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Abstract 
 

The published article reports the soft classification of Chinese red seal inks based on the 

laser-induced fluorescence spectra of their plumes.  Some details of the computation that are 

supplementary to the main arguments are presented here.  They include (1) the projection 

from y to z space, (2) the derivation of similarity in naïve Bayes probabilistic language, (3) 

the determination of the no-class threshold 𝑆, (4) the optimization of the similarity range 

parameter , (5) the differentiating and non-differentiating spectral features, (6) the 

determination of the no-class probability, and (7) the evaluation of the statistical figures of 

merit. 
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From y space to z space 
 

In the Methods section of the article, we used the sorting of three inks, C2, C4 and C5 

to illustrate our soft classification scheme.  We showed in Fig. 1c of the article that all the 

data points lie on a two-dimensional plane defined by the three anchor points (y2, y4, y5): 

(1,0,0), (0,1,0) and (0,0,1).  In Fig. 2a, we labeled the coordinates of that plane z1and z2.  The 

linear dependence among the y variables, 𝑦2 + 𝑦4 + 𝑦5 = 1, can be side-stepped by using (z1, 

z2) instead of (y2, y4, y5) to represent the data points. 

The transformation from y to z is best carried out by doing partial-least-square 

discriminant-analysis (PLSDA) with the y data as input.  The latent variables will be our 

desired z.  For the case of 3-class sorting, we will have only two latent variables, as expected.   

An equivalent method that offers a clearer geometrical picture is to treat the y to z 

projection as a coordinate rotation.  It is illustrated in Fig. E-1.  The data plane is represented 

by the blue equilateral triangle with vertices at (1,0,0), (0,1,0) and (0,0,1).  A second 

equilateral triangle, gray in color, is constructed to be identical to the blue but offset 

rearwards to have its centroid coincides with the origin of the y coordinate system.  The z1 

axis is drawn through the centroid and parallel to the base of the gray triangle.  The z2 axis is 

drawn through the centroid and perpendicular to z1.  The z3 axis (not shown in Fig. E-1) 

points from the origin to the centroid of the blue triangle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. E-1.  The blue equilateral triangle represents the data plane in the y2-y4-

y5 class space.  The gray equilateral triangle is identical to the blue but offset 

rearwards to have its centroid coincides with the origin of the y coordinate 

system.  The z1 axis is parallel to the base of the gray triangle and passes 

through the centroid.  The z2 axis is orthogonal to z1 and also passes through 

the centroid. 
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As can be seen from Fig. E-1, the y to z transformation is a rotational transform, z = 

Ry.  The matrix elements of R can be determined in two steps.   

Step 1.  We can see that z3 of all data points will be 1/√3, the distance between the 

origin and the centroid of the blue triangle.  By requiring z3 = 1/√3 for the three anchor 

vectors (the three vertices of the blue equilateral triangle), 

𝑦2 = [
1
0
0

],           𝑦4 = [
0
1
0

],         𝑦5 = [
0
0
1

],   (E-1) 

we can see that R31 = R32 = R33 = 1/√3. 

Step 2.  Each row of R can be treated as a row vector.  Because R is a rotational 

transform, it has to be orthogonal.   The three row vectors therefore form a set of orthonormal 

vectors.  The bottom row vector is known from Step 1, namely, (1/√3, 1/√3, 1/√3).  The 

other two row vectors can be found by Gram-Schmidt orthogonalization.   

Generalizing to d class sorting, each entry of the bottom row of R can be shown to be 

1/√𝑑.  The R matrices for three and five -class sorting are shown in Fig. E-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Fig. E-2.  The y to z rotational transforms for three (left) and five (right) dimensions.  

 

 

It should be noted that the matrix elements (Fig. E-2) are not unique.  For example, in 

the case of 3-class sorting, any rotation about z3 will produce a valid z1-z2 plane.  The 

particular z plane generated by PLSDA corresponds to maximum variance along z1, then the 

next maximum variance along z2, etc.  Similarity functions constructed in this kind of z space 

will best approximate the cluster distributions.  We therefore use the PLSDA method to 

transform y to z. 

