Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Novel approach for determination of the dissolved and the particulate fractions in aqueous samples by flow field flow fractionation via online monitoring of both the cross flow and the detector flow using ICP-MS

Ping Tan^{1,2}, Jingjing Yang^{1,3}, Volker Nischwitz^{1*}

¹ Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3),

Forschungszentrum Juelich, 52425 Juelich, Germany

² College of Environment and Resources, Chongqing Technology and Business University,

Nan'an District, 400067 Chongqing, China

³ Center for Separation and Purification Materials & Technologies, Suzhou University of

Science and Technology, Suzhou 215009, China

*Corresponding author: v.nischwitz@fz-juelich.de

Table S1	Overview	of AF4	flow rates	and ICP-M	S monitoring	for the	combined	CF-DF met	hod
					C C	,			

	Time	Focus pump	Tip pump	Syringe pumps	Switching	ICP-MS
	[min]	(focus flow)	(elution flow)	(cross flow)	valve	
		$[mL min^{-1}]$	$[mL min^{-1}]$	$[mL min^{-1}]$		
Focusing	0 - 30	2.2	0.3	2	Cross flow	Monitoring
Step					to ICP-MS	cross flow
Elution	30 - 121	0	2.5 followed	2 followed by	Detector	Monitoring
Step			by gradient	gradient down	flow to	detector flow
			matching the	to 0	ICP-MS	
			cross flow			
			decrease			

Table S2 Quantitative determination of the dissolved fraction in 5 water samples from Taihu via online monitoring of the cross flow (CF; n=2). For comparison the dissolved fraction obtained by ultrafiltration with offline quantification by ICP-MS is included (UF; n=2). The results are given as mean and standard deviation (SD). In addition, the percentage dissolved fraction based on the total concentrations of the respective elements in the 10 µm filtrates is presented.

Si	$CF Mean \pm SD \\ [\mu g L^{-1}]$	$UF Mean \pm SD \\ [\mu g L^{-1}]$	Recovery CF / UF [%]	Dissolved (CF) in % of 10 µm total	Dissolved (UF) in % of 10 µm total
Sample 1	940 ± 160	840 ± 30	112 ± 19	46 ± 8	41 ± 2
Sample 2	690 ± 120	550 ± 80	125 ± 28	56 ± 11	44 ± 8
Sample 3	990 ± 120	840 ± 60	118 ± 16	54 ± 7	46 ± 4
Sample 4	920 ± 110	770 ± 20	118 ± 14	53 ± 6	45 ± 2
Sample 5	830 ± 170	650 ± 20	129 ± 26	57 ± 12	44 ± 2

Ca	$CF Mean \pm SD \\ [\mu g L^{-1}]$	$UF Mean \pm SD \\ [\mu g L^{-1}]$	Recovery CF / UF [%]	Dissolved (CF) in % of 10 µm total	Dissolved (UF) in % of 10 µm total
Sample 1	37180 ± 1730	42850 ± 1750	87 ± 5	105 ± 5	121 ± 5
Sample 2	39100 ± 1180	43840 ± 1700	89 ± 4	104 ± 4	116 ± 5
Sample 3	39390 ± 1600	45100 ± 1340	87 ± 4	106 ± 4	121 ± 4
Sample 4	38840 ± 3550	44690 ± 1080	87 ± 8	101 ± 9	116 ± 3
Sample 5	38020 ± 4070	44050 ± 1000	86 ± 9	98 ± 11	114 ± 6

Table S3 Quantitative determination of the particulate fractions in 5 water samples from Taihu (10 μ m filtrates) using the novel combined CF-DF method (n=1) compared to the original method (DF only, n=1). The percentage amount based on the total concentrations of the respective elements in the 10 μ m filtrates is given in brackets. The mass balance calculated from the percentage dissolved fraction (Table 3) and the two percentage particulate fractions as well as the third particulate fraction was established for the CF-DF method.

Mg	CF-DF method Part. fraction 1 [µg L ⁻¹]	CF-DF method Part. fraction 2 [µg L ⁻¹]	CF-DF method Mass balance [%]	original method Part. fraction 1 [µg L ⁻¹]	original method Part. fraction 2 [µg L ⁻¹]
Sample 1	10.2 (0.1%)	13.8 (0.2%)	95.3	145 (1.6%)	49.2 (0.5%)
Sample 2	8.4 (0.1%)	9.4 (0.1%)	93.9	146 (1.5%)	41.1 (0.4%)
Sample 3	11.0 (0.1%)	12.3 (0.1%)	95.5	148 (1.5%)	42.5 (0.4%)
Sample 4	10.8 (0.1%)	10.9 (0.1%)	92.3	150 (1.5%)	41.4 (0.4%)
Sample 5	11.2 (0.1%)	11.6 (0.1%)	93.8	148 (1.5%)	42.3 (0.4%)

Si	CF-DF method Part. fraction 1	CF-DF method Part. fraction 2	CF-DF method Mass balance	original method Part. fraction 1	original method Part. fraction 2
	[µg L-1]	[µg L-1]	[%]	[µg L-1]	[µg L-1]
Sample 1	8.0 (0.4%)	200 (9.8%)	57.6	35.2 (1.7%)	163 (8.0%)
Sample 2	7.8 (0.6%)	160 (12.9%)	70.7	20.5 (1.6%)	129 (10.4%)
Sample 3	36.3 (2.0%)	194 (10.6%)	67.9	25.9 (1.4%)	145 (7.9%)
Sample 4	35.5 (2.0%)	179 (10.3%)	66.6	24.3 (1.4%)	132 (7.6%)
Sample 5	49.6 (3.4%)	145 (9.8%)	71.3	24.6 (1.7%)	136 (9.2%)

Ca	CF-DF method Part_fraction 1	CF-DF method Part_fraction 2	CF-DF method Mass balance	original method Part_fraction 1	original method Part_fraction 2
	$[\mu g L^{-1}]$	$[\mu g L^{-1}]$	[%]	$[\mu g L^{-1}]$	$[\mu g L^{-1}]$
Sample 1	69.9 (0.2%)	65.3 (0.2%)	105.8	765 (2.2%)	279 (0.8%)
Sample 2	57.4 (0.2%)	54.5 (0.1%)	104.0	786 (2.1%)	222 (0.6%)
Sample 3	65.4 (0.2%)	57.0 (0.2%)	105.9	783 (2.1%)	221 (0.6%)
Sample 4	58.6 (0.2%)	35.8 (0.1%)	101.0	785 (2.0%)	232 (0.6%)
Sample 5	59.8 (0.2%)	57.3 (0.2%)	98.7	774 (2.0%)	212 (0.5%)

Mn	CF-DF method Part. fraction 1 [µg L ⁻¹]	CF-DF method Part. fraction 2 $[\mu g L^{-1}]$	CF-DF method Mass balance [%]	original method Part. fraction 1 [µg L ⁻¹]	original method Part. fraction 2 [µg L ⁻¹]
Sample 1	0.4 (4.0%)	0.9 (10.2%)	23.4	1.1 (12.1%)	1.1 (12.9%)
Sample 2	0.3 (3.7%)	0.9 (11.0%)	21.6	0.5 (6.7%)	1.0 (12.7%)
Sample 3	0.4 (6.4%)	0.7 (11.0%)	21.0	0.4 (5.4%)	0.6 (9.3%)
Sample 4	0.3 (4.0%)	0.7 (8.6%)	18.6	0.3 (4.0%)	0.8 (9.5%)
Sample 5	0.4 (6.0%)	0.7 (10.1%)	18.4	0.3 (4.4%)	0.7 (9.6%)