			Ru		Rh		Pd	
Interfe	erences	99	101	102	103	105	106	Pd 106 108 106 108 2 106 2 106 2 10 2 10 2 10 2 10 2 10 2 10 106 108 2 10 106 10 2 108 106 10 106 10 106 10 106 10 106 10 106 10 107 2 106 14.77) 107 2 107 3 107 3 107 3 108 107 109 107 1017 10 1017 10 1017 10 1017 10 1017 10 1017
	Co	${}^{59}\text{Co}^{40}\text{Ar}^+(99.60^*)$						
A	Ni		$^{61}Ni^{40}Ar^{+}(1.13)$	$^{62}Ni^{40}Ar^{+}(3.58)$				
Argide	Cu	$^{63}Cu^{36}Ar(0.23)$	${}^{65}Cu^{36}Ar^{+}(0.10)$		63 Cu ⁴⁰ Ar ⁺ (68.89)	${}^{65}Cu^{40}Ar^+$ (30.71)		
	Zn				67 Zn ³⁶ Ar ⁺ (0.01)		${}^{66}Zn^{40}Ar^+$ (27.70)	68 Zn 40 Ar $^+$ (18.72)
Isobaric Doubly Charged				$^{102}\mathrm{Pd}^{+}(1.02)$			$^{106}\text{Cd}^+(1.20)$	$^{108}\mathrm{Cd}^{+}(0.90)$
Doubly (Charged	${{}^{198}_{}}\text{Hg}^{++}(10.02)$ ${{}^{198}_{}}\text{Pt}^{++}(7.20)$	202 Hg ⁺⁺ (29.80)	204 Hg ⁺⁺ (6.85) 204 Pb ⁺⁺ (1.40)	²⁰⁶ Pb ⁺⁺ (24.10)			
Ox	side		85 Rb 16 O $^+$ (72.44)	${}^{86}{\rm Sr}^{16}{\rm O}^{+}(9.84) \\ {}^{88}{\rm Sr}^{14}{\rm O}^{+}(82.28) \\ {}^{90}{\rm Zr}^{12}{\rm O}^{+}(50.88) $	${}^{85}\text{Rb}^{16}\text{O}^{+}(0.14)$ ${}^{87}\text{Rb}^{16}\text{O}^{+}(27.77)$ ${}^{87}\text{Sr}^{16}\text{O}^{+}(6.98)$	⁸⁹ Y ¹⁶ O ⁺ (99.76)	${}^{88}{\rm Sr}^{18}{\rm O}^{+}(16.52)$ ${}^{90}{\rm Zr}^{16}{\rm O}^{+}(51.30)$	${}^{90}_{-}Zr^{18}O^{+}(10.30)$ ${}^{92}_{-}Zr^{16}O^{+}(17.17)$ ${}^{92}_{-}Mo^{16}O^{+}(14.77)$
Hyd	lride	⁹⁸ Mo ¹ H ⁺ (24.13)	100 Mo ¹ H ⁺ (9.63) 100 Ru ¹ H ⁺ (12.60)	101 Ru ¹ H ⁺ (17.00)	$^{102}Ru^{1}H^{+}(31.6)$ $^{102}Pd^{1}H^{+}(1.02)$	$^{104}Ru^{1}H^{+}(18.70)$ $^{104}Pd^{1}H^{+}(11.14)$	105 Pd 1 H $^{+}$ (22.60)	$^{107}\text{Ag}^{1}\text{H}^{+}(51.75)$
Hydr	oxide			${}^{85}\text{Rb}{}^{16}\text{O}{}^{1}\text{H}^{+}$ (71.98)	${}^{86}\mathrm{Sr}^{16}\mathrm{O}^{1}\mathrm{H}^{+}(9.84)$	${}^{88}\mathrm{Sr}^{16}\mathrm{O}^{1}\mathrm{H}^{+}(82.37)$	${}^{89}\text{Y}^{16}\text{O}^{1}\text{H}^{+}(99.70)$	
Niti	ride	85 Rb 14 N $^+$ (27.53)	${}^{87}_{87}\text{Rb}^{14}\text{N}^{+}(27.73)$	${}^{87}\text{Rb}{}^{15}\text{N}^+$ (0.10)	${}^{88}\text{Sr}^{15}\text{N}^{+}(0.30)$ ${}^{89}\text{Y}^{14}\text{N}^{+}(99.60)$	${}^{90}Zr^{15}N^{+}(0.19)$ ${}^{91}Zr^{14}N^{+}(11.18)$	${}^{92}\text{Mo}^{14}\text{N}^{+}(17.13)$ ${}^{92}\text{Zr}^{14}\text{N}^{+}(99.60)$	94 Zr 14 N $^+$ (17.33)
Oth	hers	$\frac{^{64}\text{Zn}^{35}\text{Cl}^{+}(36.82)}{^{87}\text{Sr}^{12}\text{C}^{+}(6.92)}$	$\frac{^{66}Zn^{35}Cl^{+}(21.1)}{^{88}Sr^{13}C^{+}(0.91)}$	${}^{94}\overline{\text{Zr}}^{12}\text{C}^{+}(4.88)$ ${}^{89}\text{Y}^{13}\text{C}^{+}(1.10)$ ${}^{65}\text{Cu}^{37}\text{Cl}^{+}(75.01)$ ${}^{67}\text{Zn}^{35}\text{Cl}^{+}(31.07)$	${}^{66}Zn {}^{37}Cl {}^{+}(6.76)$ ${}^{91}Zr {}^{12}C {}^{+}(11.10)$ ${}^{90}Zr {}^{13}C {}^{+}(0.57)$	$\frac{{}^{93}\text{Nb}^{12}\text{C}^{+}(98.90)}{{}^{92}\text{Mo}^{13}\text{C}^{+}(0.16)}$	$^{94}Zr^{12}C^{+}(17.21)$	96 Ru ¹² C ⁺ (5.46) 96 Mo ¹² C ⁺ (16.52)

