
HEART-CUT 2DSEC-RP-LC-ICP-MS AS A SCREENING TOOL IN METAL-BASED ANTICANCER RESEARCH

Luis Galvez^a • Mate Rusz^b • Michael A. Jakupec^b • Gunda Koellensperger^a

^aInstitute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria).

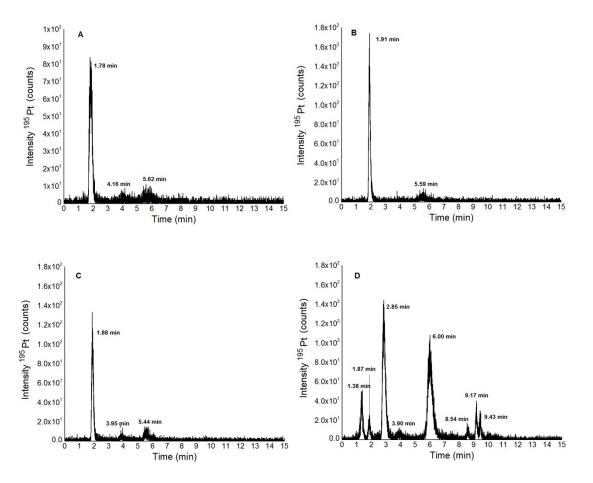

^bCell Culture Facility, Institute of Inorganic Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090 Vienna (Austria).

Figure S1 UHPLC SEC-ICP-MS separation of oxaliplatin 2 μ M in NaCl 15 mM at a flow rate of 250 μ L/min in isocratic mode with 20 mM CH₃COONH₄, pH = 7. A hydrolysis product was observed at 8.2 min. Oxaliplatin was observed at 9.1 min.

Agilent 1260 infinity Bio-inert			
Chromatographic conditions			
Eluent	A 50 mM HCOONH ₄ , pH = 4.0,		
	B 80% ACN 50 mM HCOONH4, pH = 5.0		
HILIC Column	Acquity UPLC BEH Amide (2.1 x 100 mm, 1.7		
	μm) 250 ul (min		
Flow Rate	250 μL/min		
Injection Volume	5 μL		
Autosampler Temperature	4°C		
Gradient Elution			
Time (min)	A (%)	B (%)	
0	0	100	
2	0	100	
8	50	50	
10	50	50	
10	0	100	
15	0	100	
ICP-MS Triple Quadrupole Agiler	nt 8800		
Nebulizer	MicroMist		
Spray chamber	Scott double-pass		
Nebulizer gas flow	1.05 L/min		
Plasma gas	15 L/min		
ICP RF Power	1550 W		
Carrier Ar gas	0.70 L/min		
Option O_2 gas	0.50 L/min		
		195	

Table S1 HILIC-ICP-MS operation parameters and chromatographic conditions for the stability study of oxaliplatin.

Figure S2 Chromatographic separations with the HILIC-ICP-MS method of (A) oxaliplatin 0.5 μ M in glucose 5% (w/v) (B) oxaliplatin 0.5 μ M in MeOH (80% methanol, 20% water, v/v) stored at - 80°C for 96h (C) oxaliplatin 0.5 μ M in ACN (50% ACN, 50% water, v/v) (D) 200 μ L oxaliplatin 0.5 μ M in MeOH (80% methanol, 20% water, v/v) evaporated in a speedvac and reconstituted in 50 μ L ACN (50% ACN, 50% water, v/v).