

Endocrine activities of phthalate alternatives; assessing the safety profile of furan dicarboxylic acid esters using a panel of human cell based reporter gene assays

Barbara M. A. van Vugt-Lussenburg,^{*a} Daan S. van Es,^{*b} Matthijs Naderman,^a Jerome le Notre,^b Frits van der Klis,^b Abraham Brouwer,^{a,c} and Bart van der Burg^b

^a BioDetection Systems bv, Science Park 406, 1098XH Amsterdam.

^b Wageningen Food and Biobased Research (WFBR), Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands.

^c VU University, Department of Animal Ecology, Amsterdam, the Netherlands.

Electronic Supporting Information

Selection of Chemicals

The chemicals selected for this study are shown in ESI table 1. The selection was based on several criteria, such as:

Expected toxicological effects (e.g. for known endocrine disrupting substances (EDC) like bisphenols and certain ortho-phthalate esters); Isomerism, in order to investigate the effect of positional isomers; Synthetic accessibility (can the substance be synthesised in required purity with acceptable effort); Commercial availability; where possible commercial materials were used.

ESI Table 1: all substances selected for the current study

CAS no	Name	Abbreviation	Reason for inclusion
620-92-8	Bisphenol F	BPF	Assay selection: known EDC
80-05-7	Bisphenol A	BPA	Assay selection: known EDC
140-66-9	4-tert-octylphenol	4-t-OP	Assay selection: known EDC
104-40-5	4-Nonylphenol	4-NP	Assay selection: known EDC
4376-18-5	Monomethyl phthalate	MMP	Reference: Potential DMP metabolite
131-70-4	Monobutyl phthalate	MBP	Reference: Potential BBP metabolite
2528-16-7	Monobenzyl phthalate	MBzP	Reference: Potential BBP metabolite
4376-20-9	Mono(2-ethylhexyl) phthalate	MEHP	Reference: known EDC; DEHP metabolite
131-11-3	Dimethyl phthalate	DMP	Reference. Was used as solvent Comparison set diMe esters
1459-93-4	Dimethyl isophthalate	DMIP	Reference Monomer/feedstock for polyesters (PETI), resins and plasticisers Comparison set diMe esters
120-61-6	Dimethyl terephthalate	DMT	Reference: Monomer/feedstock for polyesters like PET and for TA plasticisers (occupational exposure) Comparison set diMe esters
84-66-2	Diethyl phthalate	DEP	Reference; short chain phthalate diester Comparison set diEt esters
636-53-3	Diethyl isophthalate	DEIP	Reference; short chain phthalate diester Comparison set diEt esters
636-09-9	Diethyl terephthalate	DET	Reference; short chain phthalate diester Comparison set diEt esters
84-74-2	Di(n-butyl) phthalate	DBP	Reference phthalate: short chain phthalates are known for tox effects/ endocrine disruptors
84-69-5	Diisobutyl phthalate	DIBP	Reference phthalate: short chain phthalates are known for tox effects/ endocrine disruptors Comparison set di-iBut esters
85-68-7	Butylbenzyl phthalate	BBP	Reference phthalate: short chain phthalates are known for tox effects/ endocrine disruptors

