Supporting Information

Continuous Synthesis of Carbon Dots with Full Spectrum Fluorescence and the Mechanism of Multiple Color Emission

Meng Shao, Qin Yu, Nan Jing, Yu Cheng, Dong Wang*, Yun-Dong Wang, Jian-Hong Xu*

Figure S1. The schematic diagram of continuous method for full-spectrum carbon dots synthesis.

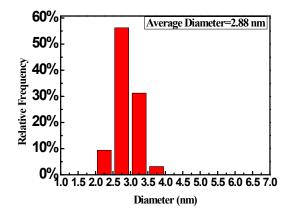


Figure. S2: The size distribution of CDs synthesized by a microreactor.

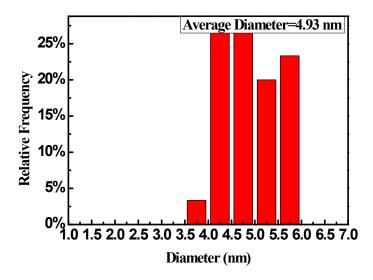


Figure. S3: The size distribution of CDs synthesized by an autoclave.

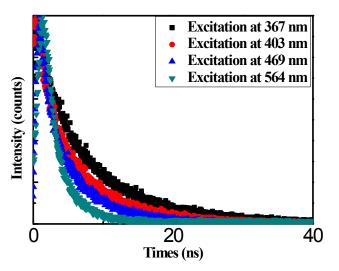


Figure. S4: Lifetime decay profiles of the carbon dots with full spectrum fluorescence under different excitation at 367, 403, 469, 564 nm.

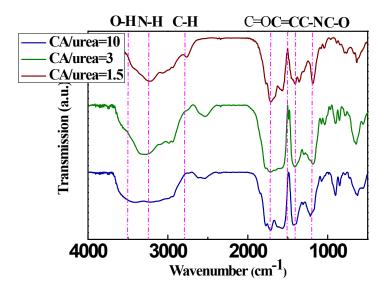


Figure. S5: The FTIR spectrum of three groups of samples.

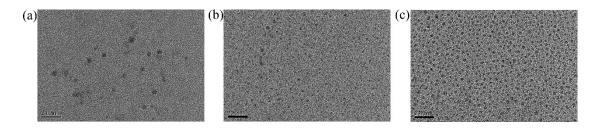


Figure. S6: The TEM image of sample A, B and C respectively. The scale bar of all the pictures is 20 nm.

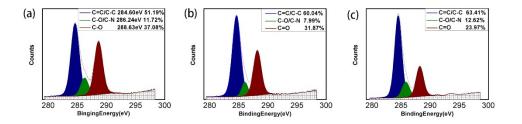


Figure. S7: (a) The XPS analysis of C1s at sample A. (b) The XPS analysis of C1s at sample B. (c) The XPS analysis of C1s at sample C.

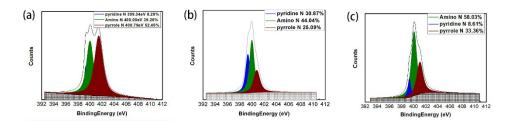


Figure. S8: (a) The XPS analysis of N1s at sample A. (b) The XPS analysis of N1s at

sample B. (c) The XPS analysis of N1s at sample C.

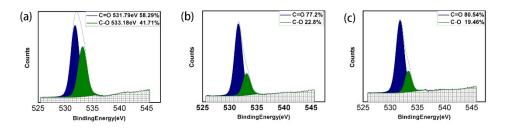


Figure. S9: (a) The XPS analysis of O1s at sample A. (b) The XPS analysis of O1s at sample B. (c) The XPS analysis of O1s at sample C.

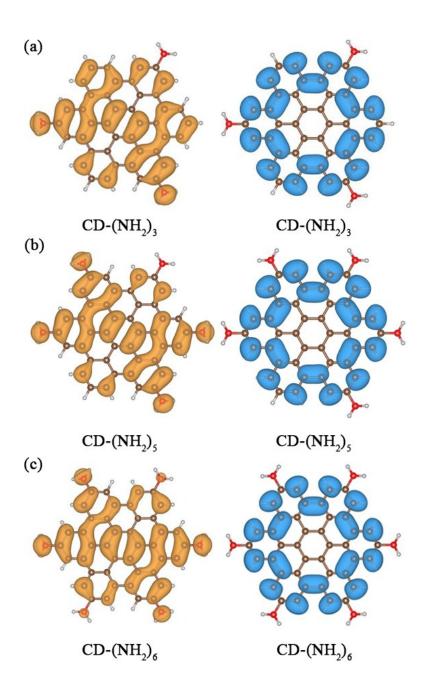


Figure. S10: HOMO and LUMO charge densities of $CD-(NH_2)_5$ and $CD-(NH_2)_6$ with same isosurface value, and the brown, red and gray spheres represent C, N and H atoms, respectively.

 Table S1
 Experimental conditions of three groups of experiments.

	Mole fow	Mole fow	The	The reaction	Temperature
	rate of CA	rate of urea	mole	time (min)	(°C)
Compound ³ min)		$(mol/10^3min)$	nomo		LUMO
		C pz	-CA to urea	N pz	C pz
Sample A	3.64	0.36	10	20	250
Sample B	3.00	1.00	3	20	250
Sample C	2.20	1.80	1.5	20	250

Table S2The element compositions of CDs.

	C (Atomic%)	N (Atomic%)	O (Atomic%)
Sample A	53.13	1.2	45.67
Sample B	58.91	7.22	33.87
Sample C	64.24	9.52	26.24

Table S3 Different substitution configurations of $CD-(NH_2)_3$ and their relative energy

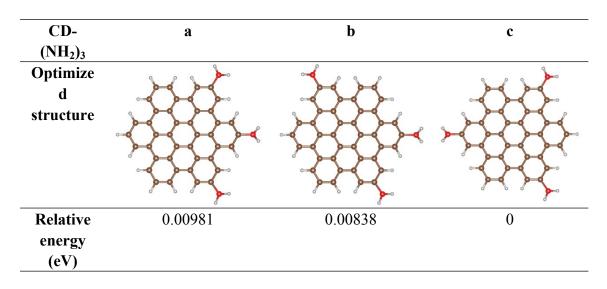


Table S4 Contributions of C p_z and N p_z orbitals in HOMO and LUMO of CD and CD-(NH₂)_n (n= 1, 5, 6)

CD	100%	0	100%
CD-(NH₂) ₁	87.2%	12.8%	100%
CD-(NH₂) ₃	86.8%	13.2%	100%
CD-(NH₂) ₅	82.1%	17.9%	100%
CD-(NH₂) ₆	82.3%	17.7%	100%