1 Supplementary Table 1⁺ Spectral interferences on Ru, Rh and Pd in LA-ICP-MS PGE analysis.

2 *: Abundance in %.

3

5 Supplementary Table 2⁺ Summary of reported limits of detection (LOD) for ¹⁰³Rh and ¹⁰⁵Pd and CuAr contributions in LA-ICP-MS PGE

6 analysis of chalcopyrite.

Published	ICP MS	Collision and	Laser Ablation	Wave Longth	Repetition Bate	Energy Output	Spot Size	Scan	Internal	LOD	(ng g-1)	CuAr Contribution (µg g ⁻¹)		CuAr Interference
Applications	101-105	Reaction Cell Gas	System	(nm)	(Hz)	(mJ pulse ⁻¹)	(μm)	Mode	Standard	¹⁰³ Rh	¹⁰⁵ Pd	¹⁰³ Rh	¹⁰⁵ Pd	Correction
Alard et al., 2000 ²	Perkin Sciex ELAN 6000	-	Nd:YAG	266	4	0.5	40 - 60	Spot	-	24 ^a 107 ^b	39 ^{a*} 320 ^{b*}	-	-	-
Ballhaus et al., 2000 ⁴	VG Plasma QuaPQ2	-	Lamda Physik Lex 120I ArF	266	10	-	70	Line	-	10s	10s	-	-	No correction
Smith et al., 2014 ⁵	Thermo X Series 2	No	New Wave UV	213	10	6^{f}	30	Line	³³ S	-	-	-	-	Linear correlation ^d
Cabri et al., 2003 ⁸	VG Plasma Quad2S	No	Nd:YAG	266	10	0.3	35 - 40	Spot	³⁴ S	< 100	< 100	-	-	Sylvester (2001) ⁵³
Barnes et al., 2006 ¹⁵	Thermo X7	7% H ₂ +He	Nd:YAG	213	20	0.4	80	Spot	³⁴ S	$\begin{array}{c} 19\pm49\\(1sd)^c\end{array}$	110 ± 40 (1sd) ^c	-	-	Linear correlation ^d
Godel et al., 2007 ¹⁶	Thermo X7	$7\%H_2\!+He$	Nd:YAG	213	20	0.8	80	Spot	^{34}S	60	350	2	2	Linear correlation ^d
Holwell et al., 2007 ¹⁷	Thermo X Series	no	New Wave UV	213	10	0.3	40	Spot	³³ S	11	34*	-	-	Linear correlation ^d
Godel et al., 2008 ¹⁸	Thermo X7	7% H ₂ +He	Nd:YAG	213	20	0.3	80	Spot	^{34}S	-	-	0.5	0.5	Linear correlation ^d
Hutchinson et al., 2008 ¹⁹	Thermo X Series	No	NewWave UV	213	10	0.35	40	Spot	³³ S	-	-	-	-	-
Holwell et al., 2010 ²⁰	Thermo X Series	No	NewWave UV	213	10	0.35	40	Spot	-	-		-	-	No correction
Dare et al., 2010 ²¹	Thermo X7	-	Nd:YAG	213	10	0.3	80	Spot	⁵⁷ Fe	121°	293°	-	-	Linear correlation ^d
Holwell et al., 2011 ²²	Thermo X Series	No	New Wave UV	213	10	0.35	30 - 55	Spot	³³ S	11	34	-	-	-
Dare et al., 2011 ²³	Thermo X7	-	Nd:YAG	213	10	0.3	80	Spot	⁵⁷ Fe	-	-	-	-	-
Piña et al., 2012 ²⁴	Thermo X7	-	Nd:YAG	213	10	0.8	80	Spot	⁵⁷ Fe	-	-	-	-	-
Osbahr et al., 2013 ²⁵	Agilent 7500i	-	New Wave UP	193	15	1.62 ^f	35 - 50	Spot	S	-	-	4 - 5	6 - 8	Linear correlation ^d
Prichard et al., 2013 ²⁶	Thermo X Series	No	NewWave UV	213	10	-	30	Line	³³ S	100	-	-	-	Linear correlation ^d
Huminicki et al., 2008 ²⁷	-	-	-	-	-	-	-	-	-	-	-	-	-	Sylvester (2001) ⁵³
Lorand et al., 2001 ²⁸	Perkin Sciex ELAN 6000	-	Nd:YAG	266	4	0.5	40 - 60	Spot	-	24ª	36 ^{a*}	-	-	Linear correlation ^e
Guillong et al., 2011 ³⁵	Agilent 7500 Agilent 7700 Thermo X7 PE 6100 DRC	No	NewWave UV New Wave UP Resonetics M50 ArF Geolas ArF	193 213	10	-	40	Spot	Cu	-	-	1.5 - 36	4.0 - 92	Linear correlation ^e
Cox et al., 2010 ³⁶	Thermo X7	7% H ₂ +He	Nd:YAG	213	-	-	80	Spot	-	< 100	< 100	-	-	No correction

