High-sensitivity determination of Cd isotopes of low-Cd geological samples by double spike MC-ICP-MS

Decan Tan^{a, c}, Jian-Ming Zhu^{b*}, Xiangli Wang^{d, e}, Guilin Han^b, Zhuo Lu^b, Wenpo Xu^{a, c}

- ^a State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- ^b State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
- ^cUniversity of Chinese Academy of Sciences, Beijing 100049, China
- ^d Department of Marine Sciences, University of South Alabama, Mobile, AL 36688, USA
- ^e Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA

* Corresponding author: Jian-Ming Zhu

Phone: 86-010-82322832; E-mail: jmzhu@cugb.edu.cn

Doforonao	Dosin*	Sample time	The lowest Cd in	Blank	Yield
	Kesin"	Sample type	Sample (µg g ⁻¹)	ng	(%)
Single-column purification sc	heme				
Cloquet <i>et al.</i> (2005) ³⁶	AGMP-1M	Geological samples	4	0.2	>95
Cloquet <i>et al.</i> (2006) ³⁰	AGMP-1M	Soil	2	0.2	-
Gao et al.(2008) ³⁷	AGMP-1M	Sediment	23	0.2	>90
Conway et al. (2013) ¹⁶	Nobias PA-1	Seawater		0.004	n.d.
	AGMP-1M				
Pallavicini et al. (2014) ³⁸	AGMP-1M	Environmental samples	0.07	n.d.	>95
Wei <i>et al.</i> (2015) ³⁹	AGMP-1M	Plant	0.37	n.d.	>95
Zhang et al.(2018) ⁴¹	AGMP-1M	Carbonates	33	< 0.07	>90
Yang et al. (2019) ⁴⁰	AGMP-1M	water and Sediment	18	n.d.	>97
Two-column purification sch	eme				
Wombacher et al. (2003) ¹¹	AG1-X8	Chondrites, Basalt, etc.	n.d.	< 0.02	n.d.
	TRU Spec				
Horner et al. (2010) ¹²	AG1-X8	Fe-Mn crusts	1.7	0.005	n.d.
	TRU Spec				
Gault-Ringold et al.(2012) ¹⁴	AG1-X8	Seawater		0.055	>90
	TRU-Spec				
Xue <i>et al.</i> (2012) 13	4G1-X8	Seawater		0.02-	>85
Aue <i>ei ui</i> . (2012)	101-10	Seawater		0.03	- 05
	TRU Spec				
Kruijer et al. (2013) ⁴³	AG1-X8	Meteorite	0.0004	0.03	>80
	TRU-Spec				
Martinková et al. (2015) ¹⁹	AG-1- X8	Environmental samples	5.24	n.d.	>94
	TRU Spec				
	into spee			< 0.53	
Wiggenhauser et al. (2016) ⁴⁴	AG1-X8	Plant	-	0.00	-
	TRU Spec				
Fouskas <i>et al.</i> (2018) ⁴⁵	AG1-X8	Plant	0.1	-	95
	TRU-Spec				
Other purification scheme for	r TIMS				
Schmitt <i>et al.</i> (2009) ⁵⁶	AG1-X8	Basalt, Sulphides	0.1	< 0.16	n.d.
Abouchami <i>et al.</i> (2011) ²⁹	AG1-X8	Seawater	-	0.015	96
Hohl <i>et al.</i> (2017) ²¹	AG1-X8	Carbonates	0.02		

Table S1 Reported methods and the total procedural blanks for Cd separation

* AG-x8 contains two different mesh, such as 100-200 mesh and 200-400 mesh

Sample	Cd	
name	(µg g ⁻¹)	Description
BCR-2	0.69	Columbia River basalt
BHVO-2	0.15	Hawaiian volcanic basalt
SGR-1b	0.90	Petroleum and carbonate-rich shale from the Mahogany zone of the Green River Formation
NOD-A-1	6.50	Manganese nodules from the Atlantic Oceans at a depth of 788 meters
NOD-P-1	22.30	Manganese nodules from the Pacific Oceans at a depth of 4,300 meters
SRM 2711a	54.10	Montana II Soil
GSS-1	4.30	Brown soil from Xilin Lead-Zinc Mine, Heilongjiang Province, China
GSS-4	0.35	Limestone weathered soil in Yishan, Guangxi Province, China
GSS-5	0.45	Yellow-red soil in Qibaoshan skarn copper polymetallic ore district, Hunan Province, China
GSS-14	0.20	Agricultural soil of a tillage layer form sichuan basin, Sichuan Province, China
GSD-5a	1.37	River sediment from Tongling skarn copper mining area, Anhui Province, China
GSD-6	0.43	River sediment from Zhadou porphyry copper mining area, Qinghai Province, China
GSD-7a	5.60	River sediment from Kaiyuan lead zinc mining area, Liaoning Province, China
GSD-10	1.12	River sediment from Yishan carbonate area, Guangxi Province, China
GSD-11	2.30	River sediment from Shizhuyuan polymetallic mining area, Hunan Province, China
GSD-12	4.00	River sediment from Yangchun polymetallic mining area in Guangdong Province, China
GSD-17	4.30	River sediment from Xiaoxilin lead zinc mining area, Yichun, Heilongjiang Province, China
GSD-21	0.76	River sediment from Xiaorequanzi copper mining area, Turpan, Xinjiang Province, China
GSD-23	4.80	River sediment from Yinshan polymetallic mining area, Dexing, Jiangxi Province, China
GSH-1	0.38	Shrub branches and leaves from Xitieshan lead zinc mining area, Qinghai Province, China
GSV-2	0.11	Human hair from Langfang City, Hebei Province, China

