Supplementary material

Polycaprolactone enabled sealing and carbon composite electrode integration into electrochemical microfluidics

Kevin J. Klunder, *a,b Kaylee, Cynthia, a Kate berg, a Shelley D. Minteer, b and Charles S. Henry a

^aDepartment of Chemistry, Colorado State University, Fort Collins, CO 80523

^bDepartment of Chemistry, University of Utah, Salt Lake City, UT 84112

*Corresponding author

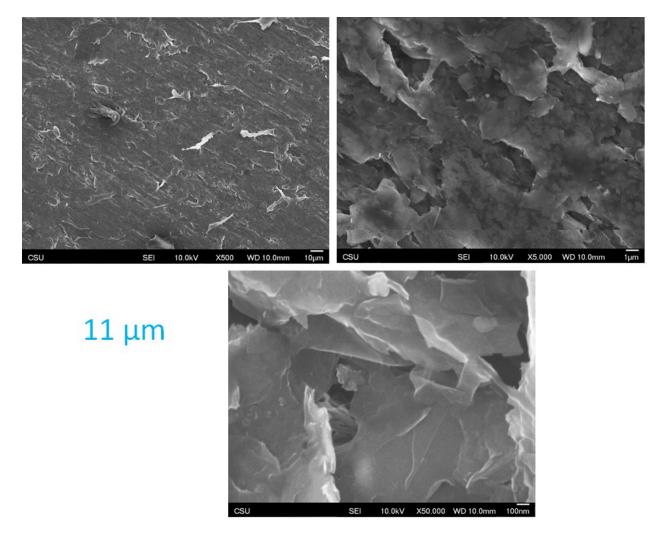


Figure S1 SEM images of a 1:2 11 µm electrode

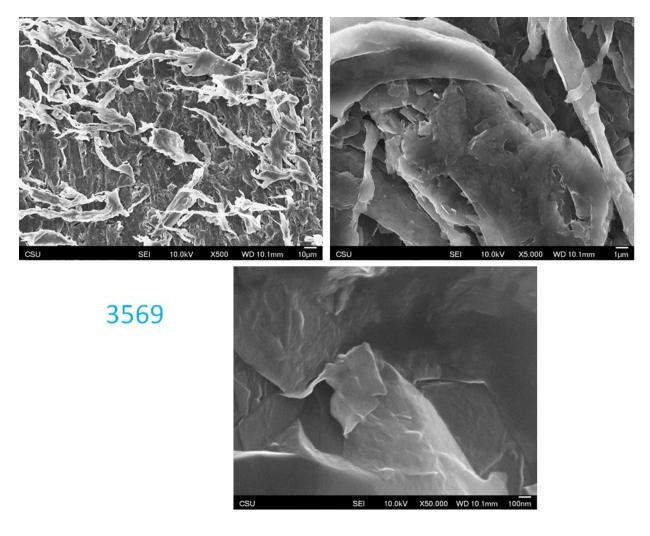


Figure S2 SEM images of a 1:2 3569 electrode

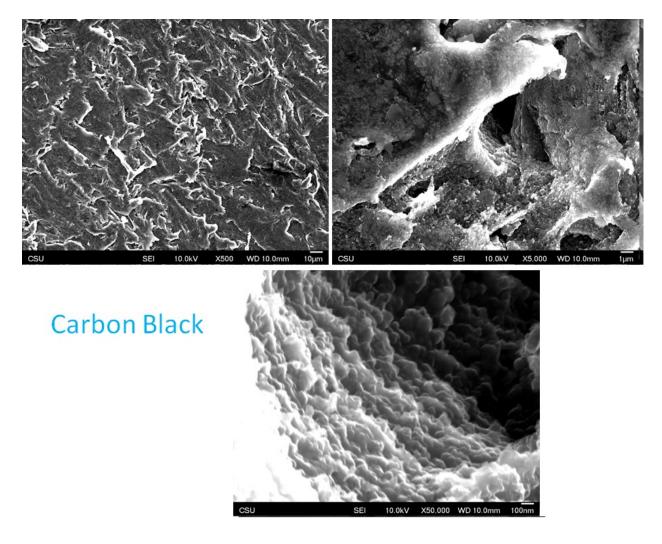
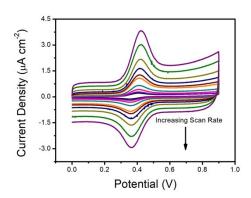



Figure S3 SEM images of a 3:4 Carbon Black electrode

Figure S4 Representative CV's for scan rate study for 1 mM FcTMA⁺ in 0.5 M KNO3 on 1:2 PCL:MG-1599 electrode (v = 25, 50, 100, 200, 400, 500, 700, 1000, 1500, 2000 mV/s).