^a: LOD using He as a carrier gas; ^b: LOD using Ar carrier gas only; ^c: calculated based on the equation LOD = 3 x (BC)^{1/2} x C/I, where BC is background count rate in counts s⁻¹ (CuFeS₂ blank), I is counts s⁻¹

8 and C is a content of Rh or Pd from a calibration standard, and sd is standard deviation; d: linear correlation between CuAr and Cu signal using Cu-rich synthetic standard; c: linear correlation between CuAr

9 and Cu signal using pure Cu metal standard; ^f: Fluence in J cm⁻²; *: LOD for Pd but not specify which Pd isotope; -: Unknown.

Sources/Location	Μ	aterial	Sample Name	Cu (%)*
		Cubanite (Cbn, $CuFe_2S_3$)	OSP6	24.17
GSC, Canada	Synthetic sulphide	Mooihoekite (Mh, Cu ₉ Fe ₉ S ₁₆)	OSP7	35.87
		erialSample NameSubanite (Cbn, CuFe2S3)OSP6Mooihoekite (Mh, Cu9Fe9S16)OSP7Bornite (Bn, Cu5FeS4)OSP9CNMC CRG-1902CMNMC 31802CMNMC 31802CMNMC 31805Chalcopyrite (Ccp, CuFeS2)CMNMC 31819CMNMC 57165CMNMC 57165CMNMC 57199CMNMC 80822Bornite (Bn, Cu5FeS4)CMNMC 42116Bornite (Bn, Cu5FeS4)CMNMC 58944	62.19	
Creighton mine (footwall), Sudbury Ni-Cu camp, Ontario, Canada		MaterialSameCubanite (Cbn, CuFe_2S_3)Image: Cubanite (Cbn, CuFe_2S_3)Mooihoekite (Mh, Cu_9Fe_9S_{16})Image: Cubanite (Chalcopyrite (Ccp, CuFeS_2)CNCNChalcopyrite (Ccp, CuFeS_2)CNCNCNCNCNCNCNChalcopyrite 	CNMC CRG-1902	34.52
Cavnic, Romania			CMNMC 31802	33.77
French Creek Mine, Pennsylvania, USA			CMNMC 31805	34.46
Sherritt-Gordon Mine, Manitoba, Canada		Chalcopyrite (Ccp, CuFeS ₂)	CMNMC 31819	34.57
Magma Mine, Superior, Arizona, USA	Natural sulphide	Materialic sulphideCubanite (Cbn, CuFe_2S_3) Mooihoekite (Mh, Cu_9Fe_9S_{16})Bornite (Bn, Cu_5FeS_4)Bornite (Bn, Cu_5FeS_4)I sulphideChalcopyrite (Ccp, CuFeS_2)Bornite (Bn, Cu_5FeS_4)Bornite (Bn, Cu_5FeS_4)	CMNMC 57165	34.61
Pima, Tucson, Arizona, USA			CMNMC 57199	34.55
Ani Mine, Akita, Japan			CMNMC 80822	34.61
Leeds Tp., Mégantic Co., Québec, Canada		Bornite (Bn. Cu. FeS.)	CMNMC 42116	63.31
Harvey Hill Mine, Québec, Canada		MaterialsulphideCubanite (Cbn, CuFe_2S_3)Mooihoekite (Mh, Cu_9Fe_9S_{16})Image: Chalcopyrite (Ccp, CuFeS_2)sulphideChalcopyrite (Ccp, CuFeS_2)sulphideImage: Chalcopyrite (Ccp, CuFeS_2)sulphideImage: Chalcopyrite (Ccp, CuFeS_2)sulphideImage: Chalcopyrite (Ccp, CuFeS_2)sulphideImage: Chalcopyrite (Ccp, CuFeS_2)sulphideImage: Chalcopyrite (Ccp, CuFeS_2)sulphideImage: Chalcopyrite (Ccp, CuFeS_2)sulphideImage: Chalcopyrite 	CMNMC 58944	62.99