Table S2 The description of geological reference materials

Table S3 Calibrated isotope ratios of the double spike and NIST SRM 3108 using ¹⁰⁷Ag/¹⁰⁹Ag

	¹⁰⁶ Cd/ ¹¹⁰ Cd	¹⁰⁸ Cd/ ¹¹⁰ Cd	¹¹¹ Cd/ ¹¹⁰ Cd	¹¹² Cd/ ¹¹⁰ Cd	¹¹³ Cd/ ¹¹⁰ Cd	¹¹⁴ Cd/ ¹¹⁰ Cd	¹¹⁶ Cd/ ¹¹⁰ Cd
Double spike	0.022118	0.03056	59.02343	1.905029	38.08632	0.854083	0.0523
NIST SRM 3108	0.099814	0.071194	1.026207	1.932893	0.980063	2.303989	0.601450

=1.076378 to correct for instrument mass bias.

Sample	Data origin	Mg/Cd	Fe/Cd	Zn/Cd	Ga/Cd	Ge/Cd	Zr/Cd	Mo/Cd	Pb/Cd
BHVO-2	Jochum <i>et al.</i> (2016) ⁶⁴	197727	410455	472	97.1	7.42	778	18.5	7.51
BCR-2	Jochum <i>et al</i> . (2016) ⁶⁴	67500	301219	405	69	4.56	583	783	34.2
NOD-A-1	USGS	5490	21081	114	-	-	-	86.5	163
NOD-P-1	USGS	5130	15052	415	-	-	-	197	145
SGR-1b	USGS	40985	32631	114	18.5	-	81.5	53.8	58.5
2711a	NIST	5130	15052	415	-	-	-	197	145
GSS-1	GGE	7145	23901	447	12.6	0.88	161	0.92	64.5
GSS-4	IGGE	9188	225313	656	96.9	5.94	1563	8.13	181
GSS-5	IGGE	9385	226513	1267	82.1	6.67	697	11.8	1415
GSS-14	IGGE	60000	196000	505	98.9	7.47	1195	3.42	163
GSD-5a	IGGE	6242	29750	212	15.1	1.28	222	1.32	82.3
GSD-6	IGGE	2896	5649	151	2.78	0.22	35.5	0.16	107
GSD-7a	IGGE	41860	95721	335	38.8	3.02	395	17.9	62.8
GSD-10	IGGE	947	35553	61	24.3	0.53	92.1	1.58	35.5
GSD-11	IGGE	5027	41527	504	25.3	2.45	207	7.97	859
GSD-12	IGGE	1492	18074	263	7.46	0.99	124	4.34	151
GSD-17	IGGE	2005	8850	150	4.59	0.3	56.7	0.41	88.3
GSD-21	IGGE	16986	47324	407	22.1	1.49	252	2.39	36.6
GSD-23	IGGE	1834	12066	214	5.26	0.43	58.9	0.38	30.8
GSH-1	IGGE	0.36	540	1900	-	-	-	0.73	88
GSV-2	GGE	0.92	2058	106	-	-	-	0.54	90.4

