 ± 0.7	22.8 ± 0.1	22.6 ± 0.4	26.3 ± 0.7	

Table S16 Lignin content, recovery and relative abundances of structural features in CS-WECEL_{pure} as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b these numbers are expected to be an overestimation due to the high abundance of free ferulic acid (released upon XLA treatment), which is known to be pyrolzed with high efficiency.^{15 c} note that WECEL_{pure} was prepared from 450-550 mg WECEL ^d 4-vinylphenol and 4-vinylguaiacol not included in processing. ^e excluding diketones. ^e phenols with intact 3-carbon (α , β , γ) side chain. ^f phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	Wheat straw			Corn stover			
	pH 4	рН 6		pH 4	р	рН 6	
Laccase (U g ⁻¹)	50	50	125	50	50	125	
Lignin % (w/w) ^a	23.2 ± 1.9	6.6 ± 0.4	15.4 ± 0.6	20.9 ± 3.2	9.1 ± 0.3	12.7 ± 0.3	
Lignin (mg) ^{a,b}	6.9 ± 0.6	4.6 ± 0.3	5.7 ± 0.2	3.6 ± 0.6	2.6 ± 0.1	2.9 ± 0.1	
Lignin recovery vs MWS/MCS (%) ^{b,c,d}	5.0 ± 0.4	3.4 ± 0.2	4.2 ± 0.2	2.1 ± 0.3	1.5 ± 0.0	1.7 ± 0.0	
vs WS/CS-WEL (%) ^{b,c,d}	9.7 ± 1.8	7.6 ± 1.6	8.8 ± 1.3	5.4 ± 1.1	4.4 ± 1.0	4.0 ± 1.0	
Lignin subunits (%) ^d							
Н	5.4 ± 0.0	9.7 ± 0.2	5.4 ± 0.1	12.2 ± 0.0	15.6 ± 0.5	13.4 ± 1.5	
G	43.8 ± 0.3	40.5 ± 0.0	42.9 ± 0.3	33.9 ± 0.3	32.9 ± 0.0	31.7 ± 0.9	
S	50.8 ± 0.3	49.9 ± 0.2	51.7 ± 0.4	53.9 ± 0.3	51.5 ± 0.5	54.9 ± 0.9	
S/G	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.6 ± 0.0	1.6 ± 0.0	1.7 ± 0.0	
Structural moieties (%) ^d							
Unsubstituted	16.2 ± 1.9	21.9 ± 0.2	17.5 ± 0.5	18.5 ± 0.1	31.2 ± 1.3	22.9 ± 0.9	
Methyl	3.0 ± 0.1	3.4 ± 0.1	3.0 ± 0.1	4.3 ± 0.0	6.1 ± 0.2	4.7 ± 0.4	
Са-О	33.5 ± 1.1	37.1 ± 0.0	34.4 ± 0.5	32.2 ± 0.2	35.6 ± 0.6	36.5 ± 0.8	
Са-О, G	15.8 ± 0.4	15.8 ± 0.4	15.4 ± 0.3	13.6 ± 0.1	12.6 ± 0.3	12.6 ± 0.2	
Cα-O, S	17.2 ± 0.6	18.1 ± 0.2	18.4 ± 0.3	16.2 ± 0.2	20.9 ± 0.4	21.9 ± 0.7	
Diketones	8.3 ± 0.6	7.3 ± 0.5	6.8 ± 0.2	5.2 ± 0.2	7.2 ± 0.5	7.1 ± 0.2	
Diketones, G	3.6 ± 0.3	3.5 ± 0.1	2.8 ± 0.2	1.5 ± 0.2	2.2 ± 0.2	2.2 ± 0.2	
Diketones, S	4.7 ± 0.3	3.9 ± 0.3	3.9 ± 0.1	3.7 ± 0.1	5.0 ± 0.2	5.0 ± 0.2	
Vinyl ketones	2.6 ± 0.0	2.3 ± 0.4	2.6 ± 0.1	1.3 ± 0.0	1.7 ± 0.1	2.1 ± 0.0	
Vinyl ketones, G	2.1 ± 0.0	1.8 ± 0.0	2.1 ± 0.0	1.0 ± 0.0	1.2 ± 0.0	1.5 ± 0.0	
Vinyl ketones, S	0.6 ± 0.0	0.4 ± 0.1	0.4 ± 0.0	0.4 ± 0.0	0.5 ± 0.0	0.6 ± 0.0	
$C\beta$ -O ^e	1.6 ± 0.0	2.0 ± 0.0	1.7 ± 0.0	1.8 ± 0.0	2.3 ± 0.0	2.1 ± 0.0	
Cγ-O	40.3 ± 1.2	30.5 ± 0.2	37.8 ± 0.8	34.9 ± 0.3	17.5 ± 0.8	25.9 ± 1.0	
Miscellaneous	2.2 ± 0.1	2.2 ± 0.0	2.4 ± 0.1	3.2 ± 0.0	3.2 ± 0.0	3.2 ± 0.0	
Vinyl	3.2 ± 0.1	2.8 ± 0.0	3.2 ± 0.1	5.2 ± 0.1	4.1 ± 0.1	4.7 ± 0.1	
$ m PhC\gamma^{f}$	55.0 ± 1.7	43.8 ± 0.1	51.2 ± 0.7	46.1 ± 0.5	31.4 ± 1.3	40.2 ± 0.9	
PhC _y -corrected ^g	44.1 ± 1.1	34.2 ± 0.2	41.9 ± 0.9	39.5 ± 0.2	22.5 ± 0.8	31.0 ± 1.1	
PhCy-corrected, G	20.2 ± 0.8	14.6 ± 0.4	19.2 ± 0.5	13.5 ± 0.3	8.1 ± 0.3	11.2 ± 0.9	
PhCγ-corrected, S	23.8 ± 0.4	19.5 ± 0.6	22.7 ± 0.4	25.9 ± 0.2	14.3 ± 0.5	19.8 ± 0.2	

Table S17 Lignin content, recovery and relative abundances of structural features in WS-WEL_{pure} and CS-WEL_{pure} as determined by quantitative py-GC-MS.