10 Supplementary Table 3[†] Synthetic and natural Cu-rich mineral samples used for PGE analyses by SN-ICP-MS and LA-ICP-MS.

11 *: EMPA data.

16 Table 4[†] Laser ablation systems operating and data acquisition parameters.

Manufacturer	Teledyne Photon Machines	ESI NWR
Model	ArF Excimer G2	Nd:YAG Solid State
Type of sample cell	Fast washout two-volume HelEx II	Two-volume
Wavelengths (nm)	193	213
Frequency (Hz)	10	10
Pulse width (ns)	< 5	4
Fluence (J cm ⁻²)	3.78 - 4.25	1.66 - 3.80
Spot size (µm)	10, 20, 30, 40, 50, 65 and 110	110
Scan mode	Line and spot	Line and spot
Line scan speed ($\mu m s^{-1}$)	1	3
He Carrier gas flow rate (L min ⁻¹)	MFC-1: 0.6; MFC-2: 0.4	0.7

26 Table 5† ICP-MS operating and data acquisition parameters.

Analys	is Type		LA-IC	P-MS			SN-IC	P-MS		
Labo	ratory	GSC	Canada		Agilent Technolo	gies Canada	Inc.	CANME	T Canada	
Agilent ICF	P-MS model	77	700x	8900x MS/MS			8800x MS/MS			
Sampling of	lepth (mm)	(5.5		8.0	8.	.0	5.9 - 8		
Ar carrier gas flo	ow rate (L min ⁻¹)	1.02	- 1.04		0.9	1.0	05	1.	05	
	Scan type	On-mass On-mass								
	Gas type	No gas	He			Н	le	Н	le	
Collision mode	Gas flow rate (mL min ⁻¹)	0	1, 2, 3, 4, 5, 6, 7, 8, 9			(5	(5	
only	Octopole bias (V)	-5.8	-18			-1	.8	-2	24	
	Octp RF (V)	200	200		On-mass He He 6 6 -18 -24 200 200 5 7 On-mass and Mass-shift					
	KED (V)		5			4	5	CANMET O MS/MS 5.9 - 8 1.05 mass He 6 -24 200 7 7 -24 200 7	7	
	Scan type				(On-mass and	Mass-shift	x MS/MS 5.9 - 8 1.05 n-mass He 6 -24 200 7 ft He NH 1 0.2 - -6 170 -9		
	Gas type			Не	NH ₃	He	NH ₃	He	NH ₃	
Collision and	Gas flow rate (mL min ⁻¹)			1	0, 0.1, 0.2, 0.3, 0.4, 0.5	2	0.3	1	0.2 - 0.3	
reaction mode	Octopole bias (V)				-5		4	-6		
	Octp RF (V)				180	14	40	170		
	KED (V)				-7	-7		_	9	

