Sheathless separation of microalgae from bacteria using a simple

straight channel based on viscoelastic microfluidics

Dan Yuan^a, Qianbin Zhao^a, Sheng Yan^b, Shiyang Tang^a, Yuxin Zhang^a, Guolin Yun^a,

Nam-Trung Nguyen^c, Jun Zhang^{c,*}, Ming Li^{f,*} and Weihua Li^{a,*}

^a School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

^bDepartment of Chemistry, University of Tokyo, Tokyo, Japan

^cQueensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111,

Australia

^dSchool of Engineering, Macquarie University, Sydney, NSW 2122 Australia

*Corresponding authors: <u>weihuali@uow.edu.au</u>

ming.li@mq.edu.au

jun.zhang@griffith.edu.au

Fluorescent images at inlet

Figure S1 Fluorescent images for 1 μ m, 5 μ m, Merge of 1 μ m and 5 μ m fluorescent microparticles at inlet, respectively. Scale bar = 20 μ m.

Rheological property of 1000 ppm PEO solutions

The rheological property of the fluids was measured using a rotational rheometer (Antonpaar MCR 301) that has a parallel plate configuration and a diameter of 20 mm. The measurement was performed at room temperature ($24 \pm 1^{\circ}$ C). Figure S2 shows the viscosity of the Newtonian fluid and 1000 ppm PEO solution as a function of the shear rate. The shear viscosity of the viscoelastic fluid was measured in shear rates ranging from 100 s⁻¹ to 10³ s⁻¹. The shear viscosity of the Newtonian fluid remains constant at about 3×10^{-3} Pa·s. In this range, the PEO solutions show a slight shear thinning behavior. The average viscosity of 1000 ppm PEO solution within the tested shear rate region is 5×10^{-3} Pa·s.

Figure S2: Viscosity of Newtonian fluid and 1000 ppm PEO solution as a function of shear rate

	0 ppm	1000 ppm	1000 ppm	1000 ppm
		(AR=3)	(AR=5)	(AR=10)
<i>Q</i> = 0.01 μl/min	$R_c = 2.8 \times 10^{-3}$	$R_c = 1.6 \times 10^{-3}$	<i>R_c</i> =1.1×10 ⁻³	$R_c = 0.4 \times 10^{-3}$
	$W_i = 0$	<i>W_i</i> = 0.46	<i>W_i</i> = 0.16	<i>W_i</i> =2.7×10 ⁻²
<i>Q</i> = 0.1 μl/min	$R_c = 2.8 \times 10^{-2}$	<i>R_c</i> =1.6×10 ⁻²	<i>R_c</i> =1.1×10 ⁻²	$R_c = 0.4 \times 10^{-2}$
	$W_i = 0$	<i>W_i</i> = 4.6	<i>W_i</i> =1.6	<i>W_i</i> = 0.27
<i>Q</i> = 1 μl/min	<i>R_c</i> =0.28	<i>R_c</i> =0.168	$R_c = 1.1 \times 10^{-1}$	$R_c = 0.4 \times 10^{-1}$
	$W_i = 0$	<i>W_i</i> = 46	<i>W_i</i> =16	<i>W_i</i> = 2.7
<i>Q</i> = 5 μl/min	$R_c = 1.4$	<i>R_c</i> = 0.84	<i>R_c</i> =5.5×10 ⁻¹	$R_c = 0.2$
	$W_i = 0$	$W_i = 230$	<i>W_i</i> = 80	$W_i = 13.5$
<i>Q</i> = 10 μl/min	$R_c = 2.8$	<i>R_c</i> =1.68	$R_{c} = 1.1$	$R_c = 0.4$
	$W_i = 0$	<i>W_i</i> = 460	<i>W_i</i> =160	<i>W_i</i> =27
<i>Q</i> = 15 µl/min	$R_c = 4.2$	$R_c = 2.52$	<i>R_c</i> =1.65	$R_c = 0.6$
	$W_i = 0$	<i>W_i</i> =690	<i>W_i</i> =240	<i>W_i</i> =40.5
<i>Q</i> = 20 µl/min	$R_c = 5.6$	$R_c = 3.36$	$R_c = 2.2$	$R_c = 0.8$
	$W_i = 0$	<i>W_i</i> =920	<i>W_i</i> = 320	<i>W_i</i> =54

Calculation results of R_c and W_i for Newtonian fluid (0 ppm), and 1000 ppm PEO solutions with AR=3, AR=5, AR=10, from flow rate $Q=0.01 \mu$ l/min to $Q=20 \mu$ l/min

Migration phenomenon of 0.8µm and 3µm particle, RBC cells and E.coli

Figure S3 The migration phenomenon of $0.8\mu m$ and $3\mu m$ particle, RBC cells and ecoli in 1000ppm PEO fluid under the flow rate of 5 μ l/min in the same straight channel (AR=3)"