Supplementary information for

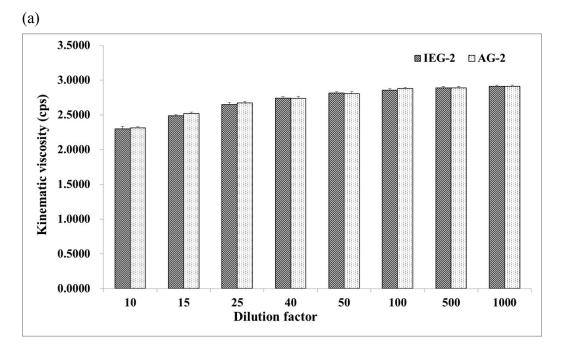
Total Sulfur Determination in Petroleum Fuels for Routine Quality Control by Sector Field Inductively Coupled Plasma Mass Spectrometry after Dilution Treatment

Chien-Wei-Lu^{a, b}, Huan-Yi Hung^b, Hsin-Chen Sung^c, Yiong-Shing Sheu^c, Wen-Lung

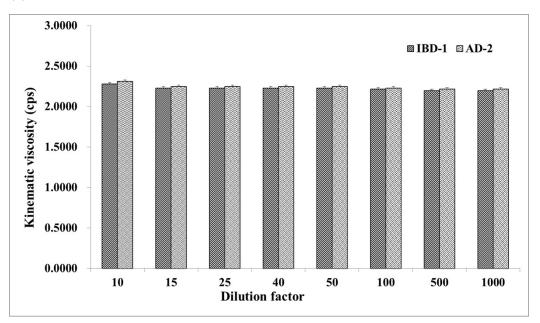
Lin^b, Shu-Pao Wu^a*

^a. Department of Applied Chemistry, National Chiao Tung University, Science

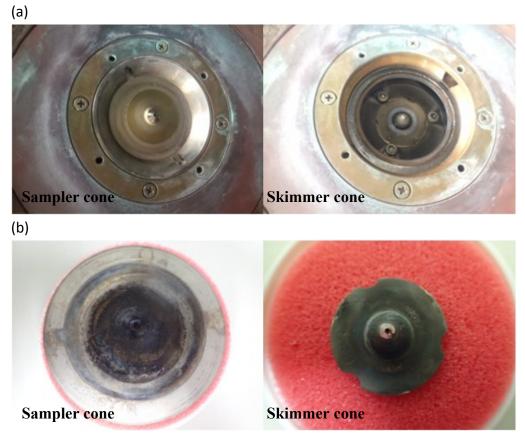
Building 2, 1001 Ta Hsueh Road, Hsinchu, Taiwan


^{b.}Industrial Technology Research Institute 195, Sec. 4, Chung Hsing Rd., Chutung,

Hsinchu, Taiwan


^c.Recycling Fund Management Board, Environmental Protection Administration, Executive Yuan, Taipei, Taiwan

Contents


- Figure S1 Kinematic viscosities of four petroleum fuel samples with different dilution factors, (a) gasoline samples (IEG-2, AG-2) and (b) diesel samples (IBD-1, AD-2). Error bars represent standard deviation for three tests
- 2. **Figure S2** The appearances of sampler cone and skimmer cone after introducing organic samples, (a) with adding oxygen and (b) without adding oxygen.
- Figure S3 The spectral interference of ³²S and ³⁴S with different flow rates of oxygen at medium resolution, (a) 0.150 L min⁻¹; (b) 0.280 L min⁻¹; (c) 0.300 L min⁻¹ and (d) 0.330 L min⁻¹.

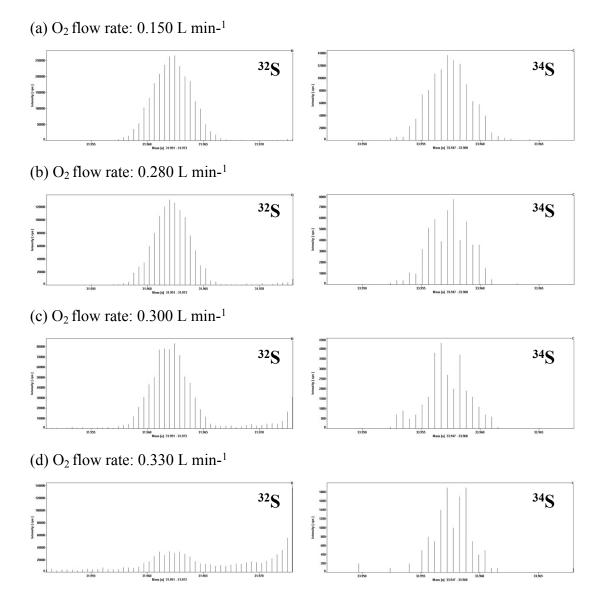

(b)

Figure S1 Kinematic viscosities of four petroleum fuel samples with different dilution factors, (a) gasoline samples (IEG-2, AG-2) and (b) diesel samples (IBD-1, AD-2). Error bars represent standard deviation for three tests.

Figure S2 The appearances of sampler cone and skimmer cone after introducing organic samples, (a) with adding oxygen and (b) without adding oxygen.

Figure S3 The spectral interference of 32 S and 34 S with different flow rates of oxygen at medium resolution, (a) 0.150 L min⁻¹; (b) 0.280 L min⁻¹; (c) 0.300 L min⁻¹ and (d) 0.330 L min⁻¹.