1	Supporting Information
2	Supporting mormation
4	
5	High-precision cerium isotope analysis by thermal
6	ionization mass spectrometry using the Ce ⁺ technique
7	
8	
9	1 1*
10	Xuepeng Shao ¹ , Wenting Bu ¹ , Yichen Fan ² , Kaiming Long ¹ , Hongmei
11	Yang', Lei Tang', Changming Cheng', Xuemei Liu', Fanhua Hao'
12	
13	
14	
15	
16	¹ Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics,
17	Mianyang, 621999, China
18	² Research Center of Laser Fusion, China Academy of Engineering Physics,
19	Mianyang, 621999, China
20	³ Laboratory of Isotope Geochemistry, Wuhan Centre of China Geological Survey,
21	Wuhan, 430205, China
22	
23	
24	
25	
26	
27	
28	
29	
30	*Corresponding author: <u>wtbu@caep.cn</u>

Reference	Sample	Ion species	Loading method	Ce amount (µg)	Measured ratio	Values	2SD	External precision (2RSD, ppm)
Tanaka et al1982[1]	JMC 304	CeO^+	Triple Re	_	¹³⁸ Ce/ ¹⁴² Ce	0.0228559	0.0000011	48 (n = 15)
Shimizu et al1984[2]	JMC 304	CeO^+	Triple Re	5	¹³⁸ Ce/ ¹⁴² Ce	0.0228559	0.0000011	48
Nakamura et al1984[3]	ALD Standard	CeO^+	Double Ta	0.15-2	¹³⁸ Ce/ ¹⁴⁰ Ce	0.00284178	0.00000011	39 (n = 15)
Makishima et al1991[4]	JMC 304	CeO^+	Double $Re + H_3PO_4$	1	¹³⁸ Ce/ ¹⁴² Ce	0.0225685	0.0000019*	84 (n = 16)
Amakawa et al1996[5]	JMC 304	CeO^+	Double $Re + H_3PO_4$	1-5	¹³⁸ Ce/ ¹⁴² Ce	0.0225694	0.0000011*	49 (n = 12)
Tanimizu et al2004[6]	JMC 304	CeO^+	Triple $Re + H_3PO_4$	1.5	¹³⁸ Ce/ ¹⁴² Ce	0.0225889	0.0000013	58 (n = 21)
Hayashi et al2004[7]	JMC 304	CeO^+	-	—	¹³⁸ Ce/ ¹⁴² Ce	0.0225771	0.0000034*	151
Tazoe et al2007[8]	JMC 304	CeO^+	Double $Re + H_3PO_4$	2	¹³⁸ Ce/ ¹⁴² Ce	0.0225688	0.0000014*	62 (n = 22)
Tazoe et al2007[9]	JMC 304	CeO^+	Double $\text{Re} + \text{H}_3\text{PO}_4$	10	¹³⁸ Ce/ ¹⁴² Ce	0.0225698	0.0000009*	40 (n = 5)
Willbold-2007[10]	AMES	CeO^+	Double Re	1-2	¹³⁸ Ce/ ¹³⁶ Ce	1.33738	0.00003	23 (n = 34)
Doucelance et al2014[11]	AMES	CeO^+	Double Re	1	¹³⁸ Ce/ ¹⁴² Ce	0.0225747	0.0000010	44 (n = 53)
Bellot et al2015[12]	JMC 304	CeO^+	Double $Re + H_3PO_4$	1	¹³⁸ Ce/ ¹⁴² Ce	0.0225706	0.0000009	40 (n = 10)
Bellot et al2015[12]	AMES	CeO^+	Double $Re + H_3PO_4$	1	¹³⁸ Ce/ ¹⁴² Ce	0.0225746	0.0000011	49 (n = 15)
Willig et al2018[13]	AMES	CeO^+	Double $Re + H_3PO_4$	1-1.5	¹³⁸ Ce/ ¹³⁶ Ce	1.337332	—	33
Bonnand et al2019[14]	AMES	CeO^+	Double $Re + H_3PO_4$	0.75	¹³⁸ Ce/ ¹⁴² Ce	0.0225743	0.0000007	31 (n = 25)
Bonnand et al2019[14]	LMV	CeO^+	Double $\text{Re} + \text{H}_3\text{PO}_4$	0.75	¹³⁸ Ce/ ¹⁴² Ce	0.0225705	0.0000006	27 (n = 48)
Shimizu et al1992[15]	JMC 304	Ce^+	-	—	¹³⁸ Ce/ ¹⁴² Ce	0.0225777	0.0000116*	517 (n = 34)
Xiao et al1994[16]	JMC 304	Ce^+	Single Ta	20	¹⁴² Ce/ ¹⁴⁰ Ce	0.125228	0.000052	415 (n = 8)
Chang et al1995[17]	USSR Standard	Ce^+	Double Re	4	¹⁴⁰ Ce/ ¹⁴² Ce	0.0046067	0.0000018	391 (n = 6)
Willbold-2007[10]	AMES	Ce^+	Double $Re + H_3PO_4$	1-3	¹³⁸ Ce/ ¹³⁶ Ce	1.33733	0.00045	335 (n = 24)
This study	JMC 304	Ce^+	Single Re + TaF ₅	2	¹³⁸ Ce/ ¹⁴² Ce	0.0225768	0.0000011	49 (n = 10)
This study	JMC 304	Ce^+	Single Re + TaF ₅	2	¹³⁸ Ce/ ¹³⁶ Ce	1.33735	0.00007	52 (n = 10)
This study	JMC 304	Ce^+	Single Re + TaF ₅	2	¹³⁸ Ce/ ¹⁴⁰ Ce	0.00284296	0.00000010	36 (n = 10)