Table S4 Ratios of matrix elements and cadmium in different types of samples

Standard solution	Reference	$\delta^{114/110}Cd$	2SD	N ^b	Method	Instrument
NIST 3018	This study	0.000	0.064	31	¹¹¹ Cd- ¹¹³ Cd DS	Nu II
	This study	0.000	0.034	181°	¹¹¹ Cd- ¹¹³ Cd DS	Nu III/ NP
	Average	0.000	0.040	212		
NIST	This study	0.014	0.048	9	¹¹¹ Cd- ¹¹³ Cd DS	Nu II
3018_{ICL}	This study	0.003	0.035	13	¹¹¹ Cd- ¹¹³ Cd DS	Nu III/ NP
	Average	0.007	0.041	22		
Münster Cd	This study	4.471	0.072	7	¹¹¹ Cd- ¹¹³ Cd DS	Nu II
	This study	4.457	0.028	12	¹¹¹ Cd- ¹¹³ Cd DS	Nu III/ NP
	Average	4.461	0.047	19		
	Cloquet et al. (2005) ³⁶	4.499ª	0.004		SSB	GV
	Ripperger and	4 4078	0.120		110Cd 111Cd DS	Nu I
	Rehkämper,(2007) ³⁵	4.49/*	0.120		Cu- Cu DS	INU I
	Gao et al.(2008) ³⁷	4.467 ^a	0.130		SSB	GV
	Schmitt et al.(2009a) 36	4.446 ^a	0.017		¹⁰⁶ Cd- ¹⁰⁸ Cd DS	TIMS
	Schmitt et al.(2009b) 62	4.443 ^a	0.017		¹⁰⁶ Cd- ¹⁰⁸ Cd DS	TIMS
	Abouchami et al.(2012) ⁵⁰	4.499	0.050			
	Gault-Ringold et al. (2012) ¹⁴	4.51	0.130	12	¹¹⁰ Cd- ¹¹¹ Cd DS	Nu I
	Xue et al. (2012) ¹³	4.531 a	0.050		¹¹¹ Cd- ¹¹³ Cd DS	Nu I
	Conway et al. (2013) ¹⁶	4.486	0.060		¹¹⁰ Cd- ¹¹¹ Cd DS	NP
	Fouskas et al. (2018) ³⁵	4.54	0.130	6	Ag correction	Nu I
	Zhang et al. (2018) ⁴¹	4.4.6	0.060		SSB	NP
	Yang et al. (2019) ⁴⁰	4.4.3	0.060		SSB	NP
	Liu et al. (2019) ⁴⁶	4.455	0.047		¹¹¹ Cd- ¹¹³ Cd DS	NP
BAM-I012	This study	-1.336	0.064	9	¹¹¹ Cd- ¹¹³ Cd DS	Nu II
	This study	-1.323	0.028	12	¹¹¹ Cd- ¹¹³ Cd DS	Nu III/ NP
	Average	-1.329	0.045	21		
	Ripperger and	1 270 a	0.110		110Cd 111Cd DS	Nu I
	Rehkämper,(2007) ³⁵	-1.578	0.110		Cu- Cu DS	Inu I
	Shiel et al.(2009) 59	-1.251	0.035		SSB	Nu I
	Schmitt et al.(2009a)56	-1.313 ^a	0.013		¹⁰⁶ Cd- ¹⁰⁸ Cd DS	TIMS
	Horner <i>et al.</i> (2011) ¹²	-1.296 a	0.090		¹¹¹ Cd- ¹¹² Cd DS	Nu I
	Abouchami et al.(2012)50	-1.332	0.040			
	Gault-Ringold et al.(2012) ¹⁴	-1.360	0.140		¹¹⁰ Cd- ¹¹¹ Cd DS	Nu I
	Xue <i>et al.</i> (2012) ¹³	-1.329 a	0.080		¹¹¹ Cd- ¹¹³ Cd DS	Nu I
	Gao <i>et al.</i> (2013) ³⁷	-1.260 ^a	0.100		SSB	GV
	Lambelet <i>et al.</i> (2013) ¹⁷	-1.330	0.100		¹¹¹ Cd- ¹¹³ Cd DS	Nu I
	Fouskas <i>et al.</i> (2018) ⁴⁵	-1.340	0.150		Ag correction	Nu I
	Li et al.(2018) ⁴²	-1.310	0.090		SSB	NP
	Liu et al. (2019) ⁴⁶	-1.325	0.043		¹¹¹ Cd- ¹¹³ Cd DS	NP

Table S5	Ed isotopic compositions of common standard solution	ns
C/ 1 1		

1 abic 55 (coma.j					
Standard solution	Reference	$\delta^{114/110}Cd$	2SD	N ^b	Method	Instrument
Spex Cd- CUGB	This study	-2.138	0.065	5	¹¹¹ Cd- ¹¹³ Cd DS	Nu II
	This study	-2.117	0.040	13	¹¹¹ Cd- ¹¹³ Cd DS	Nu III/ NP
	Average	-2.121	0.0420	18		
	Li et al. (2018) ⁴²	-2.13	0.090	74	SSB	NP

 Table S5 (Contd.)

*: The $\delta^{114/110}$ Cd values in previous studies were recalculated relative to NIST SRM 3108, according to Abouchami *et al.* (2012)⁵⁰.

b: The number repeated measurements.

•: Data include measuring at concentrations of 5ng mL⁻¹, 10 ng mL⁻¹, 20 ng mL⁻¹ and 25 ng mL⁻¹ (0.000 ± 0.030 %, 2SD,n=64)for NP, and 25 ng mL⁻¹ (0.000 ± 0.030 %, 2SD,n=55)and 50 ng mL⁻¹ for Nu III.

Fig. S1 Elution curves of the Cd purification procedures using AG-MP-1M anion exchange resin

Fig. S2 Effectiveness of purification procedures at removing matrix elements for BHVO-2 (A and B) and SGR-1b (C and D). X denotes a matrix element, and X/Cd is the concentration ratio of matrix elements to Cd. Figures A and C shows the value of X/Cd before purification and figures B and D is the ratios after purification.

Fig. S3 The effects of Ge and Fe on measured $\delta^{114/110}$ Cd. The gray band is the average external precision on Nu II, Nu III and Neptune Plus (±0.040‰)

