ARTICLE

Supplementary material

Boltzmann plot

For the purposes of laser induced plasma temperature determination the well-known Boltzmann equation can be rewritten in the following form:

$$\ln \frac{{}^{q}I_{ij}^{S}}{g_{i}^{S}A_{ij}^{S}} = \frac{-E_{i}^{S}}{k_{B}T} + \ln \frac{n^{S}}{{}^{q}U^{S}(T)},$$
(1)

where ${}^{q}I_{ij}^{S}$ (photons cm⁻³ s⁻¹) is the intensity of atomic or ionic line of element S, q is the ionization stage, *i,j* are the indexes of the higher and lower energetic quantum states of the same ionization stage q, n^{S} (cm⁻³) is the total number density of species S, ${}^{A_{ij}}_{ij}$ (s⁻¹) is the transition probability of upper level of species S, ${}^{g_i}_{i}$ (dimensionless) is the statistical weight of upper level, ${}^{E_i}_{i}$ (eV) is the excitation energy of upper level, T (K) is the temperature, ${}^{K_B}_{B}$ (eVK⁻¹) is the Boltzmann constant and ${}^{q}U^{S}(T)$ (dimensionless) is internal partition function of selected species at temperature T (K):

$${}^{q}U^{S}(T) = \sum_{i} g_{i} e^{-E_{i}^{*}/k_{B}T}$$
(2)

If the left side of the equation (1) is represented as a function of energy of the upper level for different transitions the result should leads to a linear plot. The plasma temperature may be

Figure S1 Examples of Boltzmann plot in the SP LIBS, DP LIBS (pre-ablation and reheating) and 3P LIBS.

then obtained from the slope of the plot.

Table S1 List of Fe I spectral lines utilized for Boltzmann plot					
Central_wavelength	Ek (eV)	Ak*g (s⁻¹)			
367.9913	3.37	12400000			
368.7456	4.22036	72000000			
371.9934	3.332	178000000			
372.2563	3.4169	24800000			
372.7618	4.2833	112000000			
373.4863	4.1777	991000000			
373.7131	3.3683	127000000			
374.3361	4.3013	78000000			
374.9485	4.2204	687000000			
375.8232	4.2562	444000000			
376.3788	4.2833	272000000			
376.5538	6.5283	1430000000			
375.8232	4.2562	444000000			
382.0425	4.1034	60000000			
382.7822	4.7955	525000000			
387.2501	4.1909	52500000			
389.9707	3.2657	12900000			
390.2945	4.7331	150000000			
400.5242	4.652	102000000			
404.5812	4.5485	776000000			
406.3594	4.6076	466000000			

Signal enhancement

Table S2 Signal enhancement as a ratio of both DP LIBS configurations and 3P LIBS spectral line intensity to corresponding spectral line intensity of SP LIBS.

	Signal enh	Upper		
Wavelength	Pre-	Re-	3P LIBS	level
(nm)	ablation	heating		energy
				(eV)
Fe I 367.99	14±2	11±4	44±6	3.37
Fe I 368.75	17±3	13±6	53±8	4.22
Fe I 372.25	22±2	14±6	55±8	3.41
Fe I 372.76	23±2	17±5	67±6	4.28
Fe 373.71	63±2	21±5	108±7	4.3
Fe I 382.78	34±3	19±3	80±11	4.10
Fe I 387.25	11±5	10±2	36±5	3.26
Fe I 389.97	27±2	23±6	86±7	4.19
Fe I 390.29	15±3	13±3	49±6	3.22

ARTICLE

Fe I 404.58	43±3	24±5	85±9	4.65
Fe I 406.36	36±3	22±5	85±10	4.54
Fe II 259.94	196±7	138±7	243±15	12.5
Fe II 261.38	190±8	98±6	228±12	12.69
Mn I 403.08	31±2	14±5	60±7	3.07
Cr I 425.43	20±3	11±5	53±7	2.91
Cu I 324.75	28±3	25±4	74±6	3.81
Ni I 341.476	25±2	14±5	63±8	3.65

Crater diameters

Figure S2 Pictures of ablation craters obtained from 3D optical microscope. Crater on right site is for 3P LIBS with 10 mJ laser pulse energy and the crater on the left is for SP LIBS with 100 mJ. The optical emission intensity from both laser-induced plasmas is comparable. Under each ablation crater is the X axis profile.