31	Table S1.	Results of (Ce isotope	ratios foi	reference	materials	together	with da	ata from	the	literatures
----	-----------	--------------	------------	------------	-----------	-----------	----------	---------	----------	-----	-------------

32 *The standard deviation (σ) is recalculated from the raw data, for the analytical precision in the literature is given by: $2\sigma_m = 2\sigma/\sqrt{n}$, where σ and n denote the standard deviation 33 and the number of scans for a single analysis, respectively.

Sample	¹³⁸ Ce/ ¹⁴² Ce	¹³⁸ Ce/ ¹³⁶ Ce	¹³⁸ Ce/ ¹⁴⁰ Ce	ε (¹³⁸ Ce/ ¹⁴⁰ Ce) _{CHUR}
1# UO	0.0225684	1.33695	0.00284122	-1.36
	0.0225679	1.33696	0.00284117	-1.54
	0.0225676	1.33700	0.00284125	-1.26
	0.0225687	1.33702	0.00284127	-1.19
	0.0225682	1.33698	0.00284120	-1.43
	0.0225678	1.33699	0.00284122	-1.36
Mean ± 2 SD	0.0225681±8	1.33698±5	0.00284122±7	-1.36±0.25
2# UO	0.0225672	1.33695	0.00284116	-1.57
	0.0225659	1.33690	0.00284103	-2.03
	0.0225673	1.33691	0.00284092	-2.42
	0.0225681	1.33693	0.00284115	-1.61
	0.0225677	1.33701	0.00284106	-1.92
	0.0225665	1.33689	0.00284098	-2.21
Mean ± 2 SD	0.0225671 ± 16	1.33693±9	0.00284105±19	-1.96±0.67
3# UO	0.0225723	1.33723	0.00284173	+0.43
	0.0225728	1.33721	0.00284170	+0.33
	0.0225734	1.33727	0.00284181	+0.71
	0.0225725	1.33722	0.00284171	+0.36
	0.0225721	1.33721	0.00284169	+0.29
	0.0225724	1.33719	0.00284167	+0.22
Mean ± 2SD	0.0225726±9	1.33722±5	0.00284172 ± 10	+0.39±0.35
4# UO	0.0225684	1.33691	0.00284117	-1.54
	0.0225675	1.33692	0.00284107	-1.89
	0.0225687	1.33700	0.00284125	-1.26
	0.0225672	1.33693	0.00284109	-1.82
	0.0225670	1.33695	0.00284114	-1.64
	0.0225683	1.33702	0.00284127	-1.19

Table S2. Analytical results of Ce isotopic ratios of uranium ore samples in detail.