A final word of caution.  As mentioned in the article, three-class sorting should be 

based on similarity S that is measured in the two-dimensional z1-z2 space.  Similarity that is 
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measured in two-dimensional y2-y4 space (or any two of the three y’s) is wrong.  The reason 

can be made obvious by considering the following example.   Suppose the C2, C4 and C5 

training clusters center on (y2, y4, y5) = (1,0,0), (0,1,0) and (0,0,1), respectively.  Now suppose 

we have two test points, #1 at (-0.5, 0.5, 1) and #2 at (-0.5, 1.5, 0).  Their respective distance 

from the C4 cluster is  √1.5 and √0.5, i.e., #1 being less similar.  However, in y2-y4 space, 

they are equidistant from C4 and their similarities so computed will be identical. 
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Naïve Bayes and Similarity 

 

 In section 2.2 of the article, we gave an intuitive explanation of the naïve Bayes (NB) 

classifier in terms of similarity.  Here, we will present NB in probability formalism and 

illustrate how probabilities are related to similarities.   

 We are to classify an unknown ink sample in z space.  Before we measure the PLIF 

spectrum of the unknown, the joint probability 𝑃(𝐶, 𝒛) that (1) the unknown belongs to ink 

class C and (2) its PLIF spectrum maps to class space coordinate z is given by, 

 

   𝑃(𝐶, 𝒛) = 𝑃(𝐶|𝒛)𝑃(𝒛),    (E-2) 

      = 𝑃(𝒛|𝐶)𝑃(𝐶),    (E-3) 

 

where P(C|z) and P(z|C) are conditional probabilities, and P(z) and P(C) are prior 

probabilities. 

 Once we measured its PLIF spectrum and determined its coordinate to be Z, the prior 

P(Z) = 1, and Eqs. (E-2) and (E-3) give, 

 

   𝑃(𝐶|𝒁) = 𝑃(𝒁|𝐶)𝑃(𝐶).    (E-4) 

 

 We will assume that the prior P(C) is a constant independent of class, i.e., we assume, 

a priori, that ink samples have equal chance to belong to any ink class.  Eq. (E-4) then 

becomes, 

      𝑃(𝐶|𝒁) ∝ 𝑃(𝒁|𝐶).     (E-5) 

 

 The LHS of Eq. (E-5) is our prediction task.  It says, once we PLIF-analyzed the 

unknown and mapped the spectrum to class space coordinate Z, what is the class C 

membership probability?  The answer is given by the RHS of Eq. (E-5).   

 What is the RHS of Eq. (E-5) saying?  It is the chance that a class C sample has 

coordinate Z.  Do we know it?  Well, suppose we have one training sample of class C with 

coordinate z.  We can then approximate the RHS of Eq. (E-5) by the so-called Gaussian 

kernel, 

   𝑃(𝒁|𝐶) = 𝑒𝑥𝑝 [−
1

2
(

𝒁−𝒛

𝛿
)

2

],    (E-6) 

 

where  is a measure of the uncertainty in z.  Eq. (E-6) is identical to Eq. (1) of the article, 

and 𝑃(𝒁|𝐶) is a measure of the similarity of the unknown and the training sample.   
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Determination of the no-class threshold 𝑺   
  

 The no-class threshold 𝑆 is given by the similarity of a boundary point that is closest 

to the cluster.  For 2-dimensional z space and 99.7% inclusion, the boundary points lie on the 

ellipse defined by zc  3.18 (see Fig. 2a of the article).  To find 𝑆, we generate data points 

randomly on the ellipse and compute their S.  The maximum S among them will approximate 

𝑆 very well if we generate enough data points.  We found that 30 or more data points will be 

adequate for sampling the 2-dimensional ellipse.  For 4-dimensional z space, at least 303 = 

27,000 sampling points are needed.  The values of the thresholds, one for each of the five ink 

classes, are listed in Table 1 of the article. 
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The optimization of the similarity range  

 

 As explained in the article, for a test sample at position z, its similarity to a nearby 

training cluster is given by the scalar field S(z) in a d-dimensional z space.  S(z) can be 

visualized as the summation of little ellipsoids, one on each of the n training observations, 

with radius j along yj given by, 

 

    𝛿𝑗 =
𝛽𝜎𝑗

√𝑛
𝑑 ,      (E-7) 

 

where j is the cluster spread (standard deviation) along zj and  is a constant whose value is 

to be optimized.   A larger  means bigger ellipsoids to smooth out S(z), but too large a  will 

invite interference by neighboring clusters.   