84-61-7	Dicyclohexyl phthalate	DCP	Reference phthalate: short chain phthalates are known for tox effects/ endocrine disruptors
84-75-3	Di(n-hexyl) phthalate	DHP	Reference phthalate: short chain phthalates are known for tox effects/ endocrine disruptors
117-84-0	Di(n-octyl) phthalate	DOP	Reference phthalate: isomer of DEHP; shows effects of linear alcohols
117-81-7	Di(2-ethylhexyl) phthalate	DEHP	Reference phthalate: primary industrial benchmark. Comparison set diEtHex esters
137-89-3	Di(2-ethylhexyl) isophthalate	DEHIP	Reference phthalate: used to study isomer effects. Comparison set diEtHex esters
6422-86-2	Di(2-ethylhexyl) terephthalate	DEHT	Reference phthalate: commercialised as 'non-phthalate' plasticiser. Comparison set diEtHex esters
28553-12-0	Diisonyl phthalate	DINP	Reference phthalate: industrial benchmark; long chain derivative, alternative to DEHP
26761-40-0	Diisodecyl phthalate	DIDP	Reference phthalate: industrial benchmark; long chain derivative, alternative to DEHP. Comparison set di-iDec esters
4282-33-1	Dimethyl-3,4-Furandicarboxylic acid	DM-34FDCA	Test substance; for isomer comparison. Comparison set diMe esters
4282-32-0	Dimethyl-2,5-Furandicarboxylic acid	DM-25FDCA	Test substance; Monomer/feedstock for polyesters like PET and for FDCA plasticisers (occupational exposure). Comparison set diMe esters
1710-13-0	Dimethyl-2,4-Furandicarboxylic acid	DM-24FDCA	Test substance; for isomer comparison. Comparison set diMe esters
53662-83-2	Diethyl-2,5-furandicarboxylate	DEF	Test substance; potential monomer/feedstock for polyesters like PET and for FDCA plasticisers (occupational exposure). Comparison set diEt esters
-	Di(isobutyl)furan-2,5-dicarboxylate	DIBF	Test substance; solid substance; interesting for tox effect comparison to short chain phthalates of the butyl series. Comparison set di-iBut esters
158099-01-5	Di(2-ethylhexyl)furan-2,5-dicarboxylate	DEHF	Test substance; plasticising performance similarity to 2-EH phthalates; possible functional alternative to DEHP/DEHT. Comparison set diEtHex esters
-	Di(isodecyl)furan-2,5-dicarboxylate	DIDF	Test substance; possible functional alternative to DIDP. Comparison set di-iDec esters
88-99-3	Phthalic acid	PA	Reference. Fully hydrolysed diacid, expected intermediate hydrophilic metabolite; isomer effect; Monomer for resins. Comparison set free acids
121-91-5	Isophthalic acid	IPA	Reference. Fully hydrolysed diacid, expected intermediate hydrophilic metabolite; isomer effect Monomer/feedstock for polyesters (PETI), resins and plasticisers. Comparison set free acids
100-21-0	Terephthalic acid	TA	Reference. Fully hydrolysed diacid, expected intermediate hydrophilic metabolite (monoesters are also hydrolysis metabolites, yet more lipophilic) Monomer for PET and for TA plasticisers (occupational exposure). Comparison set free acids
3387-26-6	3,4-Furandicarboxylic acid	34FDCA	Test substance; Fully hydrolysed diacid, expected intermediate hydrophilic metabolite; isomer effect Comparison set free acids
3238-40-2	2,5-Furandicarboxylic acid	25FDCA	Test substance; Fully hydrolysed diacid, expected intermediate hydrophilic metabolite; main target substance Monomer/feedstock for polyesters like PEF and for FDCA plasticisers (occupational exposure). Comparison set free acids
4282-28-4	2,4-Furandicarboxylic acid	24FDCA	Test substance; Fully hydrolysed diacid, expected intermediate hydrophilic metabolite; isomer effect. Comparison set free acids

Synthesis of derivatives

All chemicals were used as received from commercial chemical suppliers (e.g. Sigma Aldrich, VWR, etc). 2,5-FDCA for diester synthesis, was a gift from Archer Daniels Midland (ADM). Exxal 10®, isodecanol isomeric mixture, was a gift from Exxon-Mobil.

GC-MS analysis was performed on an Interscience Trace GC Ultra GC with AS3000 II auto sampler (He carrier gas, flow 1mL/min, split flow 20 mL/min; Restek GC column Rxi-5ms 30 30 m x 0.25 mm x 0.25 μ m; GC program: hold 3 min at 50 °C, ramp 7.5 °C/min, final temperature 330 °C) connected to an Interscience Trace DSQ II XL quadrupole mass selective detector (EI, mass range 35-500 Dalton, 150 ms sample speed).

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III spectrometer operating at 400.17 MHz (1H) and 100.62 MHz (13C).

Differential Scanning Calorimetry (DSC) was performed on a Perkin Elmer Diamond series DSC. The temperature range used was -90 °C up to 20 °C at a heating rate of 10 °C/min after holding at -90 °C for 1 minute.

Melting points were measured using a Mettler Toledo MP80 Melting Point System.

Di(2-methylpropyl)furan-2,5-dicarboxylate (DIBF) synthesis **method 1**

In a 1 L round-bottom flask, under a positive pressure of nitrogen, and strong magnetic stirring, were introduced the substrate 2,5-FDCA (100.0 g, 0.64 mol), 2-methyl-1-propanol (236 mL, 2.56 mol) and methanesulfonic acid (MSA, 1.0 ml, 2.5 mol%). Additional 2-methyl-1-propanol (20 mL) was placed in the Dean-Stark trap and the white slurry was heated at 130 °C. After 24 h, 23 mL of water was collected in the Dean-Stark trap (theoretical 23 mL). After reaction, a clear slightly brown crude solution was obtained. During cooling down to room temperature a white solid crystallized in the flask. The solid was filtered over a Büchner funnel, washed with ethanol, and dried under vacuum to afford the product (109.7 g, 71% yield) as a white solid.