29 Table 5† continued.

Analysis Type	LA-I	CP-MS	SN-IC	CP-MS	
Data acquisition mode	Time reso	lved analysis	Spe	ctrum	
Scan mode		Peak hop	Spectrum k hopping $x^{,39}$ K, Ni, Rb, $y^{,99}$ Ru, 101 Ru, 102 Ru, 103 Rh, 105 Pd, 106 Pd, 107 Ag, 108 Pd, 109 Ag, 111 Cd, 191 Ir, 193 Ir, 103 Rh, 105 Pd, 109 Ag, 111 Cd, 191 Ir, 193 Ir, 108 Pd, 109 Ag, 111 Cd, 191 Ir, 193 Ir, 108 Pd, 109 Ag, 111 Cd, 191 Ir, 193 Pt, 107 Yb, 175 Lu, 177 Hf, 182 W, 188 Os, 191 Ir, 195 Pt, 197 Au, 198 Pt, 103 Rh $\rightarrow ^{171}$ Rh 1^{103} Rh $\rightarrow ^{171}$ Rh 103 Rh $\rightarrow ^{171}$ Rh 1^{103} Rh $\rightarrow ^{171}$ Rh 103 Rh $\rightarrow ^{171}$ Rh		
Isotopes monitored (On-mass)	 ²⁹Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³⁴S, ⁴²Ca, ⁵⁵Mn, ⁵⁷Fe, ⁵⁹Co, ⁶⁰Ni, ⁶²Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁸Zn, ⁷⁵As, ⁸⁵Rb, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ⁹⁵Mo, ⁹⁹Ru, ¹⁰¹Ru, ¹⁰²Ru, ¹⁰³Rh, ¹⁰⁵Pd, ¹⁰⁶Pd, ¹⁰⁸Pd, ¹⁰⁹Ag, ¹¹¹Cd, ¹⁸⁹Os, ¹⁹³Ir, ¹⁹⁵Pt, ¹⁹⁷Au, ²⁰²Hg, ²⁰⁶Pb, ²⁰⁸Pb 	 ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³⁴S, ³⁹K, ⁴²Ca, ⁵⁷Fe, ⁵⁹Co, ⁶⁰N, ⁶²Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁸Zn, ⁸⁵Rb, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ⁹⁵Mo, ⁹⁹Ru, ¹⁰¹Ru, ¹⁰²Ru, ¹⁰³Rh, ¹⁰⁵Pd, ¹⁰⁶Pd, ¹⁰⁸Pd, ¹⁰⁹Ag, ¹¹¹Cd, ¹⁷⁵Lu, ¹⁷⁷Hf, ¹⁸⁹Os, ¹⁹¹Ir, ¹⁹³Ir, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁸Pt, ²⁰⁶Pb 	 ⁹⁹Ru, ¹⁰¹Ru, ¹⁰²Ru, ¹⁰³Rh, ¹⁰⁵Pd, ¹⁰⁶Pd, ¹⁰⁷Ag, ¹⁰⁸Pd, ¹⁰⁹Ag, ¹¹¹Cd, ¹⁹¹Ir, ¹⁹³Ir, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁸Pt 	 ⁵⁹Co, ⁶⁰Ni, ⁶²Ni. ⁶⁶Zn, ⁶⁸Zn, ⁶⁹Ga, ⁷¹Ga, ⁷²Ge, ⁷³Ge, ⁸⁵Rb, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ⁹⁵Mo, ⁹⁹Ru, ¹⁰¹Ru, ¹⁰²Ru, ¹⁰³Rh, ¹⁰⁵Pd, ¹⁰⁶Pd, ¹⁰⁷Ag, ¹⁰⁸Pd, ¹⁰⁹Ag, ¹¹¹Cd, ¹⁴⁰Ce, ¹⁷³Yb, ¹⁷⁵Lu, ¹⁷⁷Hf, ¹⁸¹Ta, ¹⁸²W, ¹⁸⁸Os, ¹⁹¹Ir, ¹⁹³Ir, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁸Pt, ²⁰⁵Pl, ²⁰⁹Pi 	
Isotope monitored (Mass-shift)		$^{197}\mathrm{Au} \rightarrow ^{231}\mathrm{Au}$	$^{103}\text{Rh} \rightarrow ^{171}\text{Rh}$ $^{195}\text{Pt} \rightarrow ^{229}\text{Pt}$ $^{197}\text{Au} \rightarrow ^{231}\text{Au}$		
Dwell time per isotope	50 ms (Rh); 30 ms (Pd); 10 ms (other PGE, Ag and Au); 3 - 10 ms (majors and other traces)	50 ms (Rh); 30 ms (Pd); 15 ms (Cd); 10 ms (Co, Ni, Zn, other PGE, Ag and Au); 5 ms (S, Fe, Cu and Pb); 3 ms (other traces); 1 - 2 ms (majors)	80 ms (Rh, Pd); 20 ms (other PGE, Ag and Au)	1 s (Rh, Pd and Cd); 0.4 s (others)	

