Traction microscopy with integrated microfluidics: responses of the multicellular island to gradients of HGF

Hwanseok Jang,^{‡a} Jongseong Kim,^{‡a} Jennifer H. Shin,^b Jeffrey J. Fredberg,^c Chan Young Park ^{*c} and Yongdoo Park ^{*a}

^a Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.

^b Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

^c Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.

[‡]These authors (H. Jang and J. Kim) contributed equally to this work.

^{*}To whom correspondence should be addressed:

cypark@hsph.harvard.edu and ydpark67@korea.ac.kr

SUPPORTING INFORMATION

Movie 1. (a) Concentration gradient visualized by fluorescence intensities of Rhodamineconjugated dextran which has a similar molecular weight with HGF (70 kDa). (b) Bright field images of MDCK cell islands and their expansion responding to HGF concentration for 500 min.

Figure S1. Concentration gradients depending on flow rate and gradient stability over time. (a) Gradients visualized by fluorescence images of Rhodamine-conjugated dextran (70 kDa) introduced at the left channel under 0.1 μ l/min or 0.5 μ l/min of fluid flow. (b) The intensity profiles of the fluorescence images under 0.1 μ l/min or 0.5 μ l/min of fluid flow. (c) Variation of concentration difference over time in each column in the box shown in Fig. 2b.

Figure S2. Variability of speed, traction, and tension of 4 separate experiments. Each red dot is the average of ratios between left half and right half of an island in each left, middle and right columns. Each column has 6 islands. Green line and red line indicate the mean and median value of these red dots, respectively. (a) speed. (b) the magnitude of traction. (c) the magnitude of tension.