¹H NMR (400.2 MHz, RT, CDCl₃): δ = 7.18 (s, 2H), 4.10 (d, 4H, J = 6.7 Hz), 2.06 (nontuplet, 2H, J = 6.7 Hz), 0.98 (d, 12H, J = 6.7 Hz); ¹³C NMR (100.6 MHz, RT, CDCl₃): δ = 158.1, 146.9, 118.1, 71.3, 27.8, 19.0; MS (EI): m/z (%) = 268 ([M]⁺, <1), 213 (13), 196 (5), 195 (45), 158 (6), 156 (100), 140 (9), 139 (93), 95 (9), 94 (7), 66 (7), 57 (26), 56 (43), 41 (18), 39 (8). m.p.: 88-89 °C.

Di(2-ethylhexyl)furan-2,5-dicarboxylate (DEHF) synthesis **method 1**

In a 1 L round-bottom flask, under a positive pressure of nitrogen, and strong magnetic stirring, were introduced the substrate 2,5-FDCA (82.8 g, 0.53 mol), 2-ethylhexanol (250 mL, 1.59 mol) and methanesulfonic acid (MSA, 0.9, 2.5 mol%). Additional 2-ethylhexanol (20 mL) was placed in the Dean-Stark trap and the white slurry was heated at 160 °C. After 10 h, 19 mL of water was collected in the Dean-Stark trap (theoretical 19 mL). Excess 2-ethylhexanol was removed under reduced pressure (high vacuum and heating) to afford a light brown crude. The crude product was purified by flash

chromatography over silica gel (elution: ether/petroleum ether = 1/9, R_f = 0.5) giving the product (133.9 g, 66% yield) as a pale yellow oil.

^1H NMR (400.2 MHz, RT, CDCl_3): δ = 7.15 (s, 2H), 4.10 (ddd, 4H, J = 15.6, 9.7, 3.5 Hz), 1.68 (heptuplet, 2H, J = 6.1 Hz), 1.42-1.26 (m, 16H), 0.92-0.85 (m, 12H); ^{13}C NMR (100.6 MHz, RT, CDCl_3): δ = 158.1, 146.9, 118.0, 67.8, 38.8, 30.3, 28.8, 23.7, 22.8, 13.9, 10.9; MS (EI): m/z (%) = 380 ([M]⁺, <1), 269 (9), 251 (9), 157 (100), 140 (11), 139 (87), 113 (33), 112 (58), 95 (9), 94 (7), 84 (24), 83 (41), 82 (10), 71 (37), 70 (90), 69 (22), 57 (49), 56 (18), 55 (35), 43 (20), 41 (28).

Di(2-ethylhexyl)furan-2,5-dicarboxylate (DEHF) synthesis **method 2**

A 2L 3-neck round-bottom flask was placed in a heating mantle and equipped with a mechanical stirrer, a Dean-Stark trap with reflux condenser, a temperature controller and an N_2 -inlet. The flask was charged with 2,5-FDCA (189.4 g, 1.21 mol, ADM), 2-ethylhexanol (632 g, 4.85 mol, >99.6 %, Aldrich) and methanesulfonic acid (MSA, 2.91 g, 0.03 mol, anhydrous, Aldrich). The resulting white suspension was heated to 160 °C under stirring (500 rpm), while a stream of nitrogen was bubbled through the reaction mixture. At 130 °C, water formation started, as was observed in the Dean-Stark trap. After 9 h (including additional MSA addition), > 80% of the theoretical amount of water was obtained, and the reaction mixture was allowed to cool down to RT.

The resulting suspension was filtered over a type-3 glass filter, giving a slightly yellow clear solution, which was washed with sat. NaHCO_3 -solution (1 L) to remove MSA. The resulting hazy organic phase was washed twice with brine to give a clear organic phase. The organic layer was subsequently dried over MgSO_4 and filtered over a type-3 glass filter to give a clear, slightly yellow solution. Decoloration was achieved using activated carbon (20 g) for 1 h at RT. After filtration over Celite, a slightly yellow clear liquid product was obtained.