Scan Rate (mV/s)	ΔE (mV)									
	1:2	1:4	1:2	1:4	1:2	1:4				
	PCL:11	PCL:11	PCL:3569	PCL:3569	PCL:MG-1599	PCL:MG-				
	micron	micron				1599				
25	56 ± 5	54 ± 2	50 ± 5	53 ± 3	55 ± 8	57 ± 6				
50	53 ± 4	55 ± 0	53 ± 8	58 ± 8	53 ± 5	56 ± 4				
100	56 ± 2	52 ± 6	53 ± 5	56 ± 1	46 ± 2	51 ± 5				
200	49 ± 2	52 ± 3	52 ± 9	54 ± 3	47 ± 3	51 ± 5				
400	54 ± 5	57 ± 4	51 ± 10	54 ± 4	55 ± 5	56 ± 2				
500	55 ± 3	58 ± 4	54 ± 10	59 ± 2	56 ± 3	59 ± 1				
700	56 ± 7	59 ± 1	51 ± 2	59 ± 2	55 ± 6	59 ± 1				
1000	63 ± 3	64 ± 4	59 ± 5	59 ± 4	56 ± 4	60 ± 2				
1500	61 ± 3	70 ± 1	61±6	67 ± 1	55 ± 3	65 ± 2				
2000	61 ± 1	70 ± 3	70 ± 4	64 ± 3	58 ± 1	66 ± 4				

Table S1 Scan rate study for 1 mM FcTMA+ in 0.5 M KNO₃, error from standard deviation of 3 different electrodes.

Scan Rate (mV/s)	ΔE (mV)							
	1:2	1:4	1:2	1:4	1:2	1:4		
	PCL:11	PCL:11	PCL:3569	PCL:3569	PCL:MG-	PCL:MG-		
	micron	micron			1599	1599		
25	72 ± 5	74 ± 4	77 ± 7	69 ± 2	75 ± 2	75 ± 7		
50	79 ± 7	76 ± 6	81 ± 8	73 ± 2	79 ± 3	79 ± 5		
100	85 ± 6	81 ± 5	88 ± 11	77 ± 2	84 ± 3	88 ± 6		
200	95 ± 6	86 ± 8	94 ± 14	83 ± 6	95 ± 5	98 ± 10		
400	107 ± 10	100 ± 8	103 ± 13	93 ± 6	106 ± 7	116 ± 10		
500	115 ± 9	103 ± 10	107 ± 13	97 ± 8	111 ± 10	119 ± 12		
700	121 ± 5	108 ± 7	111 ± 13	101 ± 9	119 ± 9	127 ± 13		
1000	131 ± 8	119 ± 8	110 ± 13	108 ± 10	128 ± 9	140 ± 15		
1500	136 ± 11	131 ± 6	116 ± 9	115 ± 15	132 ± 8	155 ± 19		
2000	142 ± 10	143 ± 9	124 ± 11	119 ± 19	135 ± 9	163 ± 17		