Mean ± 2SD	0.0225679 ± 14	1.33696±9	0.00284117±16	-1.55±0.56
5# UO	0.0225703	1.33706	0.00284148	-0.45
	0.0225688	1.33708	0.00284137	-0.83
	0.0225694	1.33700	0.00284135	-0.90
	0.0225702	1.33704	0.00284150	-0.38
	0.0225698	1.33706	0.00284141	-0.69
	0.0225696	1.33699	0.00284135	-0.90
Mean ± 2 SD	0.0225697 ± 11	1.33704±7	0.00284141±13	-0.69±0.46
6# UO	0.0225681	1.33713	0.00284139	-0.76
	0.0225690	1.33716	0.00284131	-1.04
	0.0225694	1.33711	0.00284137	-0.83
	0.0225682	1.33710	0.00284135	-0.90
	0.0225691	1.33707	0.00284122	-1.36
	0.0225687	1.33706	0.00284126	-1.22
Mean ± 2 SD	0.0225688 ± 10	1.33711±7	0.00284132 ± 13	-1.02±0.46
7# UO	0.0225759	1.33732	0.00284216	+1.95
	0.0225768	1.33745	0.00284222	+2.16
	0.0225749	1.33736	0.00284201	+1.42
	0.0225753	1.33733	0.00284196	+1.24
	0.0225761	1.33741	0.00284220	+2.09
	0.0225773	1.33739	0.00284206	+1.59
Mean ± 2 SD	0.0225761 ± 18	1.33738±10	0.00284210±21	+1.74±0.74
8# UO	0.0225702	1.33698	0.00284132	-1.01
	0.0225686	1.33696	0.00284119	-1.47
	0.0225695	1.33705	0.00284139	-0.76
	0.0225710	1.33706	0.00284150	-0.38
	0.0225694	1.33701	0.00284126	-1.22
	0.0225690	1.33709	0.00284141	-0.69
Mean ± 2 SD	0.0225696 ± 17	1.33703±10	0.00284135±22	-0.92±0.77

40 Fig. S1. Chemical procedure for the determination of Ce isotopes in powder samples.

Fig. S2. Optical image and SEM images of FPIE after sintering atop a single rhenium
filament. The SEM analysis was carried out using Zeiss-Supra 55, and the pores are
50-100 μm in diameter.

48

49	References
----	------------

- 50
- 1. T. Tanaka and A. Masuda, *Nature*, 1982, **300**, 515-518.
- 52 2. H. Shimizu, T. Tanaka and A. Masuda, *Nature*, 1984, **307**, 251-252.
- 53 3. N. Nakamura, M. Tatsumoto and K. R. Ludwig, J. Geophys. Res., 1984, 89, 438-444.
- 54 4. A. Makishima and E. Nakamura, *Chem. Geol.*, 1991, **94**, 1-11.
- 55 5. H. Amakawa, Y. Nozaki and A. Masuda, *Chem. Geol.*, 1996, **131**, 183-195.
- 56 6. M. Tanimizu, T. Hayashi and T. Tanaka, J. Mass Spectrom. Soc. Jpn., 2004, 52,
 57 177-181.
- 58 7. T. Hayashi, M. Tanimizu and T. Tanaka, *Precambrian Res.*, 2004, **135**, 345-357.
- 8. H. Tazoe, H. Obata, H. Amakawa, Y. Nozaki and T. Gamo, *Mar. Chem.*, 2007, 103,
 1-14.
- 61 9. H. Tazoe, H. Obata and T. Gamo, J. Anal. At. Spectrom., 2007, 22, 616-622.
- 62 10. M. Willbold, J. Anal. At. Spectrom., 2007, 22, 1364-1372.
- 63 11. R. Doucelance, N. Bellot, M. Boyet, T. Hammouda and C. Bosq, *Earth Planet. Sci.*64 *Lett.*, 2014, **407**, 175-186..
- 12. N. Bellot, M. Boyet, R. Doucelance, C. Pin, C. Chauvel and D. Auclair, *Geochim. Cosmochim. Acta*, 2015, 168, 261-279.
- 67 13. M. Willig and A. Stracke, *Chem. Geol.*, 2018, **476**, 119-129.
- 14. P. Bonnand, C. Israel, M. Boyet, R. Doucelance and D. Auclair, *J. Anal. At. Spectrom.*,
 2019, 34, 504-516.
- 15. H. Shimizu, H. Sawatari, Y. Kawata, P. N. Dunkley and A. Masuda, *Contrib. Mineral.*
- 71 *Petrol.*, 1992, **110**, 242-252.

- 72 16. Y. K. Xiao, W. G. Liu and Y. M. Zhou, Int. J. Mass Spectrom. Ion Processes, 1994,
 73 136, 181-189.
- 17. T. L. Chang, Q. Y. Qian, M. T. Zhao, J. Wang and Q. Y. Lang, Int. J. Mass Spectrom.
- 75 *Ion Processes*, 1995, **142**, 125-131.