
Supplementary information

S1 Fabrication process of the ACMC

Figure S1 Schematic diagram of the fabrication process of the ACMC.

Figure S1 shows the fabrication process of the ACMC with each layer of the ACMC been 
fabricated from PMMA sheets (Asahi, Kasei) using CO2 laser ablation process. Within the 
experiments, the commercially available CO2 ablation system with a 50w laser generator (JinBoshi 
JBSCO2-50) was used and the laser system is equipped with a laser head containing a field lens and 
two swivel-mounted mirrors. The lens can focus the laser beam to a 0.05mm diameter spot at a 
focal distance of 30mm. For the microchannel layer, the pattern of the microchannel and the 
microlens was scanned through the 500µm thick PMMA sheet, producing microfluidic channel and 
the microlens of a height dictated by this thickness. The CO2 laser scanning speed was 40mm/s and 
the laser power was 25w. Subsequent to the CO2 laser ablation process, microchannel side walls 
and the microlens surface were sequentially sanded with 800, 1000 and 2000 grit sandpapers and 
finally polished with a specialized polymer polishing paste (SONAX30500, Germany). For the 
cover layer and the substrate layer, the CO2 laser scanned the outline of the microchannel onto the 
1mm thick PMMA sheet with the laser scanning speed of 20mm/s and the laser power of 30w. 
Under such laser parameters, the PMMA sheet was not cut through and a small bulge, which was 
called laser bulge (LB), was formed in the rim of the laser-ablated groove (LG). The LB was 
designed to be at a distance of 800µm from the microchannel. On one hand, the LB can concentrate 
the ultrasonic energy, which was prepared for the ultrasonic bonding process. On the other hand, 
during the ultrasonic bonding process, the melted LB can flow into the LG, avoiding the clog of the 
microchannel. After the laser ablation process, the three layers were stacked at the given sequence, 
put into the bonding clamp and bonded together with the pressure of 0.4MPa and ultrasonic time of 
1s using an ultrasonic bonding system (Dizo-ultrasonic NC-1800P). 
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S2 Fluorescence image processing method on the smartphone

Figure S2 shows the schematic diagram of the image analysis method. The image captured by the 
smartphone was compromised by a pixel matrix and the pixels are saved by 3 byte 24 bit, for 
example, the 16-23 bit representing red (R), the 8-15 bit representing green (G) and 0-7 bit 
representing blue (B). Therefore, first of all, a pixel point (i, j) is extracted from the image and the 
selected pixel is separated into RGB value according to their respective bit address mentioned 
above. Then the RGB value is converted into luminosity according to the expression: 
I=0.30R+0.59G+0.11B. Finally, the luminosity values of all the pixels are added and their average 
value is taken as the fluorescence intensity of the image. The code to accomplish the above 
functions is shown as follows.
private double[] getRGB(Bitmap bitmap) {

     int i=j=rgbG=rgbR=rgbB=rgbR=min=mix=0;
  double fluo =0;
  double A[] ;
  A=new double [5];

int width = bitmap.getWidth();//Image width
  int height = bitmap.getHeight();//Image Height
  for ( i = minx; i < width; i++) {  
  for ( j = miny; j < height; j++) {  
  int pixel = bitmap.getPixel(i, j);
  // Exact (i, j) and converted into RGB format
  rgbR =(pixel &0xff0000) >> 16;
  rgbG = (pixel & 0xff00) >> 8;
  rgbB = (pixel & 0xff); 
  RGBR=RGBR+rgbR;
  RGBG=RGBG+rgbG;
  RGBB=RGBB+rgbB;
  double fluo= (double)(0.3*rgbR+0.59*rgbG +0.11*rgbB);

      Fluo=Fluo+fluo;
         //Converted to luminosity
         Gray=Gray/(i*j);

  RGBR=RGBR/(i*j);
  RGBG=RGBG/(i*j);
  RGBB=RGBB/(i*j);
  A[0]=Gray;
  A[1]=Gray;
  A[2]=RGBR;



  A[3]=RGBG;
  A[4]=RGBB;
  return A;

  }

FI of (i, j)

………...…

………..……

Average FI
Pixel Matrix

Extract (i, j) Separate
Converted to 
luminosity

FI: Fluorescence Intensity

Figure S2 Schematic diagram of the image analysis method



S3 Matlab code for fluorescence intensity measurement

A MATLAB code was used to analyze the RGB value and fluorescence intensity of the images 
taken by a smartphone. The MATLAB code is shown below.
im=imread('1.jpg'); 
s=size(im);
R=im(:,:,1);
G=im(:,:,2);
B=im(:,:,3);
R=reshape(R,[s(1),s(2)]);
G=reshape(G,[s(1),s(2)]);
B=reshape(B,[s(1),s(2)]);
r=mean(mean(R)); 
g=mean(mean(G));
b=mean(mean(B)); 
I=0.3*r+0.59*g+0.11*b;
The following MATLAB code is used to generate the fluorescence intensity profile.
d=double(x3(:,:,1));
mesh(d);
a=double(x3(:,380,1));  
plot（a);



S4 Theoretical analysis for the geometry of the SOF lens

Figure S3 Theoretical analysis for the geometry of single lens.

