Supplementary Material

Fundamentals and new approaches to calibration in atomic spectrometry

George L. Donati and Renata S. Amais

Estimation of linear function coefficients by least-squares regression

Eqn (S1) represents the linear relationship between the instrument response for an individual measurement, y_i , and its respective analyte concentration, x_i .

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{S1}$$

where β_0 and β_1 , are the *y*-intercept and slope of the calibration curve, and ε_i represents the difference (also known as residual) between an individual experimental value, y_i , and the expected instrument response, \hat{y} , according to the linear regression equation.

In least-squares regression, one seeks to minimize the difference between each experimental point and its corresponding expected value. The residual can be positive or negative, *i.e.* the experimental value can be larger or smaller than the expected one. Therefore, it is more convenient to minimize the square of the residual, ε_i^2 . Hence, the "best" regression line will be the one for which the sum of the squares of the residuals, *S*, is closest to zero (*i.e.* $S = \sum \varepsilon_i^2 \rightarrow 0$).^{S1}

The values for β_0 and β_1 are unknown. Even more difficult to determine is ε_i , as it varies with each measurement.^{S1,S2} However, estimates of slope (*m*) and intercept (*b*) can be obtained following the deduction presented below.

$$\varepsilon_i = y_i - \beta_0 - \beta_1 x_i \tag{S2}$$

$$\sum_{i}^{n} \varepsilon_{i} = \sum_{i}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{i})$$
(S3)

$$S = \sum_{i}^{n} \varepsilon_{i}^{2} = \sum_{i}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}$$
(S4)

To minimize the differences between each (y_i, \hat{y}) pair, we need to minimize the sum of the squares of the residuals (*S*). If we take the partial derivative of eqn (S4) in function of β_0 and β_1 , and make it equal to zero, we can estimate the values of *b* (estimate of β_0) and *m* (estimate of β_1) that will lead to the lowest *S*. For estimating *b*:

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_{i}^{n} (y_i - n\beta_0 - \beta_1 x_i) = 0$$
(S5)

We can then replace β_0 and β_1 with *b* and *m*, and divide both sides of eqn (S5) by the total number of measurements, *n*.

$$\frac{\sum_{i}^{n} y_{i}}{n} - \frac{b}{n} - \frac{m \sum_{i}^{n} x_{i}}{n} = \frac{0}{n}$$
(S6)
Because $\frac{\sum_{i}^{n} y_{i}}{n} = \bar{y}$ and $\frac{\sum_{i}^{n} x_{i}}{n} = \bar{x}$, eqn (S6) becomes:
 $\bar{y} - b - m\bar{x} = 0$
 $b = \bar{y} - m\bar{x}$
(S7)

where \bar{x} and \bar{y} are the average values for analyte concentration and instrument response.

The same way, to estimate *m*:

$$\frac{\partial S}{\partial \beta_1} = -2 \sum_{i}^{n} x_i \left(y_i - \beta_0 - \beta_1 x_i \right) = 0$$
(S8)

$$\sum_{i}^{n} x_{i} y_{i} - b \sum_{i}^{n} x_{i} - m \sum_{i}^{n} x_{i}^{2} = 0$$
(S9)

Substituting eqn (S7) in eqn (S9):

$$\sum_{i}^{n} x_{i} y_{i} - (\bar{y} - m\bar{x}) \sum_{i}^{n} x_{i} - m \sum_{i}^{n} x_{i}^{2} = 0$$

$$\sum_{i}^{n} x_{i} y_{i} - \bar{y} \sum_{i}^{n} x_{i} + m\bar{x} \sum_{i}^{n} x_{i} - m \sum_{i}^{n} x_{i}^{2} = 0$$

$$\sum_{i}^{n} x_{i} y_{i} - \bar{y} \sum_{i}^{n} x_{i} - m \left(-\bar{x} \sum_{i}^{n} x_{i} + \sum_{i}^{n} x_{i}^{2} \right) = 0$$

$$\sum_{i}^{n} x_{i} y_{i} - \bar{y} \sum_{i}^{n} x_{i} = m \left(-\bar{x} \sum_{i}^{n} x_{i} + \sum_{i}^{n} x_{i}^{2} \right)$$
(S10)

Because $\sum_{i}^{n} x_i = n\bar{x}$, eqn (S10) becomes:

$$\sum_{i}^{n} x_{i} y_{i} - n \overline{x} \overline{y} = m \left(\sum_{i}^{n} x_{i}^{2} - n \overline{x} \overline{x} \right)$$
$$\sum_{i}^{n} x_{i} y_{i} - n \overline{x} \overline{y} = m \left(\sum_{i}^{n} x_{i}^{2} - n \overline{x}^{2} \right)$$
(S11)

Now, we just need to prove eqns (S12) and (S13), and use them to simplify eqn (S11).

$$\sum_{i}^{n} (x_{i} - \bar{x})^{2} = \sum_{i}^{n} x_{i}^{2} - n\bar{x}^{2}$$
(S12)

$$\sum_{i}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y}) = \sum_{i}^{n} x_{i} y_{i} - n \bar{x} \bar{y}$$
(S13)

Proof of eqn (S12)

$$\sum_{i}^{n} (x_{i} - \bar{x})^{2} = \sum_{i}^{n} x_{i}^{2} - 2\bar{x} \sum_{i}^{n} x_{i} + n\bar{x}^{2}$$
Remember that $\frac{\sum_{i}^{n} x_{i}}{n} = \bar{x}$, therefore:

$$\sum_{i}^{n} (x_{i} - \bar{x})^{2} = \sum_{i}^{n} x_{i}^{2} - 2\bar{x}n\bar{x} + n\bar{x}^{2} = \sum_{i}^{n} x_{i}^{2} - 2n\bar{x}^{2} + n\bar{x}^{2}$$

$$\sum_{i}^{n} (x_{i} - \bar{x})^{2} = \sum_{i}^{n} x_{i}^{2} - n\bar{x}^{2}$$

Proof of eqn (S13)

$$\sum_{i}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y}) = \sum_{i}^{n} x_{i} y_{i} - \bar{y} \sum_{i}^{n} x_{i} - \bar{x} \sum_{i}^{n} y_{i} + n\bar{x}\bar{y}$$
Again, $\frac{\sum_{i}^{n} x_{i}}{n} = \bar{x}$ and $\frac{\sum_{i}^{n} y_{i}}{n} = \bar{y}$, therefore:

$$\sum_{i}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y}) = \sum_{i}^{n} x_{i} y_{i} - \bar{y} n \bar{x} - n \bar{x} \bar{y} + n \bar{x} \bar{y}$$

$$\sum_{i}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y}) = \sum_{i}^{n} x_{i} y_{i} - n \bar{x} \bar{y}$$

Finally, from eqns (S11), (S12) and (S13):

$$m = \frac{\sum_{i}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\left(\sum_{i}^{n} x_{i}^{2} - n \bar{x}^{2}\right)}$$
$$m = \frac{\sum_{i}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i}^{n} (x_{i} - \bar{x})^{2}}$$
(S14)

References

S1. D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. De Jong, P. J. Lewi and J. Smeyers-Verbeke, *Handbook of Chemometrics and Qualimetrics: Part A*, Ch. 8, Straight Line Regression and Calibration, Elsevier, Amsterdam, 1997, pp. 171-230.

S2. N. R. Draper and H. Smith, *Applied Regression Analysis*, 2nd ed., John Wiley & Sons, New York, 1981, 709p.