34 Supplementary Table 6[†] Background equivalent contents (BECs, ng g^{-1}) in Zn, Rb, Sr, Y, Zr and Mo (100 μ g g^{-1}) and Cu (700 to 1000 μ g

35	g ⁻¹) matrix blank	using 8800x SN-ICP-MS/M	S in He collision gas and NH ₃ /He	reaction gas mode.
	0 /	0	0	U

Element		R	2h					Р	d				
Isotope		1	03			1()5		1(106 108			
Collision and	[H	[e]	[NH	3/He]	[H	[e]	[NH	3/He]		[NH	3/He]		
Mode	Mean	SD ^a											
Zn (n = 6)	0.0035	0.0029	0.00037	0.000031	0.0026	0.00017	0.0031	0.00028	0.0032	0.00028	0.0030	0.00025	
Rb (n = 6)	0.0007	0.00014	0.00077	0.00015	0.0018	0.00056	0.0018	0.00029	0.0022	0.00039	0.0019	0.00026	
Sr (n = 6)	0.0060	0.0018	0.0538	0.0017	0.102	0.0061	2.15	0.0339	0.0053	0.00060	0.0063	0.0040	
Y (n = 6)	0.0031	0.00016	0.0028	0.00021	15.76	1.36	5.46	0.191	1.44	0.088	0.0053	0.0008	
$\operatorname{Zr}(n=6)$	0.0018	0.00068	0.0014	0.00046	0.0032	0.00045	0.0110	0.00057	5.85	0.299	2.08	0.101	
Nb (n = 6)	0.00090	0.00024	0.00072	0.00012	0.00075	0.00010	0.0014	0.00018	0.0013	0.00012	0.0041	0.00013	
Mo (n = 6)	0.0025	0.0016	0.0018	0.0010	0.0028	0.0008	0.0028	0.00071	0.0037	0.00040	0.046	0.0010	
Ag (n = 6)	0.0014	0.000057	0.0015	0.000059	0.0022	0.0012	0.0028	0.0013	0.0024	0.00080	0.0021	0.0010	
Pb (n = 6)	6.26	0.212	0.00052	0.00012	0.0031	0.0004	0.0035	0.0008	0.0033	0.00081	0.0034	0.00032	
700 Cu ^b (n = 15)	0.00238	0.00006	0.00040	0.0001	0.0062	0.0005	0.00040	0.0003	0.00133	0.0004	0.00122	0.0003	
1000 Cu ^c (n = 15)	0.0046	0.0011	0.00030	0.0002	0.0108	0.0028	0.00030	0.0004	0.00125	0.0008	0.00144	0.0005	

36 ^a: standard deviation; ^b: 700 μ g g⁻¹Cu; ^c: 1000 μ g g⁻¹Cu; n: number of analysis.

38 Supplementary Table 7⁺ Element content (in µg g⁻¹) of Mass-1determined using 7700x LA-ICP-MS and 8900x LA-ICP-MS/MS at spot

39 size of 110 μm.

Analysis Mode	Items	Co	Ni	Cu	Zn	Mo	Ag	Cd	Os	Ir	Pt	Au	Pb
Information value (GeoRem 2002, compiled value ⁵⁶)	Mean	67	71 - 102	134000	210000	61	67	70	0.031	64	62	47	67 - 80
	Mean	66	161	118298	183034	57	54	29	0.006	75	68	45	77
	SD^{a}	1.9	62	5603	9487	1.3	1.5	5	0.004	1.8	1.7	2.6	4
7700x LA-ICP-MS No gas mode	RSD (%)	3	39	5	5	2.3	3	17	78	2.4	3	6	6
	n	38	38	38	38	38	38	38	38	38	38	38	38
	Rel. Diff. (%) ^b	-2	86	-12	-13	-6	-20	-58	-82	18	10	-5	4.01
	Mean	73	136	99765	196846	58	55	27	0.007	68	62	46	76
	SD ^a	6	43	14988	24118	2.30	1.5	5	0.006	3	3	5.99	2.58
7700x LA-ICP-MS He collision gas mode	RSD (%)	8	31	15	12	4	3	17	83	4	5	13	3
$({\rm He} = 5 {\rm mL min^{-1}})$	n	23	23	23	23	23	23	23	20	23	23	23	23
	Rel. Diff. (%) ^b	9	57	-26	-6	-5	-17	-62	-78		-3.8		
	Mean					60	65	37	0.0026	65	58	54	81
	SD ^a					0.5	0.3	2.8	0.0009	1.4	2.8	2.4	0.6
8900x LA-ICP-MS/MS No gas mode	RSD (%)					0.8	0.5	8	34	2.2	5	4	0.7
	n					2	2	2	5	6	6	6	2
	Rel. Diff. (%) ^b					-1	-2	-47	-92	2	-6	15	11
	Mean	70	103	145444	265441	60	73	49	0.0104	64	58	54	86
0000 I A ICD MC/MC	SD^{a}	1.9	1.8	3513	9575	1.5	1.7	6	0.013	0.9	2.5	3	2.2
8900x LA-ICP-MS/MS NH3/He reaction gas mode (NH3/He = 0.3 mL min ⁻¹)	RSD (%)	3	1.7	2.4	4	2.5	2.3	11	122	1.4	4	6	3
	n	7	7	7	7	7	7	7	8	11	11	11	7
	Rel. Diff. (%) ^b	4	19	9	26	-1	9	-30	-67	1	-5	16	16

