Supplementary Material

Fundamentals and new approaches to calibration in atomic spectrometry

George L. Donati and Renata S. Amais

Estimation of linear function coefficients by least-squares regression

Eqn (S1) represents the linear relationship between the instrument response for an individual measurement, y_{i}, and its respective analyte concentration, x_{i}.

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \tag{S1}
\end{equation*}
$$

where β_{0} and β_{1}, are the y-intercept and slope of the calibration curve, and ε_{i} represents the difference (also known as residual) between an individual experimental value, y_{i}, and the expected instrument response, \hat{y}, according to the linear regression equation.

In least-squares regression, one seeks to minimize the difference between each experimental point and its corresponding expected value. The residual can be positive or negative, i.e. the experimental value can be larger or smaller than the expected one. Therefore, it is more convenient to minimize the square of the residual, $\varepsilon_{i}{ }^{2}$. Hence, the "best" regression line will be the one for which the sum of the squares of the residuals, S, is closest to zero $\left(i . e . S=\sum \varepsilon_{i}{ }^{2} \rightarrow 0\right) .{ }^{\mathrm{S} 1}$

The values for β_{0} and β_{1} are unknown. Even more difficult to determine is ε_{i}, as it varies with each measurement. ${ }^{\mathrm{S} 1, \mathrm{~S} 2}$ However, estimates of slope (m) and intercept (b) can be obtained following the deduction presented below.

$$
\begin{equation*}
\varepsilon_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i} \tag{S2}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{i}^{n} \varepsilon_{i}=\sum_{i}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \tag{S3}\\
& S=\sum_{i}^{n} \varepsilon_{i}^{2}=\sum_{i}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} \tag{S4}
\end{align*}
$$

To minimize the differences between each $\left(y_{i}, \hat{y}\right)$ pair, we need to minimize the sum of the squares of the residuals (S). If we take the partial derivative of eqn (S4) in function of β_{0} and β_{l}, and make it equal to zero, we can estimate the values of b (estimate of β_{0}) and m (estimate of β_{1}) that will lead to the lowest S. For estimating b :

$$
\begin{equation*}
\frac{\partial S}{\partial \beta_{0}}=-2 \sum_{i}^{n}\left(y_{i}-n \beta_{0}-\beta_{1} x_{i}\right)=0 \tag{S5}
\end{equation*}
$$

We can then replace β_{0} and β_{1} with b and m, and divide both sides of eqn (S5) by the total number of measurements, n.

$$
\begin{gather*}
\frac{\sum_{i}^{n} y_{i}}{n}-\frac{b}{n}-\frac{m \sum_{i}^{n} x_{i}}{n}=\frac{0}{n} \tag{S6}\\
\sum_{i}^{\sum_{i}^{n} y_{i}}=\bar{y} \text { and } \frac{\sum_{i}^{n} x_{i}}{n}=\bar{x} \\
\text {, eqn (S6) becomes: } \\
\bar{y}-b-m \bar{x}=0 \tag{S7}\\
b=\bar{y}-m \bar{x}
\end{gather*}
$$

where \bar{x} and \bar{y} are the average values for analyte concentration and instrument response.

The same way, to estimate m :

$$
\begin{align*}
& \frac{\partial S}{\partial \beta_{1}}=-2 \sum_{i}^{n} x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0 \tag{S8}\\
& \sum_{i}^{n} x_{i} y_{i}-b \sum_{i}^{n} x_{i}-m \sum_{i}^{n} x_{i}^{2}=0 \tag{S9}
\end{align*}
$$

Substituting eqn (S7) in eqn (S9):

$$
\begin{align*}
& \sum_{i}^{n} x_{i} y_{i}-(y-m \bar{x}) \sum_{i}^{n} x_{i}-m \sum_{i}^{n} x_{i}^{2}=0 \\
& \sum_{i}^{n} x_{i} y_{i}-\bar{y} \sum_{i}^{n} x_{i}+m \bar{x} \sum_{i}^{n} x_{i}-m \sum_{i}^{n} x_{i}^{2}=0 \\
& \sum_{i}^{n} x_{i} y_{i}-\bar{y} \sum_{i}^{n} x_{i}-m\left(-\bar{x} \sum_{i}^{n} x_{i}+\sum_{i}^{n} x_{i}^{2}\right)=0 \\
& \sum_{i}^{n} x_{i} y_{i}-\bar{y} \sum_{i}^{n} x_{i}=m\left(-\bar{x} \sum_{i}^{n} x_{i}+\sum_{i}^{n} x_{i}^{2}\right) \tag{S10}
\end{align*}
$$

Because $\sum_{i}^{n} x_{i}=\bar{x}$, eqn (S10) becomes:

$$
\begin{align*}
& \sum_{i}^{n} x_{i} y_{i}-n \bar{x} \bar{y}=m\left(\sum_{i}^{n} x_{i}^{2}-n \bar{x} \bar{x}\right) \\
& \sum_{i}^{n} x_{i} y_{i}-n \bar{x} \bar{y}=m\left(\sum_{i}^{n} x_{i}^{2}-n \bar{x}^{2}\right) \tag{S11}
\end{align*}
$$

Now, we just need to prove eqns (S12) and (S13), and use them to simplify eqn (S11).

$$
\begin{equation*}
\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i}^{n} x_{i}^{2}-n \bar{x}^{2} \tag{S12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i}^{n} x_{i} y_{i}-n \bar{x} \bar{y} \tag{S13}
\end{equation*}
$$

Proof of eqn (S12)

$$
\begin{aligned}
& \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i}^{n} x_{i}^{2}-2 \bar{x} \sum_{i}^{n} x_{i}+n \bar{x}^{2} \\
& \qquad \sum_{i}^{n} x_{i} \\
& \text { Remember that }=\bar{x}, \text { therefore: }
\end{aligned}
$$

$$
\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i}^{n} x_{i}^{2}-2 \bar{x} n \bar{x}+n \bar{x}^{2}=\sum_{i}^{n} x_{i}^{2}-2 n \bar{x}^{2}+n \bar{x}^{2}
$$

$$
\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i}^{n} x_{i}^{2}-n \bar{x}^{2}
$$

Proof of eqn (S13)

$\sum_{i}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i}^{n} x_{i} y_{i}-\bar{y} \sum_{i}^{n} x_{i}-\bar{x} \sum_{i}^{n} y_{i}+n \bar{x} \bar{y}$
Again, $\frac{\sum_{i}^{n} x_{i}}{n}=\bar{x}$ and $\frac{\sum_{i}^{n} y_{i}}{n}=\bar{y}$, therefore:
$\sum_{i}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i}^{n} x_{i} y_{i}-\bar{y} n \bar{x}-n \bar{x} \bar{y}+n \bar{x} \bar{y}$
$\sum_{i}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i}^{n} x_{i} y_{i}-n \bar{x} \bar{y}$

Finally, from eqns (S11), (S12) and (S13):

$$
\begin{align*}
& m=\frac{\sum_{i}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\left(\sum_{i}^{n} x_{i}^{2}-n \bar{x}^{2}\right)} \\
& m=\frac{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{S14}
\end{align*}
$$

References

S1. D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. De Jong, P. J. Lewi and J. SmeyersVerbeke, Handbook of Chemometrics and Qualimetrics: Part A, Ch. 8, Straight Line Regression and Calibration, Elsevier, Amsterdam, 1997, pp. 171-230.

S2. N. R. Draper and H. Smith, Applied Regression Analysis, 2nd ed., John Wiley \& Sons, New York, 1981, 709p.