^a 4-vinylphenol and 4-vinylguaiacol included in processing. ^b note that WEL_{pure} was purified from ~50% of the obtained WEL ^c the amount of lignin in WEL was calculated by subtracting the amount of lignin in PWS/PCS with that in WS/CS-RES. ^d 4-vinylphenol and 4-vinylguaiacol not included in processing. ^e excluding diketones. ^f phenols with intact 3-carbon (α , β , γ) side chain. ^g phenols with intact 3-carbon (α , β , γ) side chain minus diketones and vinylketones.

	рН 4				
Laccase (U g ⁻¹)	0	50	0	50	125
Wheat straw					
RES	8.7 ± 0.8	8.9 ± 0.9	8.1 ± 0.9	8.2 ± 0.9	8.1 ± 0.7
CEL	8.7 ± 0.8	10.6 ± 1.1	9.4 ± 1.1	10.0 ± 1.1	10.1 ± 0.9
WECEL _{pure}	6.5 ± 0.5	8.5 ± 0.7	7.6 ± 0.6	9.4 ± 0.8	9.8 ± 0.8
WEL _{pure}	-	1.0 ± 0.1	-	1.0 ± 0.1	1.2 ± 0.1
Corn stover					
RES	30.6 ± 2.7	39.3 ± 3.5	31.7 ± 3.4	36.9 ± 2.9	35.4 ± 3.0
CEL	38.5 ± 3.4	44.1 ± 3.8	40.0 ± 3.3	41.3 ± 3.9	41.0 ± 3.8
WECEL _{pure}	16.8 ± 1.4	38.6 ± 3.1	18.4 ± 1.5	35.9 ± 3.0	31.5 ± 2.5
WEL _{pure}	-	8.7 ± 0.7	-	4.6 ± 0.4	5.0 ± 0.4

Table S18 ¹³C-IS py-GC-MS relative abundance of 4-vinylphenol in fractions of laccase/HBT treated MWS and MCS and controls.

References

- R. J. Hilgers, J.-P. Vincken, H. Gruppen and M. A. Kabel, ACS Sustainable Chemistry & Engineering, 2018, 6, 2037-2046.
- 2. G. Van Erven, R. De Visser, D. W. Merkx, W. Strolenberg, P. De Gijsel, H. Gruppen and M. A. Kabel, *Analytical Chemistry*, 2017, **89**, 10907-10916.
- 3. G. Van Erven, N. Nayan, A. S. Sonnenberg, W. H. Hendriks, J. W. Cone and M. A. Kabel, *Biotechnology for Biofuels*, 2018, **11**, 262.
- 4. J. Del Rio, F. Martin and F. Gonzalez-Vila, *TrAC Trends in Analytical Chemistry*, 1996, **15**, 70-79.
- 5. J. Del Rio, A. Gutiérrez, I. M. Rodríguez, D. Ibarra and A. T. Martinez, *Journal of Analytical and Applied Pyrolysis*, 2007, **79**, 39-46.
- 6. S. D. Mansfield, H. Kim, F. Lu and J. Ralph, *Nature Protocols*, 2012, **7**, 1579.
- 7. H. Guo, D. M. Miles-Barrett, A. R. Neal, T. Zhang, C. Li and N. J. Westwood, *Chemical Science*, 2018, **9**, 702-711.
- 8. J. C. Del Río, J. Rencoret, P. Prinsen, A. T. Martínez, J. Ralph and A. Gutiérrez, *Journal of Agricultural and Food Chemistry*, 2012, **60**, 5922-5935.
- 9. J. Del Rio, A. G. Lino, J. L. Colodette, C. F. Lima, A. Gutiérrez, Á. T. Martínez, F. Lu, J. Ralph and J. Rencoret, *Biomass and Bioenergy*, 2015, **81**, 322-338.
- 10. J. Zeng, G. L. Helms, X. Gao and S. Chen, *Journal of Agricultural and Food Chemistry*, 2013, **61**, 10848-10857.
- 11. G. Van Erven, R. J. Hilgers, P. De Waard, E.-J. Gladbeek, W. J. Van Berkel and M. A. Kabel, ACS Sustainable Chemistry & Engineering, 2019, **7**, 1657-1664.
- 12. H. Kim, D. Padmakshan, Y. Li, J. Rencoret, R. D. Hatfield and J. Ralph, *Biomacromolecules*, 2017, **18**, 4184-4195.
- 13. H. Kawamoto, *Journal of Wood Science*, 2017, **63**, 117-132.
- 14. H. Kawamoto, S. Horigoshi and S. Saka, *Journal of Wood Science*, 2007, **53**, 168-174.
- 15. J. Ralph and R. D. Hatfield, Journal of Agricultural and Food Chemistry, 1991, **39**, 1426-1437.