 We can use the C5 cluster in 4-dimensional z space as an example.  We set  equals to 

1 and plot S5(z) for various z positions: from the centroid of the cluster to an outermost 

training observation.  We then repeat with  = 2, 3.. etc.  The results are shown in Fig.  E-3.  

As can be seen, for  too small, S5(z) is grainy.  Only when  > 4 will the statistical 

fluctuations be smoothed out.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. E-3.  C5 similarity function at various locations from the centroid (CM) of the C5 

training cluster to an outermost training observation and beyond, for five values of .  The 

separation of the CM and the outermost observation is defined as one unit.  Inset shows S5 

magnified 10. 
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 With increasing , the similarity envelope extends further out so Si for test 

observations of class i will increase.  Si will approach unity asymptotically.  This is shown in 

Fig. E-4 (red data points) when 〈𝑆𝑖〉 of the 925 test observations is plotted against .  At the 

same time, interference by neighboring clusters, 〈∑ 𝑆𝑘𝑘≠𝑖 〉, will also increase.  This is shown 

by the blue data points in Fig. E-4.  As can be seen, interference increases sharply when  is 

greater than 5.   

 We therefore set  = 5 in all subsequent calculations.  Accordingly, the ellipsoid 

radius is about 1.36 the cluster spread for the case of 184 training observations in 4-

dimensional z space (Eq. 5 of the article, with d = 5 and n = 184). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. E-4.  Plot of 〈𝑆𝑖〉 and 〈∑ 𝑆𝑘𝑘≠𝑖 〉 against .  Dashed lines are visual aids. 
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Differentiating and non-differentiating features 

 

 We showed in the article that the differentiating features are given by the predictive 

component of the variable-importance-in-projection (VIP) while the non-differentiating 

features are given by the orthogonal component of the VIP.   

 We can also deduce the differentiating features by a more intuitive approach.  We first 

compute the class-averaged spectra Ii() for class Ci.  We then average all five Ii() to 

produce the global averaged spectra I().  The difference spectra, i() = |𝐼 −  𝐼𝑖|, indicates 

how ink i differs from the norm.  The class-averaged i(), 〈Δ()〉, is therefore a spectrum of 

the differentiating features.  It is shown in Fig. E-5 (blue upper trace).  As can be seen, it 

resembles the predictive VIP (red lower trace).  Their consistency lends support to our 

interpretation of the predictive VIP. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. E-5.  The spectrum of the predictive VIP, shown in red; and the 〈Δ()〉 spectrum, shown 

in blue.  The two spectra are offset vertically for clarity, their leading pixels are zeroed to 

indicate the baselines, and their spectral intensities are normalized to the same scale.  

Identities of the stronger lines are color-coded at the bottom: Al I (red), Ba I (black), Ca I 

(brown), Cr I (blue), Na I (orange), Pb I (gray), Sb I (black, dotted), C2 band heads (green), S2 

band heads (blue, dotted) and PbO band heads (red, dotted).   
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 Similarly, we can guess the non-differentiating features by simply computing the 

standard deviation spectra i() for class Ci and averaging all five i() to produce 〈𝜎(𝜆)〉.   

This mean-deviation spectrum 〈𝜎(𝜆)〉 represents the intra-class variations.  It is shown in Fig. 

E-6 (blue upper trace).  Again, its resemblance to the orthogonal VIP spectrum (red lower 

trace) is evident.  It validates our interpretation of the orthogonal VIP.   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. E-6.  The spectrum of the orthogonal VIP, shown in red; and the average  spectrum, 

shown in blue.  The two spectra are offset vertically for clarity, their leading pixels are zeroed 

to indicate the baselines, and their spectral intensities are normalized to the same scale.  

Identities of the stronger lines are color-coded at the bottom, as explained in the caption of 

Fig. E-5.   
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Computing no-class probability 

 

 In the article, we classified each and every C6 sample as no-class without giving the 

numerical no-class probability.  It is possible to evaluate the no-class probability PNC by 

going through the following steps. 