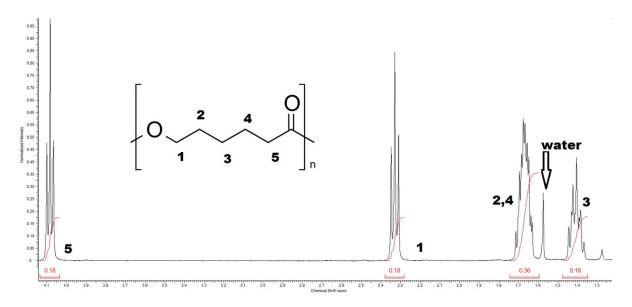
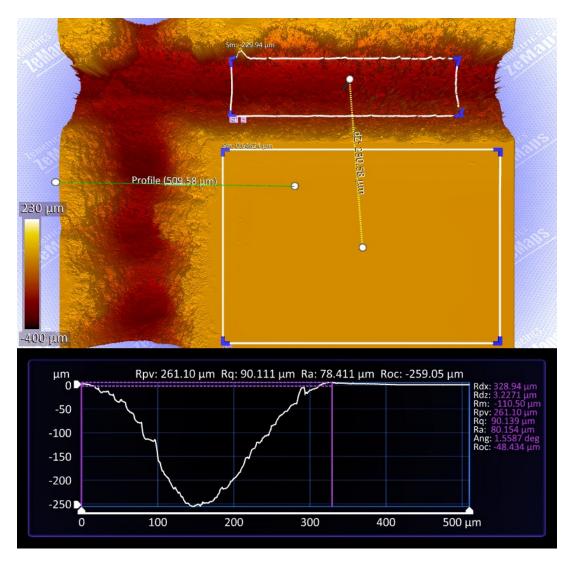
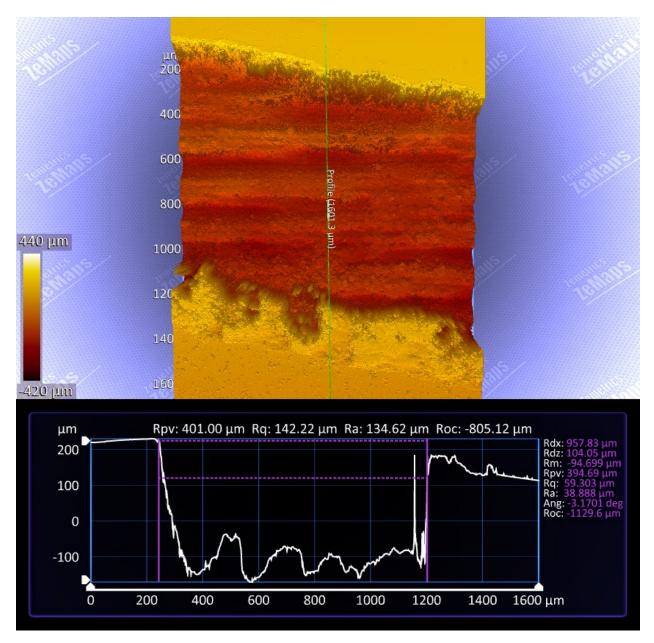
Table S2 Scan rate study for 5 mM ferri/ferrocyanide in 0.5 M KNO₃, error from standard deviation of 3 different electrodes.

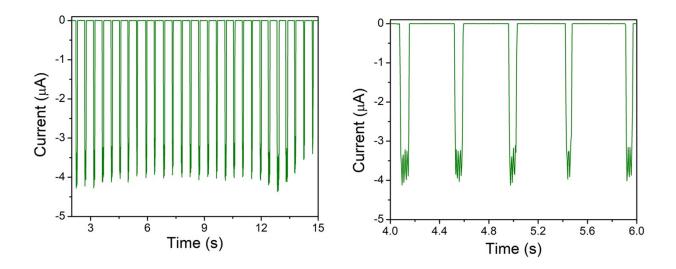
The heterogeneous electron transfer rate constants (k^0) were calculated using the Nicholson method.⁴⁰ The following equation was used:

 $\psi = k^0 [\pi DnFv/RT]^{-1/2}$

The kinetic parameters (ψ) from the average ΔEs of the ferri/ferrocyanide peaks for each scan rate were plotted versus [$\pi DnFv/RT$]^{-1/2} where D is the diffusion coefficient, F is Farady's constant, *v* is the scan rate, R is the ideal gas constant, and T is temperature. The rate constants

were determined from the slopes of the regression lines and the error shown is the standard error of the slope.


Figure S5 ¹H-NMR spectra of ThermoMorph polymer in CDCl3.

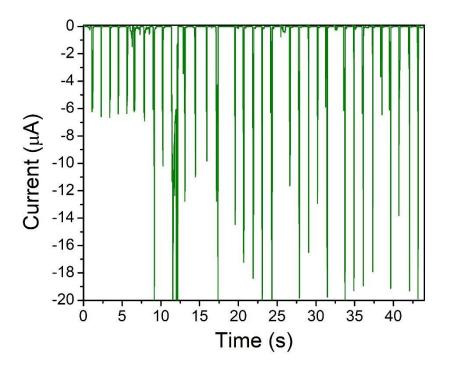

Figure S6 Optical profilometry of a channel cut into a droplet generator of a single pass in the X-axis of the laser cutter.

Figure S7 optical profilometry of a channel cut into a droplet generator of a single pass in the Y-axis of the laser cutter. Image is of the waste zone of the droplet generator.

Figure S8 Droplet generation in a salinized microfluidic chip, demonstration of short term stability for the sending of water droplets. Droplets contained 1 mM of ferricyanide in0.5 M KCl..

Figure S9 Droplet generation in a salinized microfluidic chip, demonstrating instabilities in droplet sensing in a second run. Droplets contained 1 mM of ferricyanide in 0.5 M KCl.