Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2019

5

Figure S1. Optimum the nebulizer gas flow rate (Q_g) for emission lines of different
E_{sum} operating (◆) 1.0% w w⁻¹ nitric acid and, (■) 0.5% w w⁻¹ calcium nitrate
solutions in MIP-OES.

11

13

Figure S2. Influence of E_{sum} on the relative signal intensity (I_{rel}) obtained in ICP-OES operating 1400 W rf power for different emission lines operating (**•**) 0.5% w w⁻¹ calcium nitrate; (**•**) 5% w w⁻¹ glycerol; and (**•**) 5% w w⁻¹ sulfuric acid solutions, in comparison to the corresponding 1.0% w w⁻¹ nitric acid. Q_g 0.6 L min⁻¹ Is ¹. I_{rel} values in-between dashed lines indicate no matrix effects.

21

22

Figure S3. Influence of the nebulizer gas flow rate (Q_g) on the net emission signal obtained in MIP-OES for (\Box) Sc I 391.182 nm; and, (\blacksquare) Zn 213.857 nm when operating a 5% w w⁻¹ glycerol (dashed lines) and 1.0% w w⁻¹ nitric acid (continuous lines) solutions.