40 ^a: standard deviation; ^b: the relative difference of element value determined by LA-ICP-MS against the value obtained by SN-ICP-MS; n: number of analysis.

Supplementary Table 8⁺ Element content (in µg g⁻¹) of PGE-1B using 7700x LA-ICP-MS and 8900x LA-ICP-MS/MS at spot size of 110 41

Analysis Mode	Items	Ru	Rh	Pd	Os	Ir	Pt	Au
	Mean	233	257	263	72.6	135	196	367
8800x SN-ICP-MS/MS	ayysis wode Henis Ku Ku Ku Fu Fu Fu SN-ICP-MS/MS SD ^a 5 6 4 9 6 4 SN-ICP-MS/MS SD ^a 5 6 4 9 6 4 RSD (%) 2.2 2.2 1.4 12 4 1.9 n 40 40 60 20 60 40 Mean 235 252 244 115 159 196 SD ^a 14 17 13 31 23 14 RSD (%) 6 7 5 27 14 7 n 38 38 38 38 38 38 38 Rel. Diff. (%) ^b 2 -2 -7 58 18 -0.1 Mean 247 250 253 106 159 202 SD ^a 9 7 10 21 8 9 <td>5</td>	5						
NH ₃ /He reaction gas mode	RSD (%)	2.2	2.2	1.4	12	4	1.9	1.4
	n	40	40	60	20	60	40	18
	Mean	235	252	244	115	159	196	332
	SD^{a}	14	17	13	31	23	14	20
7700x LA-ICP-MS No gas mode	RSD (%)	6	7	5	27	14	7	6
ito gas mode	n	38	38	38	38	38	38	38
	Rel. Diff. (%) ^b	2	-2	-7	58	18	-0.1	-10
	Mean	247	250	253	106	159	202	320
Mean 247 250 253 106 159 7700x LA-ICP-MS He collision gas mode SD ^a 9 7 10 21 8 RSD (%) 3 3 4 20 5	8	9	7					
He collision gas mode	RSD (%)	3	3	4	20	5	5	2
$(\mathrm{He}=5~\mathrm{mL}~\mathrm{min}^{-1})$	n	30	30	30	30	30	30	30
	Rel. Diff. (%) ^b	7	-2.7	-4	46	18	3	-13
	Mean	222	213	229	77	147	175	259
	SD ^a	6	8	3	17	14	2.3	5
8900x LA-ICP-MS/MS	RSD (%)	2.5	4.0	1.0	22.0	10.0	1.0	2.0
ivo gas moue	n	4	4	4	3	4	4	4
	Rel. Diff. (%) ^b	-4	-17	-13	6	9	-11	-29
	Mean	219	213	223	91.4	148	180	267
8900x LA-ICP-MS/MS	SD ^a	1.7	4	4	20	12	5	6
NH ₃ /He reaction gas mode	RSD (%)	1.0	2.0	2.0	22.0	8.0	3.0	2.0
$(NH_3/He = 0.3 \text{ mL min}^{-1})$	n	6	6	6	6	6	6	6
	Rel. Diff. (%) ^b	-5	-17	-15	26	10	0 4 4 1.9 60 40 159 196 23 14 14 7 38 38 18 -0.1 159 202 8 9 5 5 30 30 18 3 147 175 14 2.3 10.0 1.0 4 4 9 -11 148 180 12 5 8.0 3.0 6 6 10 -8	-27

µm, and 8800x SN-ICP-MS/MS analysis. 42

^a: standard deviation; ^b: the relative difference of element value determined by LA-ICP-MS against the value obtained by SN-ICP-MS; n: number of analysis.