1. Use the 99.7% inclusion threshold, identify the NC samples. 

2. Then set the % inclusion to 99.8% (always  99.7%) and compute the corresponding 

Si.  Then set % inclusion to 99.9% and compute the corresponding Si again, etc.  Then 

plot % inclusion (along y) against Si (along x) and functionally fit the curve to give 

y(x), as shown in Fig. E-7 for % inclusion versus S1.  Note that % inclusion has the 

meaning of PNC.  For example, 99.8% inclusion implies that the probability of being a 

non-member is 99.8%.   

3. Now, for that NC sample, based on its Si values, we can compute the corresponding 

PNC for each class Ci. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. E-7.  % inclusion against S1. 

 

 

 

 We follow the procedure and evaluate the PNC of the C1 sample that was falsely 

classified as no-class (see Table 2 of the article).  The results are listed in Table E-1.  As can 

be seen, obs # 958 is remotely similar to its own class.   

 

 

Table E-1.  PNC of the C1 sample that was wrongly classified as no-class. 
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Statistical figures of merit 

 

 The figures of merit listed in Table 4 of the article can be readily computed from 

Tables 2 and 3 of the article by following these steps. 

1. For each of the two schemes, create a Positive Table.  For the hard scheme, it is the 

same as its confusion matrix but with the C6 row left out.  For the soft scheme, an 

equivalent confusion matrix can be drawn based on Table 2 of the article.  Results are 

shown in Tables E-2 and E-3. 

2. Create a Negative Table for each scheme, with each entry = (92 – corresponding entry 

of its Positive Table).  Results are shown in Tables E-4 and E-5. 

3. For each positive table, the maximum positive counts P = sum of all elements of the 

Positive Table = 460 for both hard and soft schemes. 

4. For each negative table, the maximum negative counts N = sum of all elements of the 

Negative Table = 2,300 for both schemes. 

5. The True Positive counts TP = sum of all diagonal elements of the positive table.  TP 

= 444 and 455 for hard and soft, respectively. 

6. The False Positive counts FP = sum of all off-diagonal elements of the positive table.  

FP = 16 and 5 for hard and soft, respectively. 

7. The True Negative counts TN = sum of all off-diagonal elements of the negative table.  

TN = 2,284 and 2,295 for hard and soft, respectively. 

8. The False Negative counts FN = sum of all diagonal elements of the negative table.  

FN = 16 and 5 for hard and soft, respectively.  Can see that FP = FN. 

9. The False No-Class counts FNC = sum of all elements under the NC column of the 

positive table.  FNC = 0 and 1 for hard and soft, respectively. 

10. The maximum false no-class counts = P = 460. 

11. The False In-Class count FIC = # C6 samples sorted as in-class.  FIC = 92 and 0 for 

hard and soft, respectively. 

12. The maximum false in-class counts = total number of C6 test samples = 92.  
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Table E-2.  Positive Table of hard scheme. 

 

 

 

 

 

 

 

 

 

Table E-3.  Positive Table of soft scheme. 

 

 

 

 

 

 

 

 

 

Table E-4.  Negative Table of hard scheme 

 

 

 

 

 

 

 

 

 

 

Table E-5.  Negative Table of soft scheme 

 

  C1 C2 C3 C4 C5 NC 

C1 91 1 0 0 0 0 

C2 0 91 0 0 1 0 

C3 0 0 85 7 0 0 

C4 3 1 0 88 0 0 

C5 0 1 0 2 89 0 

  C1 C2 C3 C4 C5 NC 

C1 91 0 0 0 0 1 

C2 0 91 0 0 1 0 

C3 0 0 92 0 0 0 

C4 1 0 0 90 1 0 

C5 0 1 0 0 91 0 

  Not C1 Not C2 Not C3 Not C4 Not C5 Not NC 

C1 1 91 92 92 92 92 

C2 92 1 92 92 91 92 

C3 92 92 7 85 92 92 

C4 89 91 92 4 92 92 

C5 92 91 92 90 3 92 

  Not C1 Not C2 Not C3 Not C4 Not C5 Not NC 

C1 1 92 92 92 92 91 

C2 92 1 92 92 91 92 

C3 92 92 0 92 92 92 

C4 91 92 92 2 91 92 

C5 92 91 92 92 1 92 