Figure S3 shows the theoretical analysis for the geometry of the single lens. For the single lens, the 
derivation distance δL between the abaxial ray and the paraxial ray can be derived as follows. The 
symbols and their meanings during the derivation process can be seen in table S1.

Table S1 The symbols and their meanings for the single lens.

Symbol Meaning Unit

Ia Incident angle of the abaxial ray (o)

Ip Incident angle of the paraxial ray (o)

I’
a Refraction angle of the abaxial ray (o)

I’
p Refraction angle of the paraxial ray (o)

φa Radius angle of the abaxial ray (o)

φp Radius angle of the paraxial ray (o)

Ua Image aperture angle for the abaxial ray (o)

Up Image aperture angle for the paraxial ray (o)

R Radius of the lens (mm)

La Image distance of the abaxial ray (mm)

Lp Image distance of the paraxial ray (mm)

δL Derivation distance (mm)

n Refractive index -

From the refraction law, it can be known:
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From figure S3(a), it can be found:
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Insert Eq.(2) into Eq.(3), the image aperture angle for the abaxial ray Ua can be derived:
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In the same way, the length of  can be evaluated:AE
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From Eq.(6) and Eq.(7), the derivation distance δL can be given as:
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Figure S4 Theoretical analysis for the geometry of compound lens.

For the compound lens, the derivation distance δL2 is obtained using the analytic geometry method. 
The rectangular coordinate system is defined as shown in figure S4 and the meanings of the 



symbols are illustrated in table S2. It should be noted that because the thickness of the lens has little 
influence on the derivation distance δL2, here, we neglect the effect of lens thickness, considering 
that the light directly transfers to the second lens. 

Table S2 The symbols and their meanings for the compound lens.

Symbol Meaning Unit

Ia1 Incident angle of the abaxial ray (the first lens) (o)

Ip1 Incident angle of the paraxial ray (the first lens) (o)

I’
a1 Refraction angle of the abaxial ray (the first lens) (o)

Ia2 Incident angle of the abaxial ray (the second lens) (o)

Ip2 Incident angle of the paraxial ray (the second lens) (o)

I’
a2 Refraction angle of the abaxial ray (the second lens) (o)

φa2 Radius angle of the abaxial ray (the second lens) (o)

φp2 Radius angle of the paraxial ray (the second lens) (o)

Ua1 Image aperture angle for the abaxial ray (o)

R1 Radius of the lens (the first lens) (o)

R2 Radius of the lens (the second lens) (mm)

La2 Image distance of the abaxial ray (the second lens) (mm)

d The distance between the first and second lens (mm)

Lp2 Image distance of the paraxial ray (the second lens) (mm)

δL1 Derivation distance (the single lens) (mm)

δL2 Derivation distance (the compound lens) (mm)

n Refractive index -

Based on Eq.(6), the coordinate of point B can be obtained:
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Assuming that the analytic expression of line DB is y=kx+b, then
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Inserting the coordinate of point B (4) into the analytic expression of line DB, the intercept b can be 
obtained: 
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Then the analytic expression of line DB can be expressed as  
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Assuming that the equation of the second lens is
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Then inserting Eq.(12) into Eq.(13), the x coordinate of the intersection point can be evaluated:
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From figure S4, it can be seen that the x coordinate of point D can be expressed as
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Inserting Eq.(15) into Eq.(12), the y coordinated of point D can be obtained
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Then the coordinate of point D is 
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According to the coordinate of point D and point E (d+R2, 0), the slope of line DE can be expressed 
as:
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So, the radius angle of the abaxial ray (the second lens) can be given as
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Then, the incident and refraction angle of the abaxial ray (the second lens) can be yielded:
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In ，based on the Law of Sines, the length of  can be obtained:DEF AE
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For the paraxial ray, the derivation process is the same with the abaxial one. So the derivation 
process will not be repeated. And the length of  is directly given as:EG
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The derivation distance for the compound lens δL2 can be given as:
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From Eq.(25), it can be found when the Ia1, Ip1, n, R1, R2 and d are given, the derivation distance for 
the compound lens δL2 can be calculated.