Next, excess 2-ethylhexanol was removed under reduced pressure (0.5 mbar, 140 °C) giving the product (343 g, 74% yield) as a yellow liquid.

NMR and GC-MS analyses same as for method 1.

Di(isodecyl)furan-2,5-dicarboxylate (DIDF) synthesis **method 1**.

In a 1 L round-bottom flask, under a positive pressure of nitrogen, and strong magnetic stirring, were introduced the substrate 2,5-FDCA (67.9 g, 0.44 mol), isodecanol (256 mL, 1.31 mol), *o*-xylene (200 mL) and methanesulfonic acid (MSA, 0.7, 2.5 mol%). Additional isodecanol (20 mL) was placed in the Dean-Stark trap and the white slurry was heated at 175 °C. After 12 h, 7 mL of water was collected in the Dean-Stark trap (theoretical 16 mL). The reaction mixture was subsequently cooled down to room temperature, and another 0.7 mL of MSA was added and heating was resumed at 185 °C for 6 h (the collected water volume reached 11.6 mL). Next, excess isodecanol was removed under reduced pressure (high vacuum and heating) to afford a light brown crude. The crude product was purified by flash chromatography over silica gel (elution: ether/petroleum ether = 1/9, R_f = 0.35) giving the product (124.1 g, 65% yield) as a pale yellow oil.

Since Exxal 10® is a complex mixture of C9, C10, C11 alcohols, the proton and carbon NMR spectra of the isolated product are too complicated to be described in detail. MS (EI): m/z (%) = 437 ([M]⁺, <1),

297 (14), 157 (41), 141 (59), 140 (46), 139 (52), 112 (65), 111 (39), 99 (22), 98 (31), 97 (50), 85 (77), 84 (53), 83 (81), 71 (86), 70 (69), 57 (96), 56 (31), 55 (92), 43 (66), 41 (43).

Di(2-ethylhexyl) phthalate (DEHP) synthesis **method 2**.

A 2 L 3-neck round-bottom flask was placed in a heating mantle and equipped with a mechanical stirrer, a Dean-Stark trap with reflux condenser, a temperature controller and an N₂-inlet. The flask was charged with phthalic acid (244 g, 1.47 mol, ACS reagent, >99.5%, Sigma Aldrich), 2-ethylhexanol (765.1 g, 5.87 mol, >99.6 %, Aldrich) and methanesulfonic acid (MSA, 3.53 g, 0.037 mol, anhydrous, Sigma Aldrich). The resulting white suspension was heated to 140 °C under stirring (300 rpm), while a stream of nitrogen gas was bubbled through the reaction mixture. At 120 °C water formation started, as was observed in the Dean-Stark trap, and at 140 °C the mixture started to reflux. After 20 min. at 140 °C, the reaction mixture turned from a white suspension into a clear light yellow solution. After 80 min., the temperature was increased to 150 °C. After 6 h, the theoretical amount of water (52.9 g) was obtained, and the reaction mixture was allowed to cool down to RT.

The resulting slightly yellow clear solution was washed with sat. NaHCO₃-solution (1 L) to remove MSA. The resulting hazy organic phase was washed twice with brine to give a clear organic phase. The organic layer was subsequently dried over MgSO₄ and filtered over a type-3 glass filter to give a clear, slightly yellow solution. Decoloration was achieved using activated carbon (25 g) for 1 h at RT. After filtration over Celite, a slightly yellow clear liquid product was obtained.

Next, excess 2-ethylhexanol was removed under reduced pressure (0.5 mbar, 140 °C) giving the product as a pale yellow (100 Hazen, Dr. Lange LICO 100 universal colorimeter) liquid.

NMR and GC-MS analyses confirmed DEHP, with over 98% purity.

2,4-FDCA and its dimethyl ester were prepared according to ref ¹.

ESI Table 2: All CALUX data; left the selected assays, right the non-selected non-responsive assays. Results are presented as lowest effect concentrations (LEC) in LogM. - = no activity observed; X = Not Assessed.