44 Supplementary Table 9[†] PGE content (ng g⁻¹) determined using 8800x SN-ICP-MS/MS from this study vs. certified or recommended

Element			PTM-1a		
Element	Certified	This Study	n	RSD (%)	Rel. Diff. (%) ^b
Ru	$700\pm400^{\rm a}$	695	44	8	-0.8
Rh	940 ± 90^{a}	967	30	7	3.0
Pd	10070 ± 410	10200	89	8	1.3
Ir	350 ± 90^{a}	375	66	11	7.0
Pt	7290 ± 220	7027	59	11	3.6
Au	3300 ± 200	3536	33	11	2.2

45 values (\pm 95% confidence intervals) for geological reference material PTM-1a⁵⁸.

46 ^a: provisional values;⁵⁸ b: the relative difference of element value determined by LA-ICP-MS against the value obtained by SN-ICP-MS; n: number of analysis.

		0.1 ng	g-1 PGE			1 ng g	⁻¹ PGE			10 ng	g ⁻¹ PGE	
Element	Measured	n	RSD (%)	Rel. Diff. (%) ^a	Measured	n	RSD (%)	Rel. Diff. (%) ^a	Measured	n	RSD (%)	Rel. Diff. (%) ^a
Ru	0.088	5	9	-12	0.93	5	2.1	-7.0	9.4	5	2.6	-6.0
Rh	0.087	5	4	-13	0.91	5	4	-9.0	9.3	5	4	-8.0
¹⁰⁵ Pd	0.111	5	8%	11	0.93	5	3	-7.0	9.2	5	3	-9.0
¹⁰⁶ Pd	0.111	5	5	11	0.92	5	4	-8.0	9.2	5	3	-8.0
¹⁰⁸ Pd	0.108	5	6	8	0.93	5	3	-7.0	9.2	5	2.3	-8.0
Os	0.098	5	11	-1.6	1.03	5	4	2.7	9.8	5	2.2	-1.6
Ir	0.119	5	6	19	1.24	5	3	24	12	5	2.0	21
Pt	0.106	5	4	6.0	1.10	5	1.8	10	11	5	1.5	10
Au	0.108	5	4	8.0	1.09	5	2.9	9.0	11	5	1.7	7.0

Supplementary Table 10⁺ Precision and accuracy in analyzing 0.1, 1 and 10 ng g⁻¹ PGE in 1000 μ g g⁻¹ Cu matrix determined using 8800x

57 SN-ICP-MS/MS.

^a: the relative differences between measured contents and theoretical values (based on gravimetric dilutions of stock solutions); n: number of analysis.

59

Sample	Item	Rh	Rh ^a	Rh ^b	¹⁰⁵ Pd	¹⁰⁵ Pd ^a	¹⁰⁵ Pd ^b	¹⁰⁶ Pd	¹⁰⁸ Pd
OSP6	Mean	94	28	< 50	306	144	113	112	117
	SD ^c	14	0.7		23	26	12	11	12
	RSD (%)	15	2.6		8	18	11	10	10
	n	12	2	12	12	11	10	12	12
	Rel. Diff. (%) ^d	5913	1679		244	62	27	27	34
OSP7	Mean	161	42	49	481	214	201	204	184
	SD ^c	17	11		41	40	33	32	37
	RSD (%)	11	25		9	19	17	16	20
	n	8	4	1	8	7	7	8	8
	Rel. Diff. (%) ^d	6655	1663	1977	150	11	5	6	-5
OSP9	Mean	243	76	69	739	255	332	333	323
	SD ^c	56	20	21	139	18	100	100	83
	RSD (%)	23	26	31	19	7	30	30	26
	n	12	5	5	12	5	12	12	12
	Rel. Diff. (%) ^d	5731	1737	1568	187	-0.9	29	30	26

61 Supplementary Table 11⁺ PGE content (ng g^{-1}) for synthetic chalcopyrite and bornite determined using 7700x LA-ICP-MS analysis.

62 a: CuAr⁺ interference correction on ¹⁰³Rh⁺ and ¹⁰⁵Pd⁺ is based on the linear correlation between Cu⁺ and CuAr⁺; b: CuAr⁺ interference correction on ¹⁰³Rh⁺ and ¹⁰⁵Pd⁺

63 is based on the Paul Sylvester (2002),⁵³ and Cd interference correction but no ZnAr correction was applied; ^c: standard deviation; ^d: the relative differences between

64 measured contents and theoretical values (based on gravimetric dilutions of stock solutions); n: number of analysis.