Entry Number	CAS	substance	p21	NFKB	TCF	Hif1 α	PAH	LXR	RAR	TR β	GR	PR	AR	ER α -anti	ER α -anti	
19	84-61-7	Dicyclohexyl phthalate	-4.5	-5.3	-	-5.4	-5.1	X	-	-	NA	X	-	-	-	-
20	85-68-7	Butylbenzyl phthalate	-3.9	-6.3	-5.6	-5.5	-	-	-	-4.5	-3.7	-	-	-	-	
21	117-81-7	Di(2-ethylhexyl) phthalate (synthesized)	-	-3.9	-	-	-	-	-	-	-	-	-	-	X	
22	117-81-7	Di(2-ethylhexyl) phthalate (commercial)	-	-4.0	-	-	-	-	-	-	-	-	-	-	X	
23	137-89-3	Di(2-ethylhexyl) isophthalate	-	-	-	-	-	-	-	-	-	-	-	-	X X X X X X X X X X X X X X	
24	6422-86-2	Di(2-ethylhexyl) terephthalate	-	-	-	-	-	-	-	-	-	-	-	-	X X X X X X X X X X X X X X	
25	117-84-0	Diocetyl phthalate	-	-	-	-	-	X	-	-	-	-	-	-	-	
26	28553-12-0	Diisononyl phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-	
27	26761-40-0	Diisodecyl phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-	

ESI Table 3. CALUX assay panel results for di-substituted phthalates (bold) versus furans, arranged by order of increasing chain length. Results are presented as lowest effect concentrations (LogM). - = no activity observed up to 1E-3M. N/A: not applicable; DIBF and DIDF have not been CAS-registered.

Entry Number	CAS	substance	Abbreviation	Cytotox	ER α	AR-anti	PR-anti	GR-anti	TR β -anti	PPAR α	PPAR γ	AhR	ESRE	AP1	Nrf2	p53 GENOTOX
28	131-11-3	Dimethyl phthalate	DMP	-	-	-4.7	-3.6	-	-	-	-	-	-	-	-	-
29	1459-93-4	Dimethyl isophthalate	DMIP	-	-3.3	-3.1	-	-	-	-	-	-	-	-	-	-
30	120-61-6	Dimethyl terephthalate	DMT	-	-	-	-	-	-	-	-	-	-	-	-	-
31	4282-33-1	Dimethyl-3,4-furandicarboxylate	DM-3,4-FDCA	-	-	-	-	-	-	-	-	-	-	-	-	-
32	4282-32-0	Dimethyl-2,5-furandicarboxylate	DM-2,5-FDCA	-	-	-	-	-	-	-	-	-	-	-	-	-
33	1710-13-0	Dimethyl-2,4-furandicarboxylate	DM-2,4-FDCA	-	-	-	-	-	-	-	-	-	-	-	-	-
34	84-66-2	Diethyl phthalate	DEP	-3.5	-4.0	-5.0	-4.3	-	-	-	-	-	-	-	-	-
35	636-53-3	Diethyl isophthalate	DEIP	-	-	-	-	-	-	-	-	-	-	-	-	-
36	636-09-9	Diethyl terephthalate	DET	-	-	-4.0	-	-	-	-	-	-	-	-	-	-
37	53662-83-2	Diethyl-2,5-furandicarboxylate	DEF	-	-	-	-	-	-	-	-	-	-	-	-	-
38	84-69-5	Diisobutyl phthalate	DIBP	-4.5	-5.3	-5.0	-5.0	-	-	-	-	-	-	-	-	-
39	N/A	Diisobutyl-2,5-furandicarboxylate	DIBF	-	-4.3	-	-	-	-	-	-	-	-	-	-	-
40	117-81-7	Di(2-ethylhexyl) phthalate	DEHP (synthesized)	-	-3.9	-	-	-	-	-	-	-	-	-	-	-
41	117-81-7	Di(2-ethylhexyl) phthalate	DEHP (commercial)	-	-4.0	-	-	-	-	-	-	-	-	-	-	-
42	137-89-3	Di(2-ethylhexyl) isophthalate	DEHIP	-	-	-	-	-	-	-	-	-	-	-	-	-
43	6422-86-2	Di(2-ethylhexyl) terephthalate	DEHT	-	-	-	-	-	-	-	-	-	-	-	-	-
44	158099-01-5	Di(2-ethylhexyl)-2,5-furandicarboxylate	DEHF (method 1)	-	-	-	-	-	-	-	-	-	-	-	-	-
45	158099-01-5	Di(2-ethylhexyl)-2,5-furandicarboxylate	DEHF (method 2)	-	-	-	-	-	-	-	-	-	-	-	-	-
46	26761-40-0	Diisodecyl phthalate	DIDP	-	-	-	-	-	-	-	-	-	-	-	-	-
47	N/A	Diisodecylfuran-2,5-dicarboxylate	DIDF	-	-	-	-	-	-	-	-	-	-	-	-	-
48	100-21-0	Terephthalic acid	TA	-	-	-	-	-	-	-	-	-	-	-	-	-
49	88-99-3	Phthalic acid	PA	-	-	-	-	-	-	-	-	-	-	-	-	-
50	121-91-5	Isophthalic acid	IPA	-	-	-	-	-	-	-	-	-	-	-	-	-
51	4282-28-4	2,4-Furandicarboxylic acid	2,4-FDCA	-	-	-	-	-	-	-	-	-	-	-	-	-
52	3238-40-2	2,5-Furandicarboxylic acid	2,5-FDCA	-	-	-	-	-	-	-	-	-	-	-	-	-
53	3387-26-6	3,4-Furandicarboxylic acid	3,4-FDCA	-	-	-	-	-	-	-	-	-	-	-	-	-

ESI table 4: overview of literature values for solubilities of ortho-phthalate esters at 20-22°C; bold substances are part of this study.

Phthalate		molecular weight	solubility (μgL^{-1})	Solubility (M)	logM
DMP	dimethyl	194.2	$4.2 \cdot 10^{6.2}$	$2.16 \cdot 10^{-2}$	-1.66
DEP	diethyl	222.2	$1.1 \cdot 10^{6.2}$ $9.4 \cdot 10^{5.3}$	$4.95 \cdot 10^{-3}$ $4.23 \cdot 10^{-3}$	-2.31 -2.37
DBP	Di(n-butyl)	278.4	$1.1 \cdot 10^{4.2}$ $1.5 \cdot 10^{4.3}$	$3.95 \cdot 10^{-5}$ $5.39 \cdot 10^{-5}$	-4.40 -4.27
DIBP	diisobutyl	278.4	$2.0 \cdot 10^{4.2}$	$7.18 \cdot 10^{-5}$	-4.14
BBP	butylbenzyl	312.4	$2.7 \cdot 10^{3.2}$	$8.64 \cdot 10^{-6}$	-5.06
DHP	Di(n-hexyl)	334.4	520 ³ 70 ⁴ 50 ^{2,5}	$1.56 \cdot 10^{-6}$ $2.09 \cdot 10^{-7}$ $1.50 \cdot 10^{-7}$	-5.81 -6.68 -6.83
DOP	Di(n-octyl)	390.6	0.5 ^{2,5} 0.4 ⁴	$1.28 \cdot 10^{-9}$ $1.02 \cdot 10^{-9}$	-8.89 -8.99
DEHP	di(2-ethylhexyl)	390.6	17 ³ 3 ² 1.9 ⁴	$4.35 \cdot 10^{-8}$ $7.68 \cdot 10^{-9}$ $4.86 \cdot 10^{-9}$	-7.36 -8.11 -8.31
DNP	Di(n-nonyl)	418.6	0.13 ⁴	$3.11 \cdot 10^{-10}$	-9.51
DINP	diisononyl	418.6	< 1 ² 0.61 ⁴	$1.46 \cdot 10^{-9}$	-8.84
DDP	Di(n-decyl)	446.6	0.2 ⁵ 0.05 ⁴	$4.48 \cdot 10^{-10}$ $1.12 \cdot 10^{-10}$	-9.35 -9.95
DIDP	diisodecyl	446.6	< 1 ² 0.17 ⁴	$9.81 \cdot 10^{-10}$	-9.42

Note that there is an inverse relationship between phthalate solubility and temperature; e.g. for DBP solubility drops from 14.6 mg/L at 25°C to 5.5 mg/L at 35°C; while cell assays are performed at an incubation temperature of 37°C³.

References

1. S. Thiagarajan, A. Pukin, J. van Haveren, M. Lutz and D. S. van Es, *RSC Advances*, 2013, **3**, 15678-15686.
2. C. A. Staples, D. R. Peterson, T. F. Parkerton and W. F. Adams, *Chemosphere*, 1997, **35**, 667-749.
3. M. Thomsen, L. Carlsen and S. Hvidt, *Environmental Toxicology and Chemistry*, 2001, **20**, 127-132.
4. D. J. Letinski, M. J. Connelly, D. R. Peterson and T. F. Parkerton, *Chemosphere*, 2002, **48**, 257-265.
5. J. J. Ellington, *J. Chem. Eng. Data*, 1999, **44**, 1